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ABSTRACT

Recently, a variety of unrolled networks have been pro-
posed for image reconstruction. These can be interpreted as
parameter-optimized algorithms that incorporate steps that
are traditionally encountered during the optimization of a
hand-crafted objective or in the Bayesian formulation. Here,
we address the problem of training such networks in the
presence of signal-dependent noise, which is more realistic
that the common additive Gaussian noise; however, it is also
much more computationally demanding, when possible. In
particular, we focus on the deep expectation-maximization
network and describe how to approximate the Bayesian de-
noised completion step to reduce the computational cost and
memory requirements while limiting the reconstruction er-
ror. We present reconstruction results from simulated data at
different noise levels. Our network yields higher reconstruc-
tion peak signal-to-noise ratios than other similar approaches.
In particular, our network shows greater robustness in the
practical case where the noise level is unknown or is badly
estimated.

Index Terms— Image reconstruction, deep learning, un-
folded network, signal-dependent noise.

1. INTRODUCTION

Many biomedical modalities are ill-posed image reconstruc-
tion problems that require prior information to stabilize the
solution, such as computerized tomography, magnetic res-
onance, and optical microscopy. In particular, single-pixel
imaging is aimed at recovering an image from a few point
measurements that correspond to the dot products between
an image and a set of Hadamard functions that are imple-
mented through a spatial light modulator [1]. This is a typical
under-determined inverse problem subject to Poisson noise.
Single-pixel imaging has been successfully applied to fluo-
rescence microscopy, hyperspectral imaging, image-guided
surgery, fluorescence lifetime imaging, and other such tech-
niques.

Image reconstruction problems have long benefited from
the theory of compressed sensing, but recent advances in deep
learning have revolutionized the field (see [2], and references

therein). In particular, unrolled networks that rely on the
computation of traditional solutions (e.g., pseudo inverse, ℓ1-
penalized, maximum a posteriori) can be interpreted as iter-
ative schemes that are optimized with respect to a particular
task and database [3]. Unrolled networks can be used to ef-
ficiently solve a variety of problems, which includes image
reconstruction problems in magnetic resonance imaging [4],
computed tomography [5], and optical microscopy [6], and
they are often based on convolutional neural networks [7],
[8].

Inspired by the expectation-maximization (EM) algorithm
[9], the deep EM network was recently proposed to solve
inverse problems corrupted by signal-dependent noise [10],
such as Poisson corrupted measurements encountered in com-
putational optics. However, signal-dependent noise enforces
the resolution of a different linear system for each image in
the training database, which prevents pre-computation and
poses a severe computational issue. In practice, approximate
(e.g., diagonal) resolutions are implemented, which leads to
sub-optimal image quality.

Our contribution to this problem is to introduce a novel
approximate solution to the Bayesian reconstruction problem,
where the computational complexity is compatible with the
training phase that requires its evaluation for a large number
of images. Having trained a deep EM net using this approx-
imation, we observe improved quality compared to existing
methods, such as [10]. In Section 2, we describe the forward
model and the solution of the inverse problem using the deep
EM algorithm. In Section 3, we detail the proposed Taylor
approximation of the Bayesian solution. In Section 4, we de-
scribe how the network is implemented and trained. In Sec-
tion 5, we report on and analyze our reconstruction results.

2. COMPUTATIONAL OPTICS

The philosophy of computational optics is to recover an im-
age f ∈ [0, 1]N from hardware measurements using software
m = H1f ∈ RM where H1 ∈ RM×N is a linear operator.



2.1. Forward problem

The system matrix H1 collects the patterns that are sequen-
tially uploaded onto a spatial light modulator. We consider 
the case M < N , where we acquire fewer measurements than 
pixels in the image. The patterns are traditionally chosen on 
a Hadamard basis H ∈ RN×N [11]; i.e., H1 = SH with 
S = [IM , 0] and H = [H1; H2]. The acquisition is cor-
rupted by Poisson noise [12]

m̂ α,± ∼ P(αH1
±f), (1)

where α is the intensity (in photons) of the image. Note
that experimental implementation of the negative values of
H1 is achieved through the use of the positive patterns H+

1

and H−
1 , such that H1 = H+

1 − H−
1 (see [13] for details).

We finally introduce the normalized Hadamard measurements
mα = 1

α (m̂
α,+ − m̂α,−), such that E (mα) = H1f . Note

that the amplitude of the normalized measurements remains
unchanged for different intensities of α

2.2. Inverse problem

We aim to compute the maximum a-posteriori solution of our
problem

argmax
f

log p(mα|f) + log p(f), (2)

where the conditional probability function p(mα|f) repre-
sents the noise model, and the probability function p(f) rep-
resents the prior knowledge about the unknown image.

