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Cluster algebras associated with open Richardson varieties: an
algorithm to compute initial seeds

Etienne Ménard

March 29, 2022

Abstract
We present a new algorithm to compute initial seeds for cluster structures on categories associated

with coordinate rings of open Richardson varieties. This allows us to explicitely determine seeds first
considered in [Lec16].

1 Introduction
Follwing [Lec16], we first recall the context of this paper.

Let G be a simple simply connected algebraic C-group. We assume G to be simply-laced and fix H a
maximal torus in G, B a Borel subgroup of G containing H, and we denote by B− the Borel subgroup
opposite to B with respect to H. Let W = NormG(H)/H be the Weyl group with length function
w 7→ `(w) and longest element w0 ∈ W , of length r = `(w0). We denote by S = {s1, . . . , sn} its subset
of standard Coxeter generators. Reduced representatives of w ∈W will be denoted by w = [i`(w), . . . , i1]
corresponding to products of `(w) simple reflections si`(w) · · · , si1 . Our convention for the Dynkin diagram
of G is:

An : 1 2 · · · n− 1 n , n ≥ 1

Dn :
n− 1

1 2 · · · n− 2
n

, n ≥ 4

En :
1 3 4 5 6 7 8

2
, n = 6, 7, 8

Figure 1: Dynkin diagrams

We consider the flag variety X = B−\G and we denote by π : G → X the natural projection
π(g) := B−g. The Bruhat decomposition (resp. Birkhoff decomposition):

G =
⊔
w∈W

B−wB−, (resp. G =
⊔
w∈W

B−wB, )

projects to the Schubert decomposition (resp. opposite Schubert decomposition)

X =
⊔
w∈W

Cw, (resp. X =
⊔
w∈W

Cw, )

where Cw = π(B−wB−) is the Schubert cell attached to w, isomorphic to C`(w) and Cw = π(B−wB) is
the opposite Schubert cell attached to w, isomorphic to C`(w0)−`(w).

The intersection
Rv,w := Cv ∩ Cw

is called an open Richardson variety. In [KL80, Deo85] it is shown that Rv,w is non-empty if and only
v ≤ w for the Bruhat order of W and that it is a smooth irreducible locally closed subset of Cw of
dimension `(w)− `(v). We get a finer stratification

X =
⊔
v≤w

Rv,w
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2 CATEGORIFICATION OF CLUSTER ALGEBRAS 2

though the strata Rv,w are no longer isomorphic to affine spaces (in general).
In [Lus98] Lusztig used this stratification for studying the nonnegative part X≥0 of the flag variety X

(more generally a partial flag variety). In [Lec16], Leclerc showed that there exists a cluster subalgebra
R̃v,w contained in the coordinate ring C[Rv,w] and proposed the following conjecture:

Conjecture 1.1 (Leclerc’s conjecture). For any strata Rv,w we have C[Rv,w] = R̃v,w.

In order to help to solve this conjecture, we want to work with explicit seeds for R̃v,w. Some seeds
are defined (but not explicitly computed) in [Lec16] using a categorification that we now introduce.

In [GLS11], Geiss, Leclerc and Schröer introduced a category called Cw whose definition will be recalled
below. Independently, Buan, Iyama, Reiten and Scott introduced the same category in [BIRS09]. The
latter also defined the cluster structure on 2-Calabi-Yau categories: a categorical analog of the cluster
algebra structure with a notion of seed and its mutations.

In [GLS11] the authors build explicitely a seed for the cluster structure on Cw. Via the cluster
character ϕ that they defined in [GLS06, Section 9] they found a seed for the cluster algebra on C[Cw]
as the image of a seed M of Cw via the cluster character.

We will here use the same strategy to find a seed for R̃v,w based on a category Cv,w, defined below.
In order to do so, we need a seed for the cluster structure on Cv,w and we will compute this seed thanks
to a mutation algorithm that we will design and prove. This algorithm takes as entry data a seed for
the cluster structure on Cw computed thanks to a reduced representative w of w, and the Weyl group
element v.

In this paper, relying on the existence of a cluster structure for Cv,w, proved in [Lec16], we will define
and prove an algorithm giving an explicit way to find a seed for this cluster structure (in the sense of
[BIRS09]). This paper summarize the results of the author’s thesis [Mén21a] written during his PhD
internship at Université de Caen.

1.1 Organisation
In the second section we will define the categories Cw, Cv, and Cv,w, their properties, and we will recall
how to compute an initial seed Vw for Cw. In the third section we will introduce some combinatorial
notation that we will use for our algorithm. In the fourth section we will study the quiver associated to
the initial seed Vw, its combinatorial definition, and some properties of his graph. In the fifth section
we will consider a way to represent the elements of Cw thanks to an integer vector called ∆-vector. We
will study its properties, how it can be combinatorially defined for Vw and why it plays a key role in our
algorithm proof.

We will then define our algorithm in the sixth section and give two equivalent formulations. In the
following section we will prove it and end this article with some results obtained thanks to this algorithm.

In appendix we put a discussion about the different configurations of the quiver and their evolution
thanks to mutation. We end this article with a step-by-step example of running the algorithm with given
data.

2 Categorification of cluster algebras
In this section we will recall some results from Buan, Iyama, Reiten and Scott [BIRS09], from Geiss,
Leclerc and Schröer [GLS11] and from Leclerc [Lec16] about the categories Cw, Cv and Cv,w.

2.1 The preprojective algebra
Given a Dynkin diagram of type ∆, we construct the preprojective algebra of type ∆. To do so we take
any orientation on the Dynkin diagram to have a quiver Q = (Q0, Q1), double each arrow (for each arrow
α ∈ Q1 we now have α and α∗ ∈ Q∗1, forming a 2-cycle), and obtain the quiver Q = (Q0, Q1 tQ∗1).

We then take the C-path algebra CQ of Q and quotient it by the two-sided ideal generated by:

c =
∑
α∈Q1

αα∗ − α∗α.

We then obtain the preprojective algebra Λ of type ∆:

Λ = CQ/(c)
The reader will be able to find more information about this construction in [GLS08, Section 3].
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In the following we will denote by mod(Λ) the category of finitely generated Λ-modules. The simple
1-dimensional Λ-modules in correspondence with the vertices of the Dynkin diagram will be denoted by
Si (i ∈ I) and their respective injective envelopes by Qi (i ∈ I). We will denote by Pi (i ∈ I) the
projective cover of Si.

We will now introduce the categories Cw, Cv and Cv,w and their links with the cluster algebra structures
on the rings C[Cw], C[Cv] and C[Rv,w].

2.2 Cluster structure on subcategories of mod(Λ)
In the following, C will be an extension closed subcategory of mod(Λ).

The cluster structure will be introduced by first defining a seed (a module and its quiver) and then
the notion of mutation of cluster seeds. A seed for this structure is a module with some properties whose
definitions are recalled now, adapting [BIRS09] to the specific context of subcategories of mod(Λ).

Definition 2.1. For a Λ-moduleM , add(M) is the full subcategory of mod(Λ) consisting of all modules
isomorphic to direct summands of finite direct sums of copies of M .

M is rigid if Ext1
Λ(M,M) = 0.

It is C-maximal rigid if for any T ′ ∈ C such that M ⊕ T ′ is rigid, then T ′ ∈ add(M).
M is said to be cluster-tilting if we have the following equivalence:

(X ∈ C and Ext1
Λ(M,X) = 0)⇔ (X ∈ add(M))

M is basic if its indecomposable direct summands are pairwise non-isomorphic.

Then to any basic C-cluster-tilting module M we can associate a seed in the following way:

Definition 2.2 (Seed for a cluster structure). Let M =
r⊕
i=1

Mi be the indecomposable direct summands

decomposition of M . Then the collection {M1, . . . ,Mr} is a cluster whose projective direct summands
are coefficients and the others are cluster variables.

ToM one can associate a quiver ΓM by taking the Gabriel quiver of the algebra EndΛ(M) associating
the vertices HomΛ(M,Mi) of the latest to the vertex labelled by Mi in ΓM and considering quivers to be
defined up to arrows between two vertices corresponding to coefficients.

Remark 2.3. Here we decide not to use the quiver of Endop(M) contrary to many articles without any
loss of generality.

To define mutation we have to consider short exact sequences:

Theorem 2.4 ([BIRS09]). For a seed M ∈ C, Mi a cluster variable and the quiver ΓM = (Q0, Q1, s, t)
of M , there exists a unique (up to isomorphism) indecomposable module M∗i such that the two following
exchange sequences exist:

Mi →
⊕
α∈Q1

s(α)=Mi

Mt(α) →M∗i , M∗i →
⊕
α∈Q1

t(α)=Mi

Ms(α) →Mi

ThenM∗ =
r⊕

k=1
k 6=i

Mk⊕M∗i is another cluster-tilting module called the mutation ofM in direction i, denoted

by µi(M). The mutation of the quiver µi(ΓM ) is the classical mutation of quivers.

2.3 The category Cv,w

Given a Coxeter generator si (i ∈ I), as in [Lec16, Section 3.2], we define the endofunctor Ei = Esi on
the objects of mod(Λ) as the kernel of the surjection X → S

⊕mi(X)
i where mi(X) is the multiplicity of

Si in the head of X.
Dually we define the endofunctor E†i on the objects of mod(Λ) as the cokernel of the injection

S
⊕m†

i
(X)

i → X where m†i (X) is the multiplicity of Si in the socle of X.
Ei acts on X by removing the Si-isotypical part of its head, E†i by removing the Si-isotypical part

of its socle. As the Ei and E†i verify the braid relations of W , we can define unambiguously Ew on any
w ∈W by taking any reduced representative and composing the corresponding endofunctors.

Given these functors we can now define the following categories which will be our main interest:



2 CATEGORIFICATION OF CLUSTER ALGEBRAS 4

Definition 2.5. For w ∈W let u := w−1w0, Iw := Eu
(⊕

i∈I Qi
)
and Jw := E†w−1

(⊕
i∈I Qi

)
.

We define:
Cw := Fac(Iw) = Eu(mod(Λ)), Cv := Sub(Jv) = E†v−1(mod(Λ))

As explained in [Lec16] and [GLS11], these two categories give categorical models of the strata Re,w
(Rw,w0 respectively) of the flag variety X.

Example 2.6. Let W be of type A3 and w = s1s2s3s1 and v = s2s1. To give a straightforward visual
representation of the endofunctors’ action we will represent the modules by their socle decomposition.

The preprojective algebra of type A3 has 3 maximal indecomposable projective-injective modules:

Q1 =
3

2
1

, Q2 =
2

1 3
2

, Q3 =
1

2
3

We compute u = w−1w0 = s2s1 and v−1 = s1s2. We have:

E1(Q1) = Q1, E1(Q2) = Q2, E1(Q3) = 2
3

Eu(Q1) = Q1 =
3

2
1

, Eu(Q2) = 1 3
2

, Eu(Q3) = 3 = S3

Similarly we have

E†v−1(Q1) = 3 = S3, E†v−1(Q2) = 2
1 3

, E†v−1(Q3) = Q3 =
1

2
3

So

Iw = 3
2

1
⊕ 1 3

2
⊕ S3, Jv = S3 ⊕ 2

1 3
⊕

1
2

3
and eventually the categories Cw and Cv have the following sets of indecomposable modules:

Ind(Cw) =

S3, S1, 1 3
2

, 3
2

,
3

2
1

 , Ind(Cv) =

S3, S1, 2
1 3

, 2
3
,

1
2

3


One can easily verify that these categories are closed under extensions, and closed either under factors

(for Cw), or under submodules (for Cv).

Definition 2.7 ([Lec16]). Given v ≤ w ∈W we define the category:

Cv,w = Cv ∩ Cw

In [Lec16, Corollary 3.11], Leclerc showed that this category has a cluster structure but did not give
an explicit seed of it.

Given a Cw-cluster tilting object T , and denoting tv(T ) the maximal submodule of T in Cv, he showed
that T/tv(T ) is a Cv,w-cluster-tilting object but it is neither basic in general nor do we know its quiver.

We recall some definitions, as in Section 2.2, C is an extension-closed subcategory of mod(Λ).

Definition 2.8. Let T be a C-module, Σ(T ) is the number of isoclasses of indecomposable direct sum-
mands of T .

A module T having the maximal number Σ(T ) in C is said to be C-complete.

We then have the following equivalence:

Theorem 2.9 ([GLS06, Theorem 2.2.],[GLS11, Theorem 2.9.]). For a rigid Λ-module T the following
are equivalent:

• T is Cw-maximal rigid;

• T is Cw-complete rigid;
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• T is Cw-cluster-tilting.
The same holds for Cv by duality.
It is then possible to decide if a rigid module is cluster-tilting by counting its isoclasses of indecom-

posable summands and we have in addition the following information about the number of isoclasses:
Theorem 2.10 ([Lec16, Proposition 4.3]). A Cv,w-maximal rigid basic moduleM has Σ(M) = `(w)−`(v)
indecomposable summands.

2.4 The initial module Vw

In order to get some examples of Leclerc’s conjecture, we need to have an explicit initial seed for the
cluster structure on Cv,w. We will not compute it directly as the authors did for Cw in [GLS11, Section
2.4] but we will in fact start from such a seed for Cw. In this section we will recall the construction of
this seed thanks to a reduced representative w of w ∈W .
Definition 2.11 (Definition of soc notation). For a Λ-moduleX and a simple module Sj , let soc(j)(X) :=
socSj (X) be the Sj-isotypical part of the socle of X.

For a sequence [j1, . . . , jt] with 1 ≤ jp ≤ n for any p, there is a unique chain of submodules of X
0 = X0 ⊆ X1 ⊆ · · · ⊆ Xt ⊆ X

such that Xp/Xp−1 = soc(jp)(X/Xp−1). Then we define soc(j1,...,jt)(X) := Xt.
Example 2.12. Let W be of type A4 and X = Q3, we have:

Q3 =
2

1 3
2 4

3

.

Then soc(3)(Q3) = S3, soc(j)(Q3) = 0 for all j 6= 3. We have the following chain of submodules of Q3:

0 ⊆ S3 ⊆ S3 ⊆ 2
3
⊆ 2

3
⊆ 2 4

3
⊆

2
1 3

2 4
3

allowing us to define soc(3,1,2,3,4)(Q3) = 2 4
3

.