2.2.1. Bayesian Denoised Completion

Under the assumptions p(mα|f) ∝ exp− 1
2∥H1f −mα∥2Σ-1

α

and p(f) ∝ exp− 1
2∥Hf∥2Σ-1 . where Σα represents the

noise covariance matrix, and Σ =

[
Σ1 Σ⊤

21

Σ21 Σ2

]
is the

Hadamard image covariance, where Σ1, Σ2 and Σ12 are the
blocks of the covariance matrix Cov (Hf) = Cov ([H1;H2]f)
that can be precomputed as defined in [14]. It follows that
f = Gα

Bay(m
α), where

Gα
Bay(m

α) = H⊤
[

IM
Σ21Σ

−1
1

]
Σ1(Σα +Σ1)

−1mα. (3)

2.2.2. Deep expectation maximization

Deep-learning-based methods look for a reconstruction map-
ping Gθ, where θ represents the parameters of the deep neural
network that are optimized during the training phase, by min-
imizing the mean squared error 1

S

∑S
s=1 ∥Gθ(m

α
(s))−f(s)∥22,

over an image database {f(s),m
α
(s)}1≤s≤S .

To solve the maximum a-posteriori problem, we adopt the
deep expectation (EM) architecture f (k) = Gα

θ,k(m
α), where

the k-th iteration f (k) is defined recursively by [10]

f̄ (k) = f (k) + Gα
Bay(m

α −H1f
(k)) (4a)

f (k+1) = Dθ(f̄
(k)) (4b)

with the initialization f (0) = 0. Here, Dθ is a neural network
(e.g., convolutional neural network) that corrects artifacts in
the image domain.

2.2.3. Practical issues

The computational cost of the training phase is dominated by
the evaluation of Equation (3), and in particular by

Pα = Σ1(Σα +Σ1)
−1, (5)

where the noise covariance matrix Σα can be reasonably es-
timated from the raw data [14]. However, as Σα depends on
the image and the intensity, no precomputation is possible,
and a different linear system should be solved for each of the
S images in the training database. To alleviate this problem,
[10] proposed to replace Pα in Equation (3) by the diagonal
approximation

Pα,1 = diag (Σ1) [Σα + diag (Σ1)]
−1. (6)

As the noise covariance matrix Σα is diagonal for indepen-
dent measurements, the computation of Equation (6) is trivial.
Despite the simplicity and effectiveness of this approxima-
tion, it leads to degraded image quality, as will be shown in
Section 5.

3. PROPOSED METHOD

Instead of solving S different linear systems, our idea is to
introduce an approximation Pα ≃ Qα + Rα, where Qα is
independent of f and can be precomputed, and Rα is a cor-
rection term for Qα, which depends on f , but requires no
system resolution (or matrix inversion) during training.

3.1. Taylor approximation

To do so, we introduce an approximate noise covariance ma-
trix Σ̃α, independent of f and such that (Σ1 + Σ̃α)

−1(Σα −
Σ̃α) is small. The choice of Σ̃α is discussed in Section 3.2.
Then, we note that

Pα = Σ1(Σ1 +Σα + Σ̃α − Σ̃α)
−1

= Σ1[(Σ1 + Σ̃α)(IM + (Σ1 + Σ̃α)
−1(Σα − Σ̃α))]

−1

= Σ1(IM + (Σ1 + Σ̃α)
−1(Σα − Σ̃α))

−1(Σ1 + Σ̃α)
−1.

The first order Taylor approximation gives Pα ≃ Pα,2, de-
fined by Pα,2 = Σ1[IM − (Σ1 + Σ̃α)

−1(Σα − Σ̃α)](Σ1 +



Σ̃α)
−1, which is of the form Pα,2 = Qα + Rα, where we

identify

Qα = Σ1(Σ1 + Σ̃α)
−1 (7a)

Rα = −Qα(Σα − Σ̃α)Σ
−1
1 Qα (7b)

Note that Qα can be computed once and for all before the
learning phase, while the computation of Rα only requires
three matrix products (including one with a diagonal matrix)
for a given Σ̃α. Note that this does not require any matrix
inversion.

3.2. Computation of the approximate noise covariance

The noise covariance matrix Σα is directly linked to to the
total image intensity. Indeed, by deriving the variance of the
raw measurements, we obtain Σα = IM

1
α

(
H+

1 f +H−
1 f

)
.

Then, using the properties of the Hadamard matrix H+
1 +

H−
1 = 1, we have Σα = IM

1
α

∑N
n=1 fn ≤ IM

N
α , where

the upper bound is reached when Σ̃α = IM
N
α .

4. EXPERIMENTS

In our experiments, we choose M = 1024 Hadamard pat-
terns of size N = 64 × 64 pixels. We train two variants of
the deep EM network (i.e., K = 1 and K = 5 iterations) in
an end-to-end fashion, choosing Dθ as the convolutional neu-
ral network described in [15]. All of the networks are trained
using 105,000 images (i.e., the ‘unlabeled’ and ‘train’ sub-
sets of the STL10 database; [16]); 8,000 images are used for
the test (i.e., the ‘test’ subset of STL10). The original 96×96
images were cropped to 64×64, and normalized between −1
and 1. We implement our methods using the Python SPyRiT
package [17], which is based on Pytorch [18]. For training,
we consider the ADAM optimizer for 30 epochs. The step
size is initialized to 10−3 and is reduced by half every 10
epochs. The weight decay regularization parameter is set to
10−8. The number of learned parameters is 8,129. The train-
ing phase takes 38 min for K = 1, and 1 h 40 min for K = 5
on a NVIDIA GeForce GTX 1660 Ti, for both the diagonal
and proposed approximations

5. RESULTS AND DISCUSSION

5.1. Influence of approximations in Bayesian denoised
completion

First, we compare the image reconstructions from the Bayesian
denoised completion of Equation (3) using the exact for-
mulation corresponding to Pα given by Equation (5), the
diagonal approximation given by Equation (6), and the pro-
posed approximation given by Equation (7). We consider
four different noise levels corresponding to four different im-
age intensities α. Increasing image intensities correspond to
decreasing signal-to-noise ratios.

We report the means and standard deviation of the recon-
struction PSNR computed over the test database in the left
half of Table 1, and display the corresponding reconstructed
images in Fig. 1b-d. We observe that the diagonal approxi-
mation leads to reduced image quality compared to the exact
solution, in particular at the high noise levels that correspond
to low image intensities. For instance, at α = 5 photons,
the mean PSNR degradation is 1 dB. For the top row image
displayed in Fig. 1, the PSNR degradation reaches 1.32 dB
and the image reconstruction with the diagonal approximation
shows severe artifacts. However, the proposed approximation
performs very similarly to the exact Bayesian inversion, both
in terms of mean PSNRs (e.g., degradation equal to or less
than 0.78 dB) and visual quality.

5.2. Advantage of EM deep reconstruction

In Table 1, we report the reconstruction quality metrics over
the stl-10 test dataset for the different reconstruction networks
using the diagonal approximation and the proposed approxi-
mation. First, we observe that deep reconstruction outper-
forms Bayesian denoised completion, regardless the imple-
mentation of Equation (3) as exact or approximated (i.e., di-
agonal or proposed). For instance, using the diagonal approx-
imation, the mean PSNR is improved by 20.45-19.27 = 1.18
dB at 2 photons, by 22.18 - 20.73 = 1.45 dB at 5 photons, and
by 23.58-21.97 = 1.61 dB at 10 photons. Secondly, among
the deep methods, the networks trained with the proposed ap-
proximation slightly outperform the networks trained using
the diagonal approximation. For instance, at 5 photons, the
improvement is 22.37 - 22.18 = 0.19 dB using K = 1 itera-
tions. The reconstruction quality can be further improved by
22.48 - 22.37 = 0.11 dB using K = 5 iterations in the EM-
Net.

5.3. Robustness of the proposed method

Our objective here is to assess the robustness of the different
reconstruction methods when the estimation of the light in-
tensity α (i.e., the noise level) is either biased or does not fit
with the training noise level of the available networks. More
specifically, in Table 2, we propose to reconstruct an image
acquired at α in {2, 5, 10} photons with networks trained at
α = 50 photons. As expected, the reconstruction quality
is lower when the training noise level deviates from the ac-
quisition noise level. More surprisingly, at high noise lev-
els (i.e., low light intensities), the degradation is more lim-
ited using the proposed method. Indeed, at α = 5 photons,
the mean PSNR of the EM-Net reconstruction is reduced by
22.18 − 21.62 = 0.56 dB using the diagonal approximation,
while the reduction is only 22.37−22.00 = 0.37 dB when us-
ing the proposed approximation with K = 1. The proposed
approximation with K = 5 has a lower mean PSNR; how-
ever,the PSNR standard deviation is improved. Fig. 1 shows



(a) Ground Truth. (b) PSNR = 21.08 dB (c) PSNR = 22.40 dB (d) PSNR = 22.43 dB (e) PSNR = 21.82 dB (f) PSNR = 22.88 dB

Fig. 1: Reconstructions on the stl-10 test dataset for the different methods assuming α = 5 ph. (a) Ground truth. (b-d) Bayesian
denoised completion Gα

Bay using the diagonal approximation (b), the exact solution (c), and the proposed approximation (d). (e,
f) EM-Net reconstruction for K = 5 iterations using the diagonal approximation (e) and the proposed method (f) for networks
trained using α =50 ph. PSNR, peak signal-to-noise ratio.