Definition 2.13 (Modules Vk,w). Given a reduced representative w = [i`(w), . . . , i1] of w ∈ W and
1 ≤ k ≤ `(w), let

Vk,w := soc(ik,...,i1)(Qik).
Remark 2.14. Note that defining Vk,w requires to read w from left to right even if it is indexed from
right to left.
Example 2.15. For W of type A4 let w = [4, 2, 3, 1, 2, 3, 4] then, thanks to Example 2.12, we have

V5,w = 2 4
3

.

These Vk,w then gives what will be the starting point of our algorithm:
Definition 2.16 (Module Vw). Under the same assumptions as before, let:

Vw =
`(w)⊕
i=1

Vi,w.

Example 2.17. For w = [4, 2, 3, 1, 2, 3, 4] as in Example 2.15, we have (summands ordered by ascending
index):

Vw = S4 ⊕ 4
3

⊕
4

3
2

⊕
4

3
2

1

⊕ 2 4
3

⊕
2 4

1 3
2

⊕
2

3
4
.

Vw is enough to define the whole category Cw which has the following properties:
Theorem 2.18 ([GLS11, Section 2.4]). Vw is a Cw-cluster-tilting module, Cw = Fac(Vw), and in Cw a
module M is a cluster-tilting module iff it is Cw-maximal rigid iff Σ(M) = `(w).
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3 Combinatorial notations
In the following we will have to study in detail reduced representatives of Weyl group elements and their
indices.

Definition 3.1. To a product sik · · · si1 of simple reflections representing the Weyl group element w, we
associate the integer tuple w = [ik, . . . , i1]. Given a Weyl group element w there exists a minimal number
of factors among products representing this element. This number is called the length of w, denoted
`(w). A representative having as few factors as the length is called reduced. We will always suppose the
representatives to be reduced.

Given a reduced representative w = [i`(w), . . . , i1] of w ∈ W and 1 ≤ k ≤ `(w) we will define the
following notions:

• the color of the index k is the numerical value of the integer ik,

• the successor, k+, of k is the smallest index strictly greater than k such that k and k+ have the
same color. If k is the greatest index of its color, then for any j such that ij = ik (i.e. of the same
color) we note jmax := k and k+ = `(w) + 1,

• the predecessor, k−, of k is the greatest index strictly smaller than k such that k and k− have the
same color. If k is the smallest index of its color, then for any j of the same color as k, we note
jmin := k and k− = 0.

Two colors are said to be adjacent if the associated vertex of the Dynkin diagram are linked by (at
least) one edge.

Example 3.2. For instance, if we consider W of type A5 and w = s2s3s4s5s1s2s3s4s1s2s3s2s1, one
reduced representative is w = [2, 1, 3, 4, 2, 1, 3, 5, 2, 4, 3, 2, 1] =: [i13, i12, i11, i10, i9, i8, i7, i6, i5, i4, i3, i2, i1]

The color of the fifth letter i5 is the integer 2, the color of the tenth is i10 = 4.
The successor of the seventh letter is the eleventh: 7+ = 11 as 7 and 11 are of color 3 and there is

no letter of this colour after the seventh and before the eleventh; its predecessor is 7− = 3. In the same
sense, we have 8+ = 12, 8− = 1. In order to illustrate the boundary definitions: 6+ = 14 = `(w) + 1 and
6− = 0 as the sixth letter is the only one of its color (5).

4 Structure of ΓVw
4.1 Definition
As explained in Definition 2.2, the quiver attached to a maximal-rigid basic module M ∈mod(Λ) is the
quiver of its endomorphism algebra EndΛ(M). This quiver has its vertices labelled by the EndΛ(M)-
modules HomΛ(M,Mi) whereM =

⊕
Mi is a decomposition ofM into indecomposable direct summands,

and the arrows correspond to irreducible morphisms.
In general it is difficult to determine such a quiver, but thanks to [GLS11, Section 2.4] we have a

combinatorial description of the quiver ΓVw (or Γw). Note that this is a special case of the quivers
associated in [BFZ05] to double Bruhat cells.

The vertices are labelled by the direct summands Vk, 1 ≤ k ≤ `(w). In order to fix a position we will
put all vertices on a n × `(w) grid, the vertex labelled by Vk being on the kth column (numbered from
right to left) and on the ik-th line (numbered from up to bottom).

We will then add arrows by splitting them into two sets:

• the horizontal arrows will go from k to k+ for any 1 ≤ k ≤ `(w) whenever possible,

• the ordinary arrows will go from k to j if ij 6= ik and the inequality j+ ≥ k+ > j > k is verified.
Then there are −aij ,ik arrows Vij → Vik where A = (ai,j) is the Cartan matrix associated to W .

Remark 4.1. As we are in simply-laced Dynkin cases, we have one arrow Vi,j → Vi,k if siksijsik =
sijsiksij and the inequality is verified and no arrow if sijsik = siksij .

Example 4.2. Let us consider the element w of the Weyl group W of type A4 and the representative
w = [3, 4, 2, 3, 1, 2, 4, 1]. Then we have (indecomposable direct summands ordered by ascending index):

Vw = 1⊕ 4⊕ 1
2
⊕ 2

1
⊕

1
2 4

3
⊕

2 4
1 3

2
⊕

1
2

3
4

⊕
2

1 3
2 4

3

.
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If we compute the quiver of the endomorphism algebra EndΛ(Vw) we get:

Hom(V4, Vw) Hom(V1, Vw)

Hom(V6, Vw) Hom(V3, Vw)

Hom(V8, Vw) Hom(V5, Vw)

Hom(V7, Vw) Hom(V2, w)

and thus, the quiver Γw is Figure 2.

V4 V1

V6 V3

V8 V5

V7 V2

Figure 2: Quiver Γw

If we follow the steps described above we first draw a 4×8 table in which we put the vertices according
to their index and color:

8 7 6 5 4 3 2 1
V4 V1 1

V6 V3 2
V8 V5 3

V7 V2 4

,

we add the horizontal arrows (between two successive vertices on the same line going from right to left)
and, eventually, we add the ordinary arrows and we get Figure 2. For instance we have the arrow V5 → V2
as i5 = 3 6= 4 = i2, s4s3s4 = s3s4s3 (so 3 and 4 are linked in the Dynkin diagram by one edge) and
5+ = 8 ≥ 2+ = 7 > 5 > 2.

There is no arrow V6 → V1 as, even if i6 6= i1 and these colors are related by a braid move, the
inequality is not verified:

6+ = 9 ≥ 2+ = 5 6> 6 > 2

There is no arrow V2 → V1 as i2 and i1 are two colors not linked in the Dynkin diagram and thus
generate no arrow, even if the inequality 2+ = 7 ≥ 1+ = 4 > 2 > 1 is verified.

Definition 4.3 (Colored lines). Thanks to this way of displaying the quiver, we can now associate a
color to each line, the color of the ik-th line being ik.

4.2 Saw teeth structure
We now want to exhibit a remarkable structure on this quiver that we will need later for the proof of our
algorithm. We need first to introduce another notion:

Definition 4.4 (Bicolor subquiver). Given a quiver Γ having a structure of colored lines c1, . . . , cn, the
bicolor subquiver of color (cj , ck) is the subquiver of Γ obtained by taking:

• all vertices of color cj or ck

• all arrows between vertices both of color cj

• all arrows between a vertex of color cj and one of color ck (and conversely)

Remark 4.5. The definition is not symmetric: cj and ck do not play the same role.

Example 4.6. Taking again Figure 2, we can extract the (2, 3)-bicolor subquiver and get Figure 3 a).
We can also look at the (3, 2)-bicolor subquiver of Figure 3 b) and check that they are different.



4 STRUCTURE OF ΓV
W

8

V6 V3

V8 V5

V6 V3

V8 V5

a) b)

Figure 3: a) (2, 3)-bicolor subquiver of Γw, b) (3, 2)-bicolor subquiver of Γw

Definition 4.7 (Saw teeth). Let Γ be a bicolor subquiver of colors (ik, ij). We call a saw tooth of Γ, a
cycle of Γ arrows having the following elements:

• an arrow from a vertex of color ik (let say Rk) to a vertex of color ij (let say Rj)

• an arrow from Rj to a vertex of color ik and of index stricly less than k, let say Rkα− , α > 0

• a sequence of arrows between vertices of color ik: Rk ← Rk− ← · · · ← Rk(α−1)− ← Rkα− .

We then say that Rkα− is the right end of the saw tooth, Rk its left end and Rj its summit.
We call successive sequence of saw teeth of length m a collection of m teeth that we can index by

1, . . . ,m such that the left end of the tooth p is the right end of the tooth p + 1 (1 ≤ p ≤ m − 1). We
call right end of the sequence the right end of the tooth 1 and left end of the sequence the left end of the
tooth m.

Definition 4.8 (Saw teeth structure). A bicolor subquiver of colors (ik, ij) is said to have a saw teeth
structure if it has the following structure (by ascending order of indices on vertices on the ik-th line):

1. a sequence (possibly empty) of vertices of color ik where successive vertices are linked by a horizontal
arrow

R(kmin)α+ ← R(kmin)(α−1)+ ← · · · ← R(kmin)+ ← Rkmin

where α is the length of this sequence

2. a unique arrow, called initial barb, R(kmin)α+ → R(jmin)β+ (optional)

3. a sequence of m saw teeth of right end R(kmin)α+ and of left end R(kmax)γ− with γ ≥ α (equality if
empty)

4. a unique arrow, called final barb, R(jmin)δ+ → R(kmax)γ− with δ > β (optional)

5. a sequence (possibly empty) of vertices of color ik where successive vertices are linked by a horizontal
arrow

Rkmax ← R(kmax)− ← · · · ← R(kmax)(γ−1)− ← R(kmax)γ−

and some vertices of color ij not linked to any vertex of color ik by the arrows of the bicolor subquiver
called isolated vertices.

A saw teeth structure is said to be pure if there is no initial barb.
A quiver Γ having a structure of colored lines is said to have a saw teeth structure if, any bicolor

subquiver of Γ has a saw teeth structure.

Example 4.9. We will consider the quiver given by the representative

w = [4, 3, 5, 2, 3, 4, 1, 2, 3, 5, 3, 4, 1, 2, 3, 1, 2]

of w ∈W of type D5 (see Figure 1 p. 1 for the Dynkin diagram associated with this type). We have the
quiver of Figure 4.

This quiver has a saw teeth structure. For instance if we check the (3, 2) bicolor subquiver we get
Figure 5 where the initial and final sequence are empty, the initial barb is dashed and the teeth sequence
is of length three, with the tooth V3 → V7 → V9 → V4 → V3, the tooth V13 → V10 → V9 → V13 and
the tooth V16 → V14 → V13 → V16 which are consecutives. Here there is neither final barb nor isolated
vertex.

Due to the presence of the initial barb, this subquiver is not of pure saw teeth structure.
The reader will be able to see a non-empty initial sequence by looking at the (3, 5) bicolor subquiver,

both an initial and a final barb (as well as an isolated vertex) by looking at the (5, 3) bicolor subquiver.
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V11 V5 V2

V14 V10 V4 V1

V16 V13 V9 V7 V3

V17 V12 V6

V15 V8

Figure 4: Γw

V14 V10 V4 V1

V16 V13 V9 V7 V3

Figure 5: (3, 2) bicolor subquiver

Counter-example 4.10. Let suppose we have the following quiver:

V9 V6 V3

V12 V11 V8 V7 V4 V2 V1

V10 V5

where the first and second lines and second and third lines are of adjacent colors and first and third are
not adjacent. Then the (1, 2) (Figure 6) and the (2, 3) bicolor subquivers (Figure 7) (among others) do
not have a saw teeth structure.

V9 V6 V3

V12 V11 V8 V7 V4 V2 V1

Figure 6: (1, 2)-bicolor subquiver

V12 V11 V8 V7 V4 V2 V1

V10 V5

Figure 7: (2, 3)-bicolor subquiver

Indeed, on the (2, 1) bicolor subquiver, there are some ordinary arrows after the final barb V8 → V6,
while on the (1, 2) bicolor subquiver, the tooth V8 → V6 → V4 → · · · ends after the tooth V11 → V9 → V7
has begun. In the (2, 3) bicolor subquiver, the left end of the first tooth (V7) is not the right end of the
second tooth (V8). In these two latter cases the teeth are not consecutives.

Proposition 4.11. If a bicolor subquiver (ik, ij) has a saw teeth structure then this structure is preserved
by removing the first vertex of any line.

Remark 4.12. This does not hold in general for the pure saw teeth structure.
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Proof. We will proceed by case exhaustion. Let us call Rjmini the vertex of line ij of minimal index and
Rkmini the one of line ik.

If we remove Rjmini we have 4 possible cases:

1. Rjmini is an isolated vertex: the structure is preserved

2. Rjmini is the target of an initial barb: the initial barb is removed and now the subquiver starts with
a sequence of teeth, a final barb or a sequence of vertices. The structure is preserved.

3. Rjmini is the summit of the first tooth: removing it removes the first tooth and now the line starts
by a one vertex more sequence of vertices. There cannot have an initial barb here by minimality of
Rjmini . The structure is preserved.

4. Rjmini is the source of the final barb. In that case it is the only ordinary arrow of the toothless
bicolor subquiver and thus after removal, the bicolor subquiver consists in a set of isolated vertices
on line ij and a sequence of vertices on line ik. The structure is preserved.

So, in any case, removing Rjmini will preserve the struture.
Now we study the effect of removing Rkmini . We have once again 2 possible cases:

1. Rkmini is the first vertex of a vertices sequence linked by consecutives horizontal arrows. Then the
sequence is of length one less (or disappeared). The structure is preserved.

2. Rkmini is the source of an initial barb or the right end of the teeth sequence or the target of the final
barb (the last two possibilities being incompatible). Then the initial barb disappears (provided
it existed) and the line starts by a new initial barb (resulting in the subsequent deletion of the
right ordinary arrow of the first tooth provided it existed), or a sequence of horizontal arrows in a
subquiver now with no ordinary arrows (initial and final barb being the only ones and both deleted
by the vertex deletion). The structure is preserved.

Because of the possible apparition of initial barb due to the deletion of the right side of the initial teeth,
even if there was no initial barb before the deletion in the last case, we cannot ensure that the pure saw
teeth structure is preserved.

4.3 Saw teeth structure in Cw initial seeds
The point of introducing the previous notions was the following proposition that will be of use for the
proof of the algorithm.

Proposition 4.13. For any representative w of an element w ∈W , Γw has a saw teeth structure.

Proof. The proof will rely on the combinatorial description of the quiver, given in Section 4.1.
We need to look at any bicolor subquiver of Γw to prove the proposition. First, if the two chosen

colors are not adjacent (in the sense of Definition 3.1) then the structure is trivial: there is no ordinary
arrow in the subquiver thus all vertices of the first color form an initial sequence, there is not tooth, no
barb and all vertices of the second color are isolated vertices. The saw teeth structure is verified.

Let us then consider a bicolor subquiver of adjacent colors. As for the description of the structure, we
will here follow the first line (of color ik and of vertices kmin, . . . , kmax to fix the notation) by ascending
order of indices.

We start by considering the special case kmax < jmin and jmin 6= jmax, or kmin > jmax and kmin 6= kmax.
Then there is no ordinary arrows and we are again in the trivial case. Apart from this case, while k+ < jmin
there is no ordinary arrow allowed between k and jmin and we are in the initial sequence.

If we have kmin > jmin then there exists an integer γ such that (jmin)(γ+1)+ > kmin > (jmin)γ+. Then
there is a maximal index k (possibly greater than kmin) such that k+ ≥ (jmin)(γ+1)+ > k > (jmin)γ+.
Then there is an ordinary arrow k → (jmin)γ+ and the vertices of color ij and of index < (jmin)γ+ are
isolated vertices. This is the initial barb.

If we have kmin > jmin (so no initial barb) there is a minimal k such that k+ > jmin > k. Let us call
j the greatest index such that k+ > j > k (and thus j+ ≥ k+). If we have an initial barb, let k be the
source of the initial barb and j the successor of its target.

(∗) In both cases we then have j+ ≥ k+ > j > k and then there is an arrow Vj → Vk. If j = jmax
then there is no more ordinary arrow beyond this point and this arrow is a final barb and all following
vertices of line ik will form the final sequence. In the opposite case, this arrow will be the right side of
the first tooth of the teeth sequence.
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In the case where this is not the final barb, there exists a γ > 0 such that k(γ+1)+ ≥ j+ > kγ+ > j
and then we have an ordinary arrow kγ+ → j closing the teeth kγ+ → j → k → k+ → · · · → kγ+.

Given these k and j either there is a ζ > 0 such that j(ζ+1)+ ≥ k(ζ+1)+ > jζ+ > kγ+ or not. If it is
not true, then we have considered all ordinary arrows and vertices of color ij and the last remaining ik
vertices form the final sequence. If such a ζ exist, we start again the reasoning at the point (∗) for the
formation of the next tooth or the final barb.

Eventually we end with a possibly empty final sequence and then our subquiver has a saw teeth
structure.

5 ∆-vectors
∆-vectors are a notion coming from Ringel’s work on quasi-hereditary algebras ([Rin91]) which plays a
crucial role in our paper. We present it here in the narrower context of our category Cw.

5.1 Definition
In the quiver of the algebra EndΛ(Γw), the horizontal arrows correspond to irreducible morphisms which
are in fact inclusions. These inclusions still hold for our Γw in the sense that Vk ⊂ Vk+ for all 1 ≤ k ≤ `(w)
such that 1 ≤ k+ ≤ `(w).

This allows us to define a new collection of modules, related to an initial seed Vw.

Definition 5.1 (Modules Mk,w). Given a module from an initial seed Vw, we define:

Mk,w :=
{
Vk if k = kmin
Vk/Vk− otherwise , 1 ≤ k ≤ `(w), and Mw =

`(w)⊕
k=1

Mk,w.

Following [GLS11, Section 10], we denote CMw
the category of all modules having a stratification by

the modules (Mk,w)k in ascending order.

Lemma 5.2 ([GLS11, Lemma 10.2]). We have Cw = CMw
. Every module of Cw admits a stratification

by the family of modules (Mk,w)k in ascending order.

Definition 5.3. Let Bw := EndΛ(Vw) and define the standard modules of Bw by:

∆k := Hom(Vw,Mk), 1 ≤ k ≤ `(w)

The following results will allow us to introduce ∆-vectors.

Proposition 5.4 ([GLS11, Lemmas 10.3 & 10.4]). The dimension vectors dimBw(∆k), 1 ≤ k ≤ r are
linearly independent and we have

dimBw(HomΛ(Vw, Vk)) = dimBw(∆k) + dimBw(∆k−) + · · ·+ dimBw(∆kmin)

Proposition 5.5 ([GLS11, Proposition 10.5]). Let X ∈ Cw and a = (a1, . . . , a`(w)) be. The following
assumptions are equivalent:

1. X ∈ CMw
with the sequence a as multiplicity of the stratas;

2. there exists a short exact sequence: 0→
`(w)⊕
k=1

V akk− →
r⊕

k=1
V akk → X → 0;

3. dimBw(HomΛ(Vw, X)) = dimBw(HomΛ(Vw,Mw(X))) =
r∑

k=1
ak dimBw(∆k) where

Mw(X) := Ma1
1 ⊕ · · · ⊕M

a`(w)
`(w) .

Proposition 5.6 ([GLS11, Corollary 12.3]). Let X and Y be indecomposable rigid modules in Cw. If
dimBw(HomΛ(Vw, X)) = dimBw(HomΛ(Vw, Y )) then X ∼= Y .

Thus, thanks to these propositions we can unambiguously determine an indecomposable rigid Λ-
module X ∈ Cw by the dimBw -vector of HomΛ(Vw, X) or equivalently by the corresponding vector
(a1, . . . , a`(w)), which gives rise to the following definition.

Definition 5.7. The previous sequence a = (a1, . . . , a`(w)) is called the ∆w-vector ofX, written ∆w(X) =
(a1, . . . , a`(w)). We will write (∆w(X))i = ∆w,i(X) for the ith coordinate of the ∆w vector of X.
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5.2 Mutation of ∆-vectors
In [GLS11] the authors give an explicit way to compute ∆-vectors after a mutation. We recall here the
formula.

Definition 5.8. Given the family of modules (Mk,w)`(w)
k=1 we define the vector

d∆ := (dim(∆1), . . . ,dim(∆`(w))).

where dim(∆s) =
`(w)∑
k=1

dim HomΛ(Vk,Ms).

Proposition 5.9 ([GLS11, Proposition 12.6]). In a seed (R,Γ), the ∆-vector of R∗k, image of Rk by µk
(1 ≤ k ≤ `(w)) is:

∆w(R∗k) :=


−∆w(Rk) +

∑
(Ri→Rk)∈Γ

∆w(Ri) if
∑

(Ri→Rk)∈Γ
∆w(Ri) · d∆ >

∑
(Rk→Rj)∈Γ

∆w(Rk) · d∆

−∆w(Rk) +
∑

(Rk→Rj)∈Γ
∆w(Rj) otherwise

where ∆w(M) · d∆ =
`(w)∑
i=1

∆w,i(M)d∆,i is the usual inner product.

Example 5.10. Examples of such computation are given in Example B.1.

5.3 ∆-vectors related to different representatives
In our definition of ∆-vector, we have to choose a particular reduced representative, w, defining our initial
seed Vw and the family of modules (Mw,k)k. But given another representative w2 of the same Weyl group
element w we can define another family of module (Mw2,k)k defining another notion of ∆w2 -vector.

Clearly we have:

Proposition 5.11. We have ∆w(Vw,k) =
k∑
j=1

δik,ijej where ej is the j-th vector of the canonical basis.

Proof. By definition of the modules (Mw,k)k.

However it is far more difficult to compute the ∆w1-vector of the indecomposable summands of the
initial seed Vw2 when w2 6= w1.

There exists an algorithm to obtain it, based on the fact that if we know a rewriting path from w2
to w, we can decompose this rewriting path in 2 and 3-moves (commutation of letters or braid moves)
thanks to Matsumoto’s lemma [Mat64]. Then [BKT14, Propositions 5.26 & 5.27] gives us a way to
compute changes in ∆-vectors and [SSVZ00, Theorem 3.5] changes in the quiver. It is the idea used in
the algorithmic implementation [Mén21b] of this article’s algorithm.

The drawback of this method is that we do not have a closed formula for the output, other than
making the computation. However, we can obtain a closed formula for some particular ∆-coordinates
using another method relying on Mirković-Vilonen polytopes that we now introduce.

5.4 Relation with Mirković-Vilonen polytopes
In [Kas95, Section 8], Kashiwara introduces the crystal B(∞) as the crystal base of the negative part
of the quantized universal envelopping algebra of a Lie algebra g, U−q (g). Lusztig then gives a more
geometric description of B(∞), linking it with representations of preprojective algebras in [Lus90b].

More precisely, if we take a quiver Q = (Q0, Q1), being an orientation of a Dynkin quiver associated
to the root system Φ of the Lie algebra g, and a dimension vector ν ∈ NQ0, any Λ-module can be seen
as equivalent to the data of its linear maps. This data can been seen as points of a variety called Lusztig
nilpotent variety and denoted by Λ(ν). We denote by B(ν) the set of irreducible components of Λ(ν)
and:

B :=
⊔

ν∈NQ0

B(ν)

Theorem 5.12 ([KS97, Theorem 5.3.2] & [Lus90a, Theorem 1.8]). B has a crystal structure and there
exists a unique crystal isomorphism:

Φ : B(∞) → B
b 7→ Λb
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Any irreducible component of B can also be associated with a formal sum of positive roots of Φ given
an indexation of elements of B(∞) by Poincaré-Birkhoff-Witt bases.

On the other side, Kamnitzer in [Kam07] associated to each element of B(∞) a Mirković-Vilonen
polytope following an idea of Anderson-Mirković. Thus we have two bijections linking B(∞) with ir-
reducible components of the varieties of quiver representations on one hand and with Mirković-Vilonen
polytopes on the other hand. In [BK12], Baumann and Kamnitzer study directly the connection be-
tween Mirković-Vilonen polytopes and Luzstig’s nilpotent varieties. More precisely they introduce the
Harder-Naramsimhan polytopes as:

Definition 5.13 ([BKT14]). The Harder-Naramsimhan polytope Pol(T ) of a Λ-module T is the convex
hull of the dimension vectors of all submodules of T in RI (where I is the set of vertices in the Dynkin
diagram). We denote it Pol(T ).

and they prove:

Theorem 5.14 ([BKT14, Section 1.3]). For each b ∈ B(∞) the map T 7→ Pol(T ) takes a generic
value Ψ(b) on the irreducible component Λb defining the map Ψ : B(∞) →MV(∞). Moreover the map
Ψ ◦ Φ−1 : B→MV(∞) is a crystal isomorphism.

whereMV(∞) is the set of Mirković-Vilonen polytopes starting at the origin of the underlying space.
Then, the crystal isomorphism Ψ ◦ Φ−1 : B → MV(∞) associate to any irreductible component of

the Lusztig variety a Mirković-Vilonen polytope.
Finally, in [NS09, Theorem 4.15], Naito and Sagaki give a combinatorial description of some Mirković-

Vilonen polytopes corresponding to extremal vectors of irreducible representations of g. Given an irre-
ducible representation L(λ) with crystal basis B(λ) seen as a subset of B(∞), the extremal weight vectors
are the elements of the orbit of the highest weight W · λ by the Weyl group. To the datum (λ,w) we
can associate an extremal weight vector corresponding to a Mirković-Vilonen polytope that Naito and
Sagaki compute explicitly. To the same datum, Geiss, Leclerc and Schröer associate an indecomposable
summand Vk ∈ Vw where λ is the fundamental weight corresponding to the socle of Vk and w = sik · · · si1
by [GLS11, Proposition 9.1]. Examples and concrete computations can be found in [Mén21a, Sections
2.2 & 2.9]

We will now give an explicit interpretation of this reasoning restricting the combinatorial description
of [NS09, Theorem 4.15] to only two paths along edges of the Mirković-Vilonen polytope.

5.5 Explicitation of the isomorphism
In the following we will not only work with two reduced representatives of the same Weyl group element
but with two reduced representatives of distincts elements. In order to do so we will in fact see any of
these elements as "left parts" of reduced representatives of w0.

Definition 5.15. Given a representative w = [i`(w), . . . , i1] of w ∈W , we call left-completion of w in w0
a reduced representative ẇ = [jr, . . . , j1] of w0 such that ik = jk for all 1 ≤ k ≤ `(w).

Remark 5.16. This completion exists due to the lattice structure of W for the weak left Bruhat order.
The completion ẇ is not unique in general, and we just pick one of them and fix it.

Definition 5.17. Given w and ẇ = [ir, . . . , i1], let 1 ≤ k ≤ `(w). We denote by uk ∈ W the element
defined by:

uk =
{
sir · · · sik+1 if 1 ≤ k ≤ `(w)

e k = r

Given ẇ0 = [jr, . . . , j1] another representative of w0, we define [jqr−k , . . . , jq1 ] to be the leftmost
representative of uk in ẇ0 and we write

[jrk , . . . , jr1 ] = [jr, . . . , j1] \ [jqr−k , . . . , jq1 ]

for the set of letters of ẇ0 not taking part in the writing of the leftmost representative of uk in ẇ0.

Example 5.18. Let W be of type A3, ẇ = [2, 1, 2, 3, 2, 1], ẇ0 = [1, 2, 3, 1, 2, 1] and k = 4. Then
u4 = s2s1, the leftmost representative of u4 in ẇ0 uses the letters of indices q1 = 3 and q2 = 5. Then
r1 = 1, r2 = 2, r3 = 4 and r4 = 6.
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Proposition 5.19 ([Hum90, Section 1.7]). Let w0 = [ir, . . . , i1] be a reduced representative of w0 ∈ W .
Then, given the simple roots (αi)i∈I and the simple reflections (sj)j∈I in the root system Φ associated to
W , the roots of the sequence (βi):

βi =
{
β1 = αi1
βk = si1 · · · sik−1(αik) 2 ≤ k ≤ r

are pairwise distincts and form the set of all positive roots of Φ

Let $i be the ith fundamental weight associated to the coroot α∗i of the underlying root system Φ of
W .

Definition 5.20 ([NS09, Section 4.1]). With the previous notations, we define a sequence of weights
associated to a representative ẇ0 of w0 (ξẇ0

i )i in the following way. Let ξẇ0
0 = $ik and r0 = 0. We have{

ξẇ0
rc := s

β
ẇ0
rc
s
β
ẇ0
rc−1
· · · s

β
ẇ0
r1

($ik) 1 ≤ c ≤ k
ξẇ0
qd

:= ξẇ0
rc if rc+1 > qd > rc

We can now express the ∆-coordinates of any direct summand Vk,w of Vw, seen as a direct summand
of the module Vẇ ⊃ Vw.

Proposition 5.21 ([NS09, Lemma 4.1.3][BKT14, Example 5.14 & Proposition 5.24]). With the previous
notations we denote nẇ0

i , 1 ≤ i ≤ `(w) the coefficient:

ξẇ0
i−1 − ξ

ẇ0
i = nẇ0

i βẇ0
i

and we have ∆ẇ0,i(Vw,k) = nẇ0
i .

Example 5.22. GivenW of type A3, we will look at two representatives of w0: ẇ = [2, 1, 2, 3, 2, 1], ẇ0 =
[1, 2, 3, 1, 2, 1]. We have the quivers given at Figure 8 with the modules given by the socle decomposition
of Table 1.

5 1

6 4 2

3

6 3 1

5 2

4
a) b)

Figure 8: a) Γẇ, b) Γẇ0

k Vẇ,k Vẇ0,k k Vẇ,k Vẇ0,k

1 1 1 4 1 3
2

1
2

3

2 1
2

1
2

5
3

2
1

2
1 3

2

3
1

2
3

2
1

6
2

1 3
2

3
2

1

Table 1: Socle decomposition of indecomposable summands of Vẇ and Vẇ0

Thanks to Proposition 5.11 we have the ∆ vectors of left hand side of Table 2 (seen as a linear
combination of the canonical basis (ei)i or (fj)j of Zr).

Using the socle decomposition of M -modules given by red parts of summands of Table 1 we can find
the ∆ẇ0-vectors of the indecomposable direct summands of Vẇ and, conversely, the ∆ẇ-vectors of the
indecomposable direct summands of Vẇ0 .
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k ∆ẇ(Vẇ,k) ∆ẇ0(Vẇ0,k) ∆ẇ0(Vẇ,k) ∆ẇ(Vẇ0,k)
1 e1 f1 f1 e1
2 e2 f2 f2 e2
3 e3 f1 + f3 f4 e1 + e6
4 e2 + e4 f4 f2 + f6 e3
5 e1 + e5 f2 + f5 f1 + f3 + f6 e2 + e4 + e6
6 e2 + e4 + e6 f1 + f3 + f6 f2 + f5 e1 + e5

Table 2: ∆-vectors directly computable (first two) and computed by hand (last two)

We will now illustrate Proposition 5.21 by computing ∆ẇ(Vẇ0,5). Given ẇ0, we have u5 = s1 then the
leftmost representative of u5 in ẇ is given by the letter of index q1 = 5. We then have (ri) = (1, 2, 3, 4, 6).
We can compute the roots βẇi :

β1 = α1, β2 = s1(α2) = α1 + α2, β3 = s1(s2(α3)) = α1 + α2 + α3

β4 = s1s2s3(α2) = α3, β5 = s1s2s3s2(α1) = α2 + α3, β6 = s1s2s3s2s1(α2) = α2

We can now compute the (ξẇ0
i )i sequence. ξ0 = $i5 = $2. We have:

ξ1 := sα1($2) = $2
ξ2 := sα1+α2(ξ1) = $2 − α1 − α2
ξ3 := sα1+α2+α3(ξ2) = $2 − α1 − α2
ξ4 := sα3(ξ3) = $2 − α1 − α2 − α3
ξ5 := ξ4 = $2 − α1 − α2 − α3
ξ6 := sα2(ξ5) = $2 − α1 − 2α2 − α3

n1β1 = ξ0 − ξ1 = 0α1
n2β2 = ξ1 − ξ2 = 1(α1 + α2)
n3β3 = ξ2 − ξ3 = 0(α1 + α2 + α3)
n4β4 = ξ3 − ξ4 = 1α3
n5β5 = ξ4 − ξ5 = 0(α2 + α3)
n6β6 = ξ5 − ξ6 = 1α2

and finally we get that ∆ẇ(Vẇ0,5) = (0, 1, 0, 1, 0, 1), as expected.

5.6 ∆-vectors of Vw

We just saw how to compute ∆v̇(Vw). Even if it is sufficient to use it algorithmically and to do some
computation, we will now show a combinatorial description of a part of these coordinates.

5.6.1 Specific notations

We will first introduce some specific notations in order to give a more concise formulation of the main
result.

Definition 5.23. Given a reduced representative w = [i`(w), . . . , i1] of w ∈ W and v = [ip`(v) , . . . , ip1 ]
the rightmost representative of v ≤ w in w, 1 ≤ k ≤ `(w) and 1 ≤ m ≤ `(v) we define

fmin(k) := min({1 ≤ j ≤ `(v) | ipj = ik} ∪ {0}),

f(k) := max({1 ≤ j ≤ `(v) | pj ≤ k and ipj = ik} ∪ {0}),
m⊕ := min({1 ≤ j ≤ `(v) | pj > pm et ipj = ipm} ∪ {`(v) + 1}),
α(k,m) = #{1 ≤ j ≤ m | ipj = ik}, γm := α(pm,m) and
βm = #{1 ≤ j ≤ pm | ∀1 ≤ k ≤ m, pk 6= j and ij = ipm}

We fix the convention α(k, 0) = 0.

Here we deal with two systems of indices. 1 ≤ k ≤ `(w) is the usual indexation (from right to left) of
the letters of w. 1 ≤ m ≤ `(v) is the indexation of the letters of v. As v is the rightmost subword of w,
any 1 ≤ m ≤ `(v) correspond to an index 1 ≤ k ≤ `(w), namely m pm. In the following we will speak
about w-indices for 1 ≤ k ≤ `(w) and v-indices for 1 ≤ m ≤ `(v).

fmin(k) is the lowest v-index of color ik. f(k) is the highest v-index of the letters of color ik in the
subword of w consisting of all the letter on the right of the k-th (k-th included).

m⊕ is the v-successor of the letter of v-index m.
α(k,m) is the number of v-indices of color ik lower or equal to m.
βm is the number of w-indices of color ik lower than pm which have no v-index. It counts the number

of letter of w on the right of the pm-th, of color ipm , not taking part in the writing of v.
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Example 5.24. Let W = D5 of Dynkin diagram
4

1 2 3
5
. We have

w = [2, 3, 4, 1, 2, 3, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1]

where underlined letters give v.
The notations previously introduced give us Table 3.

k m ik fmin(k) f(k) m⊕ βm γm k m ik fmin(k) f(k) m⊕ βm γm
1 1 8 0 10 1 8 0
2 1 2 1 1 7 0 1 11 5 5 5 5 18 0 1
3 1 8 0 12 6 3 2 6 10 0 3
4 2 3 2 2 4 0 1 13 7 2 1 7 18 2 2
5 2 1 1 14 8 1 8 8 18 4 1
6 1 8 0 15 9 4 3 9 18 0 2
7 3 4 3 3 9 0 1 16 10 3 2 10 18 0 4
8 4 3 2 4 6 0 2 17 2 1 7
9 2 1 1

Table 3: Example of the introduced notations

5.6.2 Combinatorial description

In the following we will consider w = [i`(w), . . . , i1] a reduced representative of w ∈ W and v =
[ip`(v) , . . . , ip1 ] the rightmost subword of w representing v ≤ w for the Bruhat order in W . We denote ẇ
the completion of w in a representative of w0 and v̇ the one of v.

By construction we have the following result:

Proposition 5.25. The module Vw is a submodule of Vẇ obtained by taking the `(w) first summands in
the indexation given by Definition 2.13.

The quiver Γw is a subquiver of the quiver Γẇ obtained by taking the `(w) first vertices and the arrows
between them.

In the following we will identify Vk,w and Vk,ẇ for 1 ≤ k ≤ `(w) and Vm,v and Vm,v̇ for 1 ≤ m ≤ `(v).
Thanks to Proposition 5.11 we already know a formulation for ∆w(Vk,w). We will now establish a

combinatorical description of the `(v) first coordinates of ∆v̇(Vk,w).

Notation 5.26. With the above notations, we will denote ∆̃v̇(X) := (∆v̇,i(X))`(v)
i=1 the `(v) first ∆v̇-

coordinates of a module X.
In the following we will use the notations introduced in Section 5.5. Precisely we will focus on the

∆v̇-vector of Vk,w seen as Vk,ẇ (thus 1 ≤ k ≤ `(w)). As Vk,w is only defined by the k first letters of
ẇ = [ir, . . . , i`(w), . . . , i1︸ ︷︷ ︸

w

] we define

wk = [ik, . . . , i1], wk = sik · · · si1 , uk = [ir, . . . , ik+1]

and as uk = sir · · · sik+1 = w0w
−1
k we take [jqr−k , . . . , jq1 ] as the leftmost representative of uk in v̇ =

[jr, . . . , j1] (where r = `(w0)). We denote 1 ≤ r1 < · · · < rk ≤ r the elements of {1, . . . , r}\{q1, . . . , qr−k}.

Proposition 5.27 (Relation between indices of representatives of uk). With the above notations

1. q1 > `(v) iff p`(v) < k + 1

2. there exists an integer 0 ≤ t ≤ `(v)− 1 such that q1 = `(v)− t iff p`(v)−t ≥ k+ 1 and p`(v)−t−1 ≤ k.

Proof. We begin by proving the first part of the statement. Suppose that we have p`(v) ≤ k. Then
v = [ip`(v) , . . . , ip1 ] is a subword of [ik, . . . , i1], representative of wk and we have v ≤ u−1

k w0 = wk.
Conversely if v ≤ wk, there is at least one subword of [ik, . . . , i1] representing v. The rightmost

subword representing v is the smallest for the lexicographic order among any representative of v in wk
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and thus a subword of wk (see [Mén21a, Lemma 2.1.38]). In particular we have p`(w) ≤ k. We then have
shown that p`(v) ≤ k ⇔ v ≤ u−1

a w0.
We now establish the equivalence v ≤ u−1

a w0 ⇔ q1 > `(v). Suppose that q1 > `(v) then [jqr−k , . . . , jq1 ]
is a subword of [jr, . . . , j`(v)+1]. We thus have uk ≤ w0v

−1 which is equivalent to u−1
k ≤ vw0 (as w−1

0 = w0
and by inversion of the words) and finaly u−1

k w0 ≥ v (by multiplication by w0).
Conversely, suppose that uk ≤ w0v

−1 then [jr, . . . , j`(v)+1] is a representative of w0v
−1 and there

exists at least one representative of uk in this representative. As we are looking at the left part of
v̇, the leftmost representative of uk in v̇ is among them and eventually [jqr−k , . . . , jq1 ] is a subword of
[jr, . . . , j`(v)+1]. Then it is now obvious that q1 ≥ `(v) + 1.

We now prove the second statement by introducing again a third statement and proceed via double
equivalence.

Let t be such that q1 = `(v)− t, we want to show that it is equivalent to

(u ≤ w0sj1 · · · sj`(v)−t−1) and (u 6≤ w0sj1 · · · sj`(v)−t) (1)

As q1 = `(v)− t, [jqr−k , . . . , jq1 ] is a subword of [jr, . . . , j`(v)−t] and we have uk ≤ w0sj1 · · · sj`(v)−t−1 .
On the other hand, as [jqr−k , . . . , jq1 ] is the leftmost representative of uk in v̇, there is no representative

of uk [jnr−k , . . . jn1 ] such that n1 > q1. Then uk has no representative in [jr, . . . , jq1+1] and we have
uk 6≤ w0sj1 . . . sj`(v)−t .

Conversely, by hypothesis, we know that there is a representative of uk among the subwords of
[jr, . . . , j`(v)−t] and none among the subwords of [jr, . . . , j`(v)−t+1]. In particular the leftmost represen-
tative has as a first letter j`(v)−t−1 and `(v)− t = q1.

We now show the other equivalence. If p`(v)−t ≥ k+1 and p`(v)−t−1 ≤ k, sip`(v)−t−1
· · · sip1

has at least
one representative among the subwords of [ik, . . . , i1]. One of them is [ip`(v)−t−1 , . . . , ip1 ] itself and we
have sip`(v)−t−1

· · · sip1
≤ u−1

k w0. Conversely, by right minimality, sip`(v)−t
· · · sip1

has no representative
among the subwords of [ik, . . . , i1] and sip`(v)−t

· · · sip1
6≤ u−1

k w0 and we get the wanted conjunction of
inequalities by inverting and multiplication by w0.

On the other hand, if we have the two above inequalities there is no representative of sip`(v)−t
· · · sip1

in uk and there is at least one of sip`(v)−t−1
· · · sip1

. By minimality of the rightmost representative of uk
we have p`(v)−t > k and p`(v)−t−1 ≤ k.

The inequalities used in this equivalence are the same as the one of Equation 1 as, by definition,
(ji)1≤i≤`(v) = (ipm)1≤m≤`(v).

Proposition 5.28. For m < q1, ẋ = [lm, . . . , l1] a reduced representative of ẇ (possibly equal to ẇ) we
have ξẋm = sl1 · · · slm($ik) and

∆ẋ,m(Vk) =
{

1 if lm = ik
0 otherwise

where ξ is the sequence defined in Definition 5.20 defining the ∆ẋ-coordinates of Vw,k.

Proof. We have βẋm = sl1 · · · slm−1(αlm) and so sβẋm = (sl1 · · · slm−1)slm(sl1 · · · slm−1) then

sβẋm · · · sβv̇1 = sl1 · · · slm .

As we suppose that m < q1, we have ξẋm = sβẋm · · · sβẋ1 ($ik) and then

ξẋm−1 − ξẋm = sl1 · · · slm−1($ik − slm($ik)).

We have slm($ik) = $ik if ik 6= jm and $ik − αlm if ik = lm. In this last case ξẋm−1 − ξẋm = βẋm and
then:

nẋm =
{

1 if lm = ik
0 otherwise

Lemma 5.29. If there is 0 ≤ t ≤ `(v)− 1 such that q1 = `(v)− t, we have

[qt+1, . . . , q1] = [`(v), . . . , `(v)− t].

Proof. We prove this lemma for a given ẇ and v̇, we will proceed by decreasing induction on the value
of k. The sequences (qi)1≤i≤r−k depending on the value of k we add an index indicating to which value
of k they refer to.
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If k > p`(v) − 1, we have q1,k ≥ `(v) by Proposition 5.27 and thus we are not in the hypothesis of the
theorem.

If k = p`(v) − 1 then p`(v) = k + 1 and as p`(v)−1 ≤ p`(v) − 1, p`(v)−1 ≤ k. By the same proposition
q1,k = `(v) and so [q1,k] = [`(v)] and the lemma is verified.

Suppose that 1 < k ≤ p`(v), that there exists 0 ≤ tk ≤ `(v)− 1 such that q1,k = `(v)− tk and assume
that [qtk+1,k, . . . , q1,k] = [`(v), . . . , `(v)− tk]. We want to show that there exists 0 ≤ tk−1 ≤ `(v)− 1 such
that q1,k−1 = `(v)− tk−1 and such that [qtk−1+1,k−1, . . . , q1,k−1] = [`(v), . . . , `(v)− tk−1].

First we show that tk−1 exists. As q1,k = `(v)− tk, we have p`(v)−tk ≥ k+ 1 and p`(v)−tk−1 ≤ k which
can be rewritten as p`(v)−tk ≥ (k − 1) + 2 and p`(v)−tk−1 ≤ (k − 1) + 1.

We have two possibilities: either p`(v)−tk−1 = (k − 1) + 1 = k or p`(v)−tk−1 ≤ k − 1.
In the first case we then have p`(v)−tk−1 ≥ (k−1)+1 and p`(v)−tk−2 < (k−1)+1 so p`(v)−tk−2 ≤ k−1

then, according to Proposition 5.27 we have q1,k−1 = `(v)− tk − 1 and so tk−1 = tk + 1
In the second case we have p`(v)−tk ≥ (k − 1) + 2 ≥ (k − 1) + 1 and p`(v)−qk−1 ≤ k − 1 and so

q1,k−1 = `(v)− tk, eventually tk = tk−1.
In both cases, such a tk−1 exists. We now show that any of the two cases imply the equality.
In the first case tk−1 = tk + 1 and q1,k−1 = `− tk−1. We first show that [qr−(k−1),k−1, . . . , q2,k−1] is a

representative of uk. By definition uk−1 = sjqr−(k−1),k−1
· · · sjq1,k−1

= sir · · · si(k−1)+1 .
Then uk−1si(k−1)+1 = sir · · · sik+1 = uk. However, ipm = jm for any 1 ≤ m ≤ `(v) by definition of v̇.

As q1,k−1 = `(v)− tk−1 we have jq1,k−1 = j`(v)−tk−1 = ip`(v)−tk−1
= ip`(v)−tk−1 and, as we are in the first

case, p`(v)−tk−1 = (k−1)+1 = k, jq1,k−1 = ik. Then uk = uk−1sik = uksjq1,k−1
= sjqr−(k−1),k−1

· · · sjq2,k−1

and [qr−(k−1),k−1, . . . , q2,k−1] is a representative of uk in v̇. As the leftmost representative of uk in v̇ is
[qr−k,k, . . . , q1,k] for any 2 ≤ α ≤ r − (k − 1) we have qα−1,k ≥ qα,k−1.

We will show that, in fact, qα−1,k = qα,k−1 for any 2 ≤ α ≤ tk + 2.
As q2,k−1 > q1,k−1 we have `(v) − tk = q1,k ≥ q2,k−1 > q1,k−1 = `(v) − tk−1 = `(v) − tk − 1 so

q1,k = q2,k−1. As for any 2 ≤ α ≤ tk + 2 we have qα−1,k = `(v) − tk + (α − 2) by induction hypothesis,
we can repeat this proof for any value of α ≤ tk + 2 and get:

∀2 ≤ α ≤ tk + 2, qα,k−1 = `(v)− tk−1 + (α− 1) = `(v)− tk + (α− 2) = qα−1,k

and so [qtk−1+1,k−1, . . . , q2,k−1] = [qtk+1,k, . . . , q1,k] = [`(v), . . . , `(v)− tk−1 + 1].
As we have already shown that q1,k−1 = `(v)− tk−1 we finally obtain

[qtk−1+1,k−1, . . . , q1,k−1] = [`(v), . . . , `(v)− tk−1]

In the second case, `(v)− tk = q1,k = q1,k−1 = `(v)− tk−1. As previously, by definition, uk−1 = uksik
and so uk−1 = sjqr−k,k · · · sjq1,k

sik .
However `(uk−1) = r − k − 1 and `(uksjq1,k−1

) ≤ r − (k − 1)− 1 as it admits sjqr−(k−1),k−1
· · · sjq2,k−1

as representative. We then have `(uk−1) > `(uk−1sjq1,k−1
).

According to the exchange relation there is r − (k − 1) ≥ α ≥ q1,k−1 such that

uk = uk−1sik = sjqr−(k−1),k−1
· · · ŝjqα,k−1

· · · sjq1,k−1
.

As [jqr−k,k , . . . , j1,k] is the leftmost representative of uk we have:

∀1 ≤ β ≤ α, qβ,k−1 ≤ qβ,k and ∀α+ 1 ≤ β ≤ r − (k − 1), qβ,k−1 ≤ qβ−1,k

We will show by induction that for all 2 ≤ β ≤ min(α, tk−1 + 1), we have qβ,k−1 = qβ,k.
By hypothesis, we have q1,k−1 = q1,k = `(v)− tk−1 and so for β = 2 we have

`(v)− tk−1 = q1,k−1 < q2,k−1 ≤ q2,k = `(v)− tk + 1 = `(v)− tk−1 + 1

and thus q2,k−1 = `− tk−1 + 1 = q2,k. We then have the initialization.
By induction, we suppose that we have qβ−1,k−1 = `(v) − tk−1 + β − 2 = qβ−1,k. Then we have:

`(v)− tk−1 + β − 2 = qβ−1,k−1 < qβ,k−1 and, by minimality we have

qβ,k−1 ≤ qβ,k = `(v)− tk−1 + β − 1

and so we have the following sequence of inequalities.

`(v)− tk−1 + β − 2 = qβ−1,k−1 < qβ,k−1 ≤ qβ,k = `(v)− tk−1 + β − 1

and so qβ,k−1 = qβ,k.
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We know want to determine relative positions of α and tk−1 + 1. Indeed, if α > tk−1 + 1 we can
deduce the lemma from the above induction.

By contradiction, let us suppose min(α, tk−1 + 1) = α ≤ tk−1 + 1 then we have:

`(v)− tk−1 + α− 2 = qα−1,k−1 < qα,k−1 < qα+1,k−1 ≤ qα,k = `(v)− tk−1 + α− 1

which is absurd by a cardinality argument. Then α > tk−1 + 1 and qβ,k = qβ,k−1 for all 2 ≤ β ≤ tk−1 + 1
and as we previously show that q1,k−1 = q1,k, we can eventually write:

[qtk−1+1,k−1, . . . , q1,k−1] = [`(v), . . . , `(v)− tk−1]

and we have the heredity and thus the lemma is proved in both cases.

Theorem 5.30. We have the following correspondance between ∆-vector coordinates:

∆v̇,m(Vk) = ∆ẇ,ipm
(Vk), ∀1 ≤ m ≤ `(v) and 1 ≤ k ≤ `(w).

Proof. First, if k = `(w0) (and thus w = w0), uk = e and we can always apply Proposition 5.28 and we
have the desired equality.

In any other case we will prove the identities, for any coordinate of index 1 ≤ m ≤ `(v).

If m < q1, thanks to Proposition 5.28 we take ẋ = v̇ and then ∆v̇,m(Vk) =
{

1 if jm = ik
0 otherwise .

Now we will show we can use the same result but with ẇ = ẋ and pm instead of m to get

∆ẇ,m(Vk) =
{

1 if ipm = ik
0 otherwise

As m < q1 we have two possibilities. Either we have m < m1 for any 1 ≤ m ≤ `(v) (first case of
Proposition 5.27) or not. If we do, p`(v) ≤ k. As pm ≤ p`(v), q1 is the first index of uk in ẇ, k + 1 by
definition. We then have pm ≤ q1 and we can apply Proposition 5.28.

In the other case, there exists 0 ≤ t ≤ `(v)− 1 such that q1 = `(v)− t. However, in any case we have
m < q1 so pm ≤ p`(v)−t−1 ≤ k and we can once again apply Proposition 5.28. We then have

∆ẇ,pm(Vk) =
{

1 if ipm = ik
0 otherwise

hence the result.
Now we consider the case where m ≥ q1. In this case, thanks to Proposition 5.27 we now that

m ≥ `(v)− t and thus pm ≥ p`(v)−t ≥ k + 1. By definition of uk in ẇ, we know that ξẇpm = ξẇpm−1 and so
nẇpm = 0 and finally ∆ẇ,pm(Vk) = 0. We then have to prove that, in this case, ∆v̇,m(Vk) = 0.

We use Lemma 5.29. We have that [`(v), . . . , `(v) − t] = [qt+1, . . . , q1] and thus, for all `(v) ≥ m ≥
`(v)− t, we have ∆v̇,m(Vk) = 0.

Finally, for all 1 ≤ m ≤ `(v) we have: ∆v̇,m(Vk) = ∆ẇ,pm(Vk).

Example 5.31. In order to illustrate the previous notions let us consider the following case. Here
W = D6

We consider w = [5, 3, 4, 2, 3, 6, 4, 2, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 3, 4, 1, 3] and complete it in:

ẇ = [2, 3, 4, 6, 1, 2, 3, 4, 5, 3, 4, 2, 3, 6, 4, 2, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 3, 4, 1, 3].

We chose v = s4s5s1s2s3s4s6s2s3s4s5s4s2s3 (so `(v) = 14) and we have

v̇ = [4, 6, 2, 3, 4, 5, 1, 2, 3, 4, 6, 5, 4, 2, 3, 2, 5, 4, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 4, 3︸ ︷︷ ︸
v

].

The indices of w letters forming v are (pm)1≤m≤14 = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 22).
Let us take k = 10 we then have

ẇ = [2, 3, 4, 6, 1, 2, 3, 4, 5, 3, 4, 2, 3, 6, 4, 2, 1, 5, 2, 3︸ ︷︷ ︸
u10

, 2, 4, 3, 6, 4, 5, 3, 4, 1, 3︸ ︷︷ ︸
w10

].

and now we look for the leftmost representative of u10 in v̇.
We find [6, 2, 3, 4, 5, 1, 2, 3, 4, 6, 4, 2, 3, 2, 5, 4, 1, 5, 2, 3] which uses the letters in positions

(qi)1≤i≤`(w0)−k = (9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29).
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In particular we then have q1 = 9. p9 = 11 ≥ k+1 et p8 = 10 ≤ k, as in the second case of Proposition
5.27.

To sum up, we have

ẇ = [2, 3, 4, 6, 1, 2, 3, 4, 5, 3, 4, 2, 3, 6, 4, 2, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 3, 4, 1, 3]

ẇ = [2, 3, 4, 6, 1, 2, 3, 4, 5, 3, 4, 2, 3, 6, 4, 2, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 3, 4, 1, 3]

v̇ = [4, 6, 2, 3, 4, 5, 1, 2, 3, 4, 6, 5, 4, 2, 3, 2, 5, 4, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 4, 3]

v̇ = [4, 6, 2, 3, 4, 5, 1, 2, 3, 4, 6, 5, 4, 2, 3, 2, 5, 4, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 4, 3]

where the overlined red letters represent positions of the letters of the leftmost representative of u10 in
ẇ and v̇ and the underlined blue ones, the one of v. We can see Lemma 5.29 in the fact that, for indices
9 = q1 ≤ m ≤ `(v) = 14, all letters are (the right) part of the representative of u10.

We now place ourselves in a close case. We keep ẇ, and take v = s4s5s1s2s3s4s6s2s3s4s5s4s2s3. We
have v = [4, 1, 2, 3, 2, 4, 3, 6, 4, 5, 4, 3], so, in particular, p12 = 15 and

v̇ = [4, 6, 2, 3, 4, 5, 1, 2, 3, 4, 6, 2, 3, 4, 5, 4, 3, 2, 4, 1, 2, 3, 2, 4, 3, 6, 4, 5, 4, 3].

Let k = 16 be. We have p12 = 15 < 17 = k + 1. Thus we have

ẇ = [2, 3, 4, 6, 1, 2, 3, 4, 5, 3, 4, 2, 3, 6, 4, 2, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 3, 4, 1, 3]

ẇ = [2, 3, 4, 6, 1, 2, 3, 4, 5, 3, 4, 2, 3, 6, 4, 2, 1, 5, 2, 3, 2, 4, 3, 6, 4, 5, 3, 4, 1, 3]

v̇ = [4, 6, 2, 3, 4, 5, 1, 2, 3, 4, 6, 2, 3, 4, 5, 4, 3, 2, 4, 1, 2, 3, 2, 4, 3, 6, 4, 5, 4, 3]

v̇ = [4, 6, 2, 3, 4, 5, 1, 2, 3, 4, 6, 2, 3, 4, 5, 4, 3, 2, 4, 1, 2, 3, 2, 4, 3, 6, 4, 5, 4, 3]

The representative of u16 is u16 = [2, 3, 4, 6, 1, 2, 3, 4, 5, 3, 4, 2, 3, 6]. The leftmost representative of u16
in v̇ is then: [4, 6, 2, 3, 4, 5, 1, 2, 3, 4, 6, 2, 4, 5, 3]. In particular q1 = 14 > 12 = `(v), we are in the first case
of Proposition 5.27.

The previous results give us now a combinatorial description of the first coordinates of the ∆v̇-vectors
of indecomposable summands of Vw.

Theorem 5.32 (Structure of initial ∆v̇-vectors). The `(v)-first coordinates of ∆v̇-vectors of direct inde-
composable summands of Vw are given by:

∆̃v̇(Vk) =
f(k)∑
j=1

δipj ,ikfj 1 ≤ k ≤ `(w)

where (fj)1≤j≤`(v) is the canonical basis.
We can also say that the indices of coordinates equal to 1 of ∆v̇(Vk) are the integers of the set

{1 ≤ j ≤ `(v) | fmin(k) ≤ j ≤ f(k) | ipj = ik},

the other `(v) first being zero.

Proof. By definition, f(k) = max{1 ≤ j ≤ `(v) | pj ≤ k et ipj = ik}. We will use Theorem 5.30 and look
at any index 1 ≤ m ≤ `(v) of ∆v̇.

First suppose that we have m such that pm ≤ k. For these coordinates, thanks to Proposition 5.27,
we have that m < q1 and so we can directly use Proposition 5.21.

In the other case, by Lemma 5.29 and the proof of Theorem 5.30, we now that these coordinates are
zero and here they are not part of the sum.

For the second formulation, it is equivalent as {1 ≤ j < fmin(k) | ipj ik} is empty by minimality of
fmin(k).
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5.7 Criterion for being in Cv

We now want to use ∆-vector to be able to tell if a module is in Cv or in Cw.

Proposition 5.33. Let w be a reduced representative of w ∈ W and ẇ a reduced representative of w0
having w as a right factor. A module M ∈ mod(Λ) is in Cw iff its ∆ẇ-vector has zero coordinates for
indices k ≥ `(w).

Proof. Thanks to Lemma 5.2, any module of Cw admits a stratification by modules (Mi,ẇ)`(w)
i=1 and

conversely, any module admitting such a stratification lies in the category.

In order to prove an analoguous result for Cv, we first need some preparatory lemmas.

Lemma 5.34. Let M ∈ mod(Λ) rigid, v a representative of v. The maximal submodule of M in Cv,
denoted tv(M), has as ∆v̇-vector the one coming from the `(v) first coordinates of ∆v̇(M).

Proof. Let N ⊂ M of ∆v̇-vector given by the `(v) first coordinates of M . As M is rigid, so is N and it
is completely determined by its ∆v̇-vector. We will show that it is the maximal submodule of M being
in Cv.

N ⊂ M ∈ Cv. By maximality, we have N ⊂ tv(M) and then M/N ⊇ M/tv(M). By definition
of ∆v̇-vectors, any M submodule containing N has as `(v) first coordinates the one of N . So if there
exists tv(M) ) N in Cv, then tv(M) has at least one coordinate in its ∆v̇-vector nonzero and of index
more than `(v). Thanks to Proposition 5.33, such a module does not belong to Cv which is absurd. So
tv(M) = N .

Proposition 5.35 (Criterion to be in Cv). Let v ∈ W and M be a rigid indecomposable Λ-module then
M ∈ Cv iff ∆̃v̇(M) = 0.

Proof. Thanks to [Lec16, Proposition 3.12], if M is a rigid indecomposable module of Cw then M/tv(M)
is a rigid indecomposable module of Cv,w. Then M/tv(M) ∈ Cv.

Thus M = M/tv(M) or, equivalently, tv(M) = 0 iff M ∈ Cv. According to the previous lemma,
tv(M) = 0 iff ∆̃v̇(M) = 0.

6 Seed computation algorithm
Thanks to Section 4, we have an explicit way to build a seed for the cluster structure on Cw and thanks
to Proposition 5.35 we have a way to check if the underlying module of the seed is in Cv. We must now
combine both in order to get a Cv,w-rigid maximal basic module and its quiver. Doing so we will then
have an initial seed for the cluster structure on Cv,w.

6.1 Concept
As it would be very difficult to build the quiver of a seed G of Cv,w by looking at the endormorphism
algebra of the module, we want to use the fact that we already know the quiver of Vw and we can
compute, following the mutation, the quiver of any seed mutation-equivalent to G. Our idea is then to
apply a well-chosen sequence of mutation to Gw = (Vw,Γw) in order to get a seed G′ = (V ′,Γ′) such that
a subseed is a seed for the cluster structure on Cv,w. That is to say that we want V ′ to be a Cv,w-rigid
maximal basic module and Γ′ the quiver of its endomorphism algebra.

The rigidity of the seed will not be an issue as rigidity is preserved through mutation and cluster
reduction as well as the basicity. Regarding the Cv,w-maximal rigidity we already saw in Theorem 2.18
that to check it, it is enough to check that the module has `(w)− `(v) indecomposable summands. Thus
the cluster reduction will have to remove `(v) summands to the seed.

Eventually the main issue in this method will be to ensure that the obtained module does lie in Cv,w.
We will use the criterion of Proposition 5.35 and reach it thanks to a very specific choice of mutations. We
will now introduce two different formulations of the sequence of mutations to perform, each one coming
from a different idea. We will show in Section 8.1 that these two formulations are in fact equivalent.
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6.2 First formulation
The idea of this formulation, due to Jan Schröer, is to mimic the sequence of mutation in [GLS11, Section
13]. In this sequence, the authors look at the modules Vk of Vw which have the ∆ẇ-vectors as described
in Proposition 5.11, making them interval modules. The sequence of mutation aims to "shift" these ∆ẇ-
coordinates in the following sense: initial Vk modules have nonzero (and equal to 1) coordinates for the
indices ≤ k of letters in w of color ik; final Tk modules then have nonzero (equal to 1) ∆ẇ-coordinates
for the last k indices of color ik.

Here we want to do the same but with ∆v̇-coordinates of modules originally equal to Vw, shifting
the coordinates far enough from the start, such that first `(v) coordinates are all zero and thus the
corresponding modules are in Cv. As we are now dealing with ∆v̇ coordinates of Vw the sequence of
mutation will be slightly different and we will only find the same sequence if v is a right factor of w.

The advantage of this formulation is that we can directly read the sequence of mutation to perform
from the positions of the letters of v in w. This formulation will not be very easy to use in a proof but
we will see in the next section a more helpful one.

We will express the mutation sequence using the combinatorial numbers defined in Definition 5.23

Definition 6.1. Given a reduced representative w of w ∈W and the rightmost representative v of v ≤ w
in w we define for any letter 1 ≤ m ≤ `(v) of v the following sequence of mutations:

µ̃m :=
{
µ(kmax)γm− ◦ µ(kmax)(γm+1)− ◦ · · · ◦ µ(kmin)(βm+1)+ ◦ µ(kmin)βm+ if (kmax)γm− ≥ (kmin)β+

id otherwise

where k = pm. Then we combine all the µ̃m to form the sequence: M̃ = µ̃`(v) ◦ · · · ◦ µ̃1

A way to rephrase this algorithm is to say that given the index 1 ≤ m ≤ `(v), the sequence µ̃m consists
in mutating all the summands whose color is ipm by ascending order of index (following the indexation
given in Definition 2.13) apart from a number of initial summands (depending on the number of letters
of color ipm among the letters of w of index < pm not used in the writing of v) and a number of final
summands (depending on the number of times we have already mutated this line).

Example 6.2. Here W is of type A5 with w = [1, 3, 2, 4, 3, 2, 4, 5, 4, 3, 2, 1, 2] and v = s2s4s5s3s1s2.
The integers pm, β and γ and the colors ipm are written for any 1 ≤ m ≤ 6 = `(v) in Table 4.

m 1 2 3 4 5 6
pm 1 2 4 6 7 8
ipm 2 1 3 5 4 2
βm 0 0 0 0 1 1
γm 1 1 1 1 1 2

Table 4: Values of pm, ipm , βm and γm

We then have µ̃1 = µ8 ◦ µ3 ◦ µ1, µ̃2 = µ2, µ̃3 = µ9 ◦ µ4, µ̃4 = id, µ̃5 = µ7, µ̃6 = µ3. Note that whenever
βm = 0 we get the same sequence of mutations as in [GLS11, Section 13].

6.3 Recursive formulation
We have another formulation of the algorithm, allowing us to see it as a kind of greedy algorithm. The
idea is to first cancel the first ∆v̇ coordinates of (almost) all the summands, then the second coordinates
etc. until the `(v)-th. Then, removing all the summands which still have nonzero coordinates among the
`(v) first, we will obtain a module in Cv, thus in Cv,w.

As this algorithm is defined by induction we need first to introduce some notations before giving its
formulation.

Notation 6.3. In the following we will define a sequence of sequences of mutations (µ̂m)`(v)
m=1. In order

to keep track of the successive modules we will call Vw = R0 (respectively Vk,w = Rk,0 for 1 ≤ k ≤ `(w0))
and for 0 ≤ m ≤ `(v)− 1 Rm+1 = µ̂m+1(Rm) (respectively Rk,m+1 is the k-th summand of Rm+1).

Definition 6.4 (Index set Am(R)). Let 1 ≤ m ≤ `(v) and Rm−1 = µ̂m−1 ◦ · · · ◦ µ̂1(R0) with summands
indexed as they were in Vw = R0. Let bm = ((pm)max)γm−.

We define: Am(Rm−1) = {1 ≤ i ≤ bm | ∆v̇,m(Ri,m−1) 6= 0}. We order the elements of Am by ascend-
ing order, denote (Am(Rm−1))1 the smallest one, the j-th smaller (Am(Rm−1))j and (Am(Rm−1))max
the largest.
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We can now define the sequence of mutation µ̂m for any m by induction.

Definition 6.5. Let m ≥ 1. Suppose we have already defined: Rm−1 = µ̂m−1 ◦ · · · ◦ µ̂1(R0). We write
Am = Am(Rm−1). Then

µ̂m :=
{
µAm,max ◦ µAm,max−1 ◦ · · · ◦ µAm,1 if Am 6= ∅

id otherwise

We can summarize it by saying that we will mutate in increasing order all the summands of indices
smaller than a given bound, which have a nonzero m-th coordinate in their ∆v̇-vector.

Definition 6.6. We define µ•(Vw) = S(µ̂`(v) ◦ · · · ◦ µ̂1(Vw)) where S is the deletion of all the direct
summands Rk,`(v) such that k > (kmax)α(k,`(v))−.

Example 6.7. Please see Example B.1 p. 40.

6.4 Main theorem
We will now state the main theorem of this article:

Theorem 6.8. µ•(Vw) is a Cv,w-rigid maximal basic module. The quiver of µ•(Vw) is obtained from
µ̂`(v) ◦ · · · ◦ µ̂1(Vw) by removing all the arrows adjacent to a vertex deleted by S and only these ones.

The next section will be dedicated to the proof of this theorem.

7 Proof
As we said, the main issue here is to prove that µ•(Vw) is in Cv,w. In order to prove it we will do an
induction which will study some properties of a part of the successive seeds. In the next section we define
this subseed.

We recall that R0 = Vw and for 1 ≤ m ≤ `(v), Rm = µ̂m ◦ · · · ◦ µ̂1(R0). Accordingly, Γ0 = Γw and
Γm = µ̂m ◦ · · · ◦ µ̂1(Γ0).

7.1 Cut seed and evicted summands
Definition 7.1. Given a seed Gm = µ̂m ◦ · · · ◦ µ̂1((Vw,Γw)), we define the cut seed C(Rm) as the couple
(C(Rm), C(Γm)) where:

• the module C(Rm) is obtained from Rm by removing the direct indecomposable summands Ri,m
such that ∆̃v̇(Ri,m) = 0. We call them evicted modules. We also remove the direct indecomposable
summands Ri,m such that i > (imax)α(i,m)−. We call them deleted modules.

• the quiver C(Γw) obtained from Γw by removing all deleted or evicted vertices and the arrows iff
they are adjacent to at least one of these vertices.

The other summands keep the same index as in Rm.

We can note that, for the final step m = `(v), the deleted summands correspond to the summands
erased by S. Provided our algorithm works as intended, at this point, all the other summands must be
in Cv,w and thus evicted and so the final cut seed must be empty.

We now state some additional properties of the evicted summands. We will place ourselves under
the following hypothesis using the notations introduced in Section 5.6.1. This hypothesis generalizes the
description given in Theorem 5.32 and will be a part of the induction hypothesis for the proof of the
algorithm.

Hypothesis 7.2. The non-zero coordinates of ∆̃v̇(Rk) are the elements of the subset:

{1 ≤ j ≤ `(v) | fmin(k)α(k,m)⊕ ≤ j ≤ f(kα(k,m)+) | ipj = ik}

Example 7.3. Example B.1 is an example where this hypothesis is always verified.

Lemma 7.4. If ik = ipm then fmin(k)α(k,m−1)⊕ = f(pm) = m
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Proof. fmin(k)α(k,m−1)⊕ is the α(k,m− 1)-th successor (among the letters of v) of the first letter in v of
color ik. As the m-th letter of v is of color ik, fmin(k) = fmin(pm) and fmin(pm)α(k,m−1)⊕ = m = f(pm)
by definition.

In order to have such a result for any index in w, we introduce the following notation.

Definition 7.5. The application ξ(k,m), 1 ≤ k ≤ `(w) and 0 ≤ m ≤ `(v) is defined by

ξ(k,m) =
{

min{pm < j ≤ `(w) | ∃1 ≤ q ≤ `(v) | j = pq et ij = ik} if non-empty
`(w) + 1 otherwise

where p0 = 0.
ξ(k,m) is the w-coordinate of the first letter of v of color ik and of index strictly greater than pm.

Proposition 7.6. f(ξ(k,m)) = fmin(k)α(k,m)⊕.

Proof. If m = 0, ξ(k, 0) = fmin(k) by definition.
If m 6= 0 and ik = ipm , f(ξ(k,m)) = p⊕m = fmin(k)(α(k,m−1)+1)⊕ thanks to Lemma 7.4. As α(k,m) =

α(k,m− 1) + 1 here as ik = ipm we deduce the result.
If ik 6= ipm we prove by induction on m. We already have the initialization when m = 0. Suppose

that f(ξ(k,m − 1)) = fmin(k)α(k,m−1)⊕. As in this case α(k,m − 1) = α(k,m), we have to show that
ξ(k,m− 1) = ξ(k,m).

If these two numbers were different, there would be a letter of v of color ik in the interval Jpm−1 +
1, pm − 1K. This is impossible, as v is the rightmost representative. Thus ξ(k,m− 1) = ξ(k,m) and the
heredity follows.

Corollary 7.7. Let Rk a module verifying Hypothesis 7.2 then Rk ∈ Cv iff kα(k,m)+ < ξ(k,m).

Proof. In this case, as we have f(kα(k,m)+) < f(ξ(k,m)) = fmin(k)α(k,m)⊕, the set of ∆̃v̇-coordinates not
equal to 0 is empty.

The inequality is strict. Even if f is not strictly increasing, ξ(k,m) = pj (for a 1 ≤ j ≤ `(v)) is the
w-index of a letter of v thus, as kα(k,m)+ < ξ(k,m), f(kα(k,m)+) cannot be equal to f(ξ(k,m)) = j.

Corollary 7.8 (Initial evictions). The indecomposable summands Vk of Vw such that f(k) < fmin(k) are
in Cv and thus are evicted summands.

Proof. By using Theorem 5.32 we are in Hypothesis 7.2 for m = 0 and thus the Corollary 7.7 holds.

Corollary 7.9. If Rk and Rk− are direct indecomposable summands of R verifying Hypothesis 7.2 and
Rk ∈ Cv then Rk− ∈ Cv.

Proof. (k−)α(k,m)+ < kα(k,m)+ < ξ(k,m) = ξ(k−,m). By Corollary 7.7 R−k ∈ Cv.

7.2 Induction theorem
The goal of the greedy algorithm is to annihilate all ∆v̇-coordinates of index ≤ `(v). This will translate
on the cut seed as a greedy induction where the goal is to remove all summands. In order for the heredity
to be fulfilled we will have to introduce some technical conditions.

Theorem 7.10 (Induction Theorem). With the previously defined notations, let 1 ≤ k ≤ `(w) and
0 ≤ m ≤ `(v), Gm = C(Rm) and Γ̃m = C(Γm). We have that:

1. any summand Gk,m has ∆v̇,j(Gk,m) = 0 for any 1 ≤ j ≤ m.

2. For any vertex Gk,m such that Gk+,m is a vertex of Γ̃m, there is an arrow Gk+,m ← Gk,m in Γ̃m.
Such arrows are called horizontal arrows.

3. The other arrows of Γ̃m are between vertices of adjacent colors . The vertices are called ordinary
arrows.

4. For any couple of adjacent colors (ik, ij), the bicolor subquiver of Γ̃m according to (ik, ij) has a
saw-teeth configuration. In particular for a given vertex k and a given adjacent color to ik there is
at most two ordinary arrows between k and vertices of color ik.

5. for any color ij adjacent to ipm+1 , the bicolor subquiver of Γ̃m according to (ipm+1 , ij) has a pure
saw teeth configuration.
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6. the coordinate 1 ≤ j ≤ `(v) of ∆̃v̇(Gk,m) is:

• 1 if ipj = ik and j satisfies fmin(k)α(k,m)⊕ ≤ j ≤ f(kα(k,m)+)
• 0 in any other case.

If m = `(v) the point 5 will be considered as trivially true.

Notation 7.11. We recall that the notion of horizontal/ordinary arrow is introduced in Section 4.1, as
well as the notion of bicolor subquiver and (pure) saw teeth configuration, the notion of adjacent colors
in Definition 3.1 and the notations of point 6 in Definition 5.23.

Remark 7.12. Note that point 6 is the same hypothesis as Hypothesis 7.2.

7.3 Initialization
For m = 0 we have R0 = Vw.

We first need to look at vertices evicted or deleted in the cut seed. There is no deleted summands as
i
α(i,m)−
max = imax and, by definition, there exists no index i such that i > imax.

The point 1 is an empty condition.
For the points 2 and 3 we remove only arrows adjacent to vertices also removed from Γ0 which satisfy

the condition by definition in Section 4.1. Then Γ̃ verifies also the condition.
For the point 4, thanks to Corollary 7.8 we know that, on the one hand, thanks to Proposition 4.13

the quiver has a saw teeth structure. On the other hand, Γ̃0 contains only vertices of index k such that
f(k) ≥ fmin(k). In particular, Γ̃0 is a subquiver of the quiver Γw≥p1

where w = [i`(w), · · · , ip1+1, ip1 ].
The quiver Γw≥p1

is obtained by removing consecutive initial vertices of Γ0. By Proposition 4.11, the
saw teeth structure is preserved by such a removal of initial vertices. Now, in order to get Γ̃0 from
Γw≥p1

we need to remove vertices on lines other than ip1 . However, thanks to Corollary 7.9 we remove
consecutively the first vertices of given lines. Then, using once again Proposition 4.13 we have that the
saw teeth structure is preserved.

We will now prove that Vw verifies the point 5 by contradiction.

Proof. First, note that, due to the rightmostness of v, (p1)min = p1. Thus any vertex of color ip1 is in Γ̃0.
Now suppose that for one line of color ij adjacent to the line of color ip1 the ordinary arrow of minimal
target index is an arrow V(p1)γ+ → Vj for γ ≥ 0 and 1 ≤ j ≤ `(w0) of color ij . We will show that there
exists an arrow Vj → V(p1)ζ+ where ζ < γ. This implies that the inequality: p(γ+1)+

1 ≥ j+ > pγ+
1 > j

holds and we want to show that there exists ζ < γ such that j+ ≥ p(ζ+1)+
1 > j > pζ+1 .

We have γ > 0: if γ = 0 then we have j such that j < p1 which is impossible as the quiver is a
subquiver of Γw≥p1

. So pγ+
1 > j > 1 and there existe ζ < γ such that p(ζ+1)+

1 > j > pζ+1 . As, in addition
we have j+ > pγ+

1 and pγ+
1 > 1ζ+, eventually we have: j+ ≥ p

(ζ+1)+
1 > j > pζ+1 and, as j and pζ+1 are

vertices of Γ̃0 subquiver of Γw there is an arrow Vj → Vpζ+
1

and so the arrow Vj → Vpγ+
1

was not the
one of minimal target index. Then the ordinary arrow of minimal target index between both lines has as
target a vertex of color ip1 . So the bicolor subquiver has a pure saw teeth structure.

For point 6, the considered modules are a subset of the indecomposable summands of Vw. Thanks to
Theorem 5.32 we know that each of these summands has a ∆̃-vector as described.

Then we have proved that R0 satisfies all the properties of Theorem 7.10.

7.4 Induction lemma
We now want to prove that, given the seed (Gm, Γ̃m) satisfying all properties of Theorem 7.10, the next
seed (Gm+1, Γ̃m+1) satisfies all properties of Theorem 7.10 for any 0 ≤ m ≤ `(v).

We know how to get a cut seed from (Rm,Γm) and how to mutate it in (Rm+1,Γm+1) via µ̂m but
obtaining (Gm+1, Γ̃m+1) from (Gm, Γ̃m) is more subtle and will be proven by another induction. We can
summarize the situation by Figure 9.

Notation 7.13. In this section we will consider the seed

(R,Γ) = µjγ+ ◦ · · · ◦ · · ·µj ◦ µ̂m ◦ · · · ◦ µ̂1(R0,Γ0) = µjγ+ ◦ · · · ◦ µj(Rm,Γm)

where µ̂m+1 = µjζ+ ◦ · · · ◦ µjγ+ ◦ · · · ◦ µj and ζ ≥ γ ≥ 0.
We denote by Ri,m+1 the i-th summand of R if i ∈ {j, j+, . . . , jγ+} and Ri,m otherwise.
We define the cut seed C(R,Γ) =: (G, Γ̃) as the seed where
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(Rm,Γm) (Rm+1,Γm+1)

(Gm, Γ̃m) (Gm+1, Γ̃m+1)

µ̂m+1

C C

?

Figure 9: Cut seeds and mutated seeds

• the module G is obtained from R by removing, for p ∈ {m,m + 1}, the direct indecomposable
summands Gk,p such that ∆v̇(Rk,p) = 0 which we call evicted and the direct indecomposable
summands Gk,p such that k > (kmax)α(k,p)− which we call deleted.

• the quiver Γ̃ is obtained from Γ by removing all vertices corresponding to evicted or deleted sum-
mand and arrows adjacents to these vertices.

We will now prove by induction the following lemma

Lemma 7.14 (Induction lemma). In the cut seed (G, Γ̃):

1. The summands Gk,m, provided ik 6= ij, and the summands Gj,m+1, . . . , Gjγ+,m+1 have all their
∆v̇-coordinates of index ≤ m+ 1 equal to 0.

2. The horizontal arrows are as in Theorem 7.10, apart from the horizontal arrow Gj(γ+1)+,m →
Gjγ+,m+1 if (G, Γ̃) 6= (Gm, Γ̃m).

3. All non-horizontal arrows are between lines with adjacent colors.

4. For any couple of color (ik, il) with ik, il 6= ij, the bicolor subquiver (ik, il) has a saw teeth config-
uration. The bicolor subquivers (ij , il) with il adjacent to ij, where we remove all vertices of color
ij and of index > jγ+, have a saw teeth configuration.

5. The bicolor subquivers (ij , il) where we remove the vertices of color ij and of index < jγ+ have a
pure saw teeth structure.

6. ∆̃v̇(Gk,p) has all coordinates equal to 0 except from the one of color ij and of index in the interval:

fmin(k)α(k,p)⊕ ≤ l ≤ f(kα(k,p)+)

which are equal to 1.

Example 7.15. There are examples of these properties in Example B.1, with the notation V ∗k = Rk,1
and R∗k,m = Rk,m+1. See especially Figure 13 & 14.

We will first prove the initialization of Lemma 7.14, i.e., the case where (G, Γ̃) = (Gm, Γ̃m). It consists
in translating the points of Theorem 7.10 into the points of Lemma 7.14.

The point 1 of Lemma 7.14 comes from the points 1 and 6 of Theorem 7.10. The first point ensures
that all coordinates of index ≤ m are equal to 0. As the m + 1 summand is of color ipm+1 = ij , for
summands of color different from ij , the m + 1th coordinate is equal to zero thanks to point 6 of the
Theorem. The list of summands Gj,m+1, . . . , Gjγ+,m+1 is empty. The point is proved.

The points 2 and 3 of the Lemma are equivalent to the points 2 and 3 of the Theorem.
The point 4 of the Lemma consists in looking only at bicolor subquivers of colors (ik, il) with ik, il 6= ij ,

a subset of the bicolor subquivers known to have a saw teeth structure thanks to the point 4 of the
Theorem.

The points 5 and 6 of the lemma are exactly the points 5 and 6 of the Theorem.
Then the seed (Gm, Γ̃m) satisfies all conditions of Lemma 7.14.

7.5 Heredity of the induction lemma
We will now establish the heredity of the hypotheses of Lemma 7.14.

We will deduce point 1 of the lemma from point 6.
For the point 2, we have two cases. If the vertex we are mutating, Gjγ+,m, is the first of its line, it

has only one horizontal arrow Gj(γ+1)+,m ← Gjγ+,m. As, from point 5 we know that there is no ordinary
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arrow in Γ̃ having Gjγ+,m as source, we know that there will not be any disturbance of other horizontal
arrow on other lines.

Then the only horizontal arrow to be changed will be the one having Gjγ+,m as source which will
become Gj(γ+1)+,m → Gjγ+,m+1, which is precisely the only derogation we allowed, now considering
Gj(γ+1)+,m. Now, in order to get the next Γ̃, either we evict Gjγ+,m+1 and we are once again in the initial
case with no derogation, or not and we still validate the hypothesis.

If we are not in an initial case then we have Gj(γ+1)+,m ← Gjγ+,m → Gj(γ−1)+,m+1 before mutation. As
before, thanks to point 5, we know that the only horizontal arrow to be changed will be the one adjacent
to Gjγ+,m and after mutation we have Gj(γ+1)+,m → Gjγ+,m+1 ← Gj(γ−1)+,m+1 so we still validate the
hypothesis when looking at Gj(γ+1)+,m. We cannot have eviction here thanks to Corollary 7.9.

The points 3, 4 and 5 will result from an enumeration of cases, which we postpone to Section A in
the appendix.

Indeed, we initially verify the condition of the case enumeration and then with the evictions and
mutation we stay in one of the studied case.

As all the bicolor subquivers of first color ij are in pure saw teeth structure, all the ordinary arrow
adjacent to a vertex to mutate will have it as target and thus it is impossible, in the cut quiver, to create
arrow between two lines of non-adjacent colors.

By the study of configurations, looking only at what happens at the already mutated vertices, we
see that we keep the saw teeth structure. By the same point, when only looking at the vertices still to
mutate, we see that we still are in a pure saw teeth structure.

We now need to compute the ∆-vectors after mutation. Using Proposition 5.9 we have that ∆-vectors
can be computed by exactly one of the two computations, one corresponding to taking into account
neighbours of Gj via arrow of source Gj , the other one via arrow of target Gj .

Here we will only focus on the ∆̃-vector, only the `(v) first coordinates being relevant to our study
and then we allow ourself to only consider non-evicted vertices, the evicted one having zero ∆̃v̇-vectors.

We have a more precise criterion to know which summands to take into account on the computation:

Proposition 7.16. The neighbouring of Gj in Γ̃ just before mutating is composed of the ordinary arrow
having Gj as target, the horizontal arrows having Gj as source, and no other arrows.

It follows from the study of all cases. Thus the computation of the ∆̃v̇-vectors amounts to taking into
account only the ordinary arrows or only the horizontal arrows.

We now should use the computational criterion of [GLS11] to know which one to use for the compu-
tation but we will show, by contradiction, that in fact we can only consider the horizontal arrows.

Lemma 7.17 (Evolution of ∆v̇-vectors coordinates by mutation). In the cut quiver Γ̃, if the vertex Gj
we mutate has a configuration described by points 4 and 5 of the lemma 7.14, then

∆̃v̇(Gj,m+1 = ∆̃v̇(Gj+,m) + ∆̃v̇(Gj−,m+1)− ∆̃v̇(Gj,m)

where we write ∆v̇(Gj−,m+1) = 0 if there is no summand/vertex of index j− in the cut module/quiver.

Proof. First we will show that we have to consider summands of the same color as they are linked to
Gj,m by horizontal arrows.

If we look at ordinary arrows, we will have the computation∑
Gi,m→Gj,m

∆̃v̇(Gi,m)− ∆̃v̇(Gj,m)

and if we look at the m + 1st coordinate, then ∆v̇,m+1(Gi,m) = 0 for any Gi adjacent to Gj via an
ordinary arrow and ∆v̇,m+1(Gj,m) = 1 by the induction hypothesis 6 of Lemma 7.14. Thus we would
have ∆v̇,m+1(Gj,m+1) = 0 − 1 < 0. This is absurd by the definition of ∆-vectors and then we have to
consider horizontal arrows.

Then there are only two neighbours of Gj,m: Gj−,m+1 (if it exists) and Gj+,m (which always exists).
Thus the computation is the one given in the lemma.

Now we suppose that, according to point 6 of Lemma 7.14, we have that the non-zero and equal to 1
coordinates of ∆̃v̇(Gk,p) are the one of index 1 ≤ l ≤ `(v) having the color ik and being in the interval:

fmin(k)α(k,p)⊕ ≤ l ≤ f(kα(k,p)+)
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In particular we have:

fmin(j)(α(j,m)+1)⊕ ≤ l ≤ f(jα(j,m)+) for Gj−,m+1

fmin(j)α(j,m)⊕ ≤ l ≤ f(jα(j,m)+) for Gj,m

fmin(j)α(j,m)⊕ ≤ l ≤ f(j(α(j+,m)+1)+) for Gj+,m

using the facts that fmin(j) = fmin(j+) = fmin(j−), that α(j,m) = α(j+,m) = α(j−,m) and that
α(j,m) + 1 = α(j,m+ 1).

We want to show that

fmin(j)α(j,m+1)⊕ ≤ l ≤ f(jα(j,m+1)+) for Gj,m+1

Then we can cut these intervals in three intervals:

fmin(j)α(j,m)⊕ ≤ l < fmin(j)(α(j,m)+1)⊕

fmin(j)(α(j,m)+1)⊕ ≤ l ≤ f(jα(j,m)+)

f(jα(j,m)+) < l ≤ f(j(α(j,m)+1)+)

One these intervals, we have respectively :

(∆v̇,l(Gj−,m+1),∆v̇,l(Gj,m),∆v̇,l(Gj+,m)) = (0, 1, 1), on the first,

(∆v̇,l(Gj−,m+1),∆v̇,l(Gj,m),∆v̇,l(Gj+,m)) = (1, 1, 1), on the second,

(∆v̇,l(Gj−,m+1),∆v̇,l(Gj,m),∆v̇,l(Gj+,m)) = (0, 0, 1), on the third.

So we have as coordinate for ∆̃v̇,l(Gj,m+1), on the first interval 0−1+1 = 0, on the second: 1−1+1 = 1,
on the third 0− 0 + 1 = 1.

Finally, in ∆̃v̇(Gj,m+1), the non-empty coordinates are equal to 1 and are the ones of index l of color
ij and in the interval fmin(j)α(j,m+1)⊕ ≤ l ≤ f(jα(j,m+1)+) whence the heredity of point 6 of Lemma 7.14
and the point 1 coming from point 6.

Then we have proved that Lemma 7.14 holds by induction.

7.6 Toward heredity proof of the induction theorem
As Lemma 7.14 is proved, when taking the result for the seed (R,Γ) = µ̂m+1 ◦ · · · ◦ µ̂1(Vw,Γw) we have:

1. The summands Gk,m+1 belonging to C(Rm+1) have all their coordinates of ∆v̇-vector of index
≤ m+ 1 equal to 0.

2. In the cut quiver Γ̃m+1 (obtained from Γ by removing the last vertex of line ij and the evicted
vertices), all the horizontal arrows are conform to 2 of Theorem 7.10.

3. All ordinary arrows are between lines of adjacent colors in Γ̃m+1.

4. The quiver Γ̃m+1 has a saw teeth structure.

5. This condition is empty.

6. The description of ∆̃v̇-coordinates of the summands is conform to point 6 of Theorem 7.10.

Then, up to point 5 we have the heredity of the hypothesis. It remains to show that the next line to
mutate will have a pure saw teeth structure.

To show that final point we need a new lemma, introduced and proved in the next section.
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7.7 Heredity: inclusion lemma
Our goal here is to show that in the seed Γ̃m+1 the line of color ipm+1 has a pure saw teeth structure for
any bicolor subquiver having ipm+1 as first color. In order to do so, we will use (and prove) the fact that
the cut seed Γ̃m+1 has the same quiver as the left (maximal indices) part of the quiver of Γ0.

Definition 7.18 (Graph morphism). Let Γ = (Γ0,Γ1) and Γ′ = (Γ′0,Γ′1) be two graphs. A map f : Γ0 →
Γ′0 is a graph morphism if, for any vertex αjs,jt ∈ Γ1 of source the vertex Vjs ∈ Γ0 and of target Vjt , the
image vertex f(αjs,jt) of source f(V js) and of target f(Vjt) belongs to Γ′1. If f is injective, we say that
Γ is included in Γ′.

Lemma 7.19 (Inclusion lemma). Let 0 ≤ m ≤ `(v), ΓWm = (Wi,m, βjs,jt,m) and Γ̃m = (Gi,m, αjs,jt,m)
be the quivers of the modules (respectively) Vw≥pm+1

and C(µ̂m ◦ · · · ◦ µ̂1(Vw)),using the convention that
s(γjs,jt,m) = js and t(γjs,jt,m) = jt for any vertex.

We define the family of maps (ρm)`(v)
m=0 by: ρm :

{
(Gi,m, αjs,jt,m) → (Wi,m+1, βjs,jt,m+1)

Gi,m 7→ Wiα(i,m)+,m+1
.

These maps are injective graph morphisms and we have a partial inverse:

ρ∗m :


(Wi,m+1, βjs,jt,m+1) → (Gim , αjs,jt,m)

Wi,m+1 7→
{
Giα(i,m)−,m if iα(i,m)− ≥ ξ(i,m)
/∈ Dρ∗m

otherwise

Proof. We need two more functions (generally not graph morphisms) to prove the result by induction.
We define ιm : ΓWm

→ ΓWm+1 by the following identifications:

ιm :


Wj,m 7→

 Wj+,m+1 if ij = ipm and (pm)max ≥ j+ ≥ pm+1
Wj,m+1 otherwise if ij 6= ipm and j ≥ pm+1
/∈ Dιm otherwise,

βjs,jt,m 7→


/∈ Dιm if Wjs,m /∈ Dιm or Wjt /∈ Dιm

βj+
s ,j

+
t ,m+1 otherwise if ijs = ijt = ipm

βjs,jt,m+1 otherwise,

where Dιm is the domain of ιm.
We define µm : Γ̃m−1 → Γ̃m as:

µm :



Gj,m−1 7→
{

Gj,m if ij 6= ipm or jmax > jα(j,m)+ ≥ ξ(j,m)
/∈ Dµm otherwise,

αjs,jt,m−1 7→


αjs,jt,m if ijs 6= ipm 6= ijt or ijs = ipm = ijt
αj−s ,jt,m if ijs = ipm 6= ijt and Gj−s ,m−1, Gjt,m−1 ∈ Dµm

αjs,j−t ,m
if ijs 6= ipm = ijt and Gjs,m−1, Gj−t ,m−1 ∈ Dµm

/∈ Dµm otherwise

and for any arrow αjs,jt,m−1 such that there is no arrow αjγ+
t ,js,m−1 with γ > 0 and verifying that

j
α(jt,m−1)+
t 6= (jt)max and ijt = ipm (when we are on a final barb shifted), we add an arrow αjt2 ,js,m

where jt2 = (jt)α(jt,m)−
max .

First we show that ιm is well-defined, and that ιm(ΓWm) = ΓWm+1 . Then we will show that µm is
well-defined, that µm(Γ̃m−1) = Γ̃m and that ρm is a graph morphism.

Let 0 ≤ m < `(v). By definition, ΓWm+1 is the quiver obtained from ΓWm
by removing all summands

of index pm+1 > j ≥ pm and the adjacent arrows.
The vertices having no image by ιm are W(pm)max,m, the vertices Wj,m such that ij 6= ipm and

pm+1 > j > pm, and the vertices Wj,m such that ij = ipm and pm+1 > j+ > pm.
Thus among the vertices having an image via ιm, we have a bijection Wj,m ↔Wj,m+1 if ij 6= ipm and

Wj,m ↔Wj+,m if ij = ipm .
In addition the vertices of ΓWm+1 are the same of those of ΓWm

except the ones adjacent to a vertex
of index pm+1 > j ≥ pm. Among the preserved arrows, for the arrows αjs,jt,m such that at least one of
the extremity is not of color ipm we have a bijection αjs,jt,m ↔ αjs,jt,m+1. If both extremities are of color
ipm then the arrow is an horizontal arrow αk,k+,m and we have the bijection αk,k+,m ↔ αk+,k2+,m+1. The
arrow αk,k2+,m+1 belongs to ΓWm+1 because we suppose that k+ ≥ pm+1 and k+ 6= kmax so Wk2+,m+1 ∈
ΓWm+1 .
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Thus we have a bijection between ΓWm+1 and ιm(ΓWm
) for 0 ≤ m < `(v).

Now we consider Γ̃m+1. We will show that µm(Γ̃m+1). To fix notations we will suppose that µ̂m =
µkγ+ ◦ · · · ◦ µk.

Then µm amounts exactly to the modifications described by Proposition A.3 and the cut.
Thus ιm and µm are well-defined and the images are the one expected.
We will now show that ρm is a morphism of graphs for any 0 ≤ m ≤ `(v) by induction.
For ρ0, Γ̃0 is the subquiver of Γw containing all vertices Rj,0 such that j ≥ ξ(j, 0) (by Corollary 7.8),

ΓW1 is the subquiver of Γw containing all summands such that j ≥ p1 and for 1 ≤ j ≤ `(w) we have
ξ(j, 0) ≥ p1. Γ̃0 is then a subquiver of ΓW1 . As for all j we have α(j, 0) = 0, there is no vertex shift nor
arrows shift thus ρ0 is well-defined and is just an inclusion. The partial inverse exists and is trivial.

Now we will show the heredity. Suppose that ρm−1 is a morphism of graphs. We will show that ρm is
also a morphism of graphs. To do so, we will show that we have ρm ◦ µm = ιm ◦ ρm−1 on their definition
domain, having the commutative diagram:

Γ̃m−1 ΓWm

Γ̃m ΓWm+1

ρm−1

µm ιm

ρm

We first show the equality on vertices. We have four cases (provided the previous one are not verified)
for the index of a vertex Gj,m−1:

1. either jα(j,m−1)+ = (pm)max

2. or jα(j,m)+ < pm+1

3. or ξ(j,m) > jα(j,m)+ ≥ pm+1

4. or jα(j,m)+ ≥ ξ(j,m)

In the first case Gj,m−1 6∈ Dµm . On the other side ρm−1(Gj,m−1) = Wjα(j,m−1)+,m and Wjα(j,m−1)+,m /∈
Dιm as jα(j,m−1)+ = (pm)max and thus (jα(j,m−1)+)+ > (pm)max.

In the second case, if ij = ipm , then Gj,m−1 /∈ Dµm as ξ(i,m) ≥ pm+1 for any 1 ≤ i ≤ `(w). On the
other side we have ρm−1(Gj,m−1) = Wjα(j,m−1)+,m /∈ Dιm . If ij 6= ipm then jα(j,m)+ < pm+1 ≤ ξ(j,m) =
ξ(j,m− 1) and thus this vertex is not in Γ̃m−1.

In the third case, it depends on the color. If ij 6= ipm then ξ(j,m) = ξ(j,m−1) and thus Gj,m−1 does
not exist. Then ij = ipm and as ξ(j,m) = pm+1, the interval is empty.

In the fourth case we have µm(Gj,m−1) = Gj,m and ρm(Gj,m) = Wjα(j,m)+,m+1. On the other side,
we have ρm−1(Gj,m−1) = Wjα(j,m−1)+,m and then ιm(Wjα(j,m−1)+,m) =jα(j,m)+,m+1 using the fact that
α(j,m− 1) = α(j,m) if ij 6= ipm and α(j,m− 1) + 1 = α(j,m) if ij = ipm .

Thus we do have ρm ◦ µm = ιm ◦ ρm−1 for any vertex of Γ̃m.
We will now prove the equality for all arrows. We have four cases for αjs,jt,m−1

1. Gjs,m−1 or Gjt,m−1 is not in Dρm◦µm = Dιm◦ρm−1 ,

2. ijs 6= ipm 6= ijt ,

3. ijs = ipm = ijt ,

4. ijs = ipm or ijt = ipm but not both.

In the first case, the arrow will not be in Dµm neither in Dιm◦ρm−1 .
In the second case µm(αjs,jt,m−1) = αjs,jt,m and ρm(αjs,jt,m) = β

j
α(js,m)+
s ,j

α(jt,m)+
t ,m+1. On the other

hand we have ρm−1(αjs,jt,m−1) = β
j
α(js,m−1)+
s ,j

α(jt,m−1)+
t ,m

and

ιm(β
j
α(js,m−1)+
s ,j

α(jt,m−1)+
t ,m

) = β
j
α(js,m−1)+
s ,j

α(jt,m−1)+
t ,m+1.

As α(jt,m− 1) = α(jt,m) and α(js,m− 1) = α(js,m) we have the equality.
In the third case, we have µm(αjs,jt,m−1) = αjs,jt,m and then ρm(αjs,jt,m) = β

j
α(js,m)+
s ,j

α(jt,m)+
t ,m+1.

On the other hand, we have ρm−1(αjs,jt,m−1) = β
j
α(js,m−1)+
s ,j

α(jt,m−1)+
t ,m

and

ιm(β
j
α(js,m−1)+
s ,j

α(jt,m−1)+
t ,m

) = β
j

(α(js,m−1)+1)+
s ,j

(α(jt,m−1)+1)+
t ,m



7 PROOF 31

and, as α(js,m) = α(jt,m) = α(js,m− 1) + 1 = α(jt,m− 1) + 1 we have the equality.
The last case is symmetrical, and we will suppose that ijs = ipm . Thus µm(αjs,jt,m−1) = αj−s ,jt,m

and we have ρm(αj−s ,jt,m) = β
j

(α(js,m)−1)+
s ,j

α(jt,m)+
t ,m+1. On the other side we have ρm−1(αjs,jt,m−1) =

β
j
α(js,m−1)+
s ,j

α(jt,m−1)+
t ,m

and ιm(β
j
α(js,m−1)+
s ,j

α(jt,m−1)+
t ,m

) = β
j
α(js,m−1)+
s ,j

α(jt,m−1)+
t ,m+1. As α(js,m) =

α(js,m− 1) + 1 and α(jt,m) = α(jt,m− 1) we have the equality.
Finally in all cases we have the equality, and the diagram commutes. Thus for any vertex or arrow in

Γ̃m−1 being in the domain, we have ρm ◦ µm = ιm ◦ ρm−1.
As ιm is clearly invertible for vertices of index ≥ pm+1 and for adjacent arrows, we can define ρ∗m =

µm ◦ ρ∗m−1 ◦ ι−1
m on any vertex of ΓWm+1 of index ≥ pm+1.

To end our proof we need to show that all arrows created between Γ̃m−1 and Γ̃m (by tooth shift of
final barbs) have an image through ρm. In that case we have an arrow α((pm)max)α(pm,m)−,j,m where ij is
adjacent to ipm . In addition we know that in Γ̃m−1 the last ordinary arrow between ij and ipm was the
arrow αj,k,m−1 where ik = ipm and k ≤ ((pm)max)α(pm,m)−. As ρm−1 is a graph morphism by hypothesis,
there exists an arrow βjα(j,m−1)+,kα(k,m−1)+,m in ΓWm

. As ΓWm
is a subquiver of Vw, its arrows satisfies

the index condition of Section 4 and then:

j(α(j,m−1)+1)+ ≥ k(α(k,m−1)+1)+ > jα(j,m−1)+ > kα(k,m−1)+ (2)

which can be rewritten, using the facts that α(j,m) = α(j,m− 1) and α(k,m) = α(k,m− 1) + 1:

j(α(j,m)+1)+ ≥ kα(k,m)+ > jα(j,m)+ > kα(k,m−1)+ (3)

To show that ρm is a graph morphism, we must show that the image ρm(α((pm)max)α(pm,m)−,j,m) is an
arrow of ΓWm+1 . In that case the image arrow is:

β(pm)max,jα(j,m)+,m+1.

This arrow exists iff the following inequality