Bayesian denoised completion EM-Net

α Diag Exact Proposed Diag (K=1) Proposed (K=1) Diag (K=5) Proposed (K=5)

2 PSNR 19.27± 1.45 20.88± 1.67 20.10± 1.62 20.45± 1.70 20.67± 1.70 20.70± 1.63 20.75± 1.67
SSIM 0.781± 0.137 0.831± 0.141 0.809± 0.138 0.817± 0.139 0.825± 0.141 0.825± 0.145 0.827± 0.141

5 PSNR 20.73± 1.37 21.73± 1.43 21.61± 1.57 22.18± 1.71 22.37± 1.70 22.51± 1.66 22.48± 1.70
SSIM 0.851± 0.098 0.877± 0.093 0.873± 0.093 0.883± 0.096 0.889± 0.094 0.889± 0.095 0.888± 0.097

10 PSNR 21.97± 1.31 22.94± 1.42 22.82± 1.58 23.58± 1.80 23.71± 1.80 23.92± 1.71 23.83± 1.74
SSIM 0.892± 0.072 0.910± 0.067 0.908± 0.066 0.918± 0.067 0.920± 0.064 0.923± 0.065 0.921± 0.066

50 PSNR 25.25± 1.37 25.84± 1.52 25.77± 1.66 26.82± 1.91 26.82± 1.94 27.06± 1.89 27.00± 1.90
SSIM 0.951± 0.035 0.957± 0.032 0.956± 0.032 0.961± 0.033 0.963± 0.029 0.965± 0.029 0.964± 0.030

Table 1: Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of the reconstructions over the stl-10 test set. The
Bayesian denoised completion reconstruction corresponds to Equation (3) using the diagonal (’Diag’) approximation given by
Equation (6), the exact (’Exact’) inversion given by Equation (5), and the proposed (’Proposed’) approximation given by Equa-
tion (7). The EM-Net reconstruction corresponds to Equation (4) using either the diagonal (’Diag’) or proposed (’Proposed’)
approximation, for K = 1 and K = 5 iterations. Here, all images are reconstructed with M = 1024, and the networks are
trained with the image intensity α used during acquisition.



α Diag (K=1) Proposed (K=1) Proposed (K=5)

2 PSNR 19.86± 1.70 20.33± 1.76 19.86± 1.46
SSIM 0.795± 0.139 0.812± 0.141 0.817± 0.143

5 PSNR 21.62± 1.68 22.00± 1.77 21.87± 1.52
SSIM 0.869± 0.095 0.878± 0.094 0.884± 0.094

10 PSNR 23.16± 1.69 23.40± 1.78 23.48± 1.60
SSIM 0.910± 0.066 0.915± 0.065 0.920± 0.065

Table 2: Robustness of the EM-Net reconstruction for the
acquisition of noise levels that differ from the training noise
level. Details as for the legend to Table 1, except that all of
the networks are trained with α = 50 ph. PSNR, peak signal-
to-noise ratio; SSIM structural similarity.

an example of the deep EM reconstruction obtained for an im-
age intensity (i.e., α = 5 ph) that differs from that used during
training (α = 50 ph). We observe that the proposed approx-
imation preserves the image regularity, whereas the network
accentuates artifacts from the diagonal approximation, which
results in a drop in PSNR, for both the K = 1 and K = 5
variants.

6. CONCLUSION

We consider the problem of reconstruction of an image from
few measurements corrupted by signal-dependent noise. In
particular, we focus on an unrolled network that is based on a
Bayesian formulation of this inverse problem. It requires the
resolution of many different linear systems during the train-
ing phase, which raises memory and computational cost is-
sues. While a diagonal approximation that does not suffer
from these limitations has been proposed, it leads to degraded
image quality. In this work, we propose a novel approxima-
tion, which has the same advantages as the diagonal approx-
imation, while leading to improved image quality. Coupled
with neural networks, this improves both the quality and the
robustness of the reconstruction method. Our approach is well
suited to photonic applications where measurements are cor-
rupted by Poisson noise. In future work, we will assess the
method for experimental acquisitions for hyperspectral imag-
ing.
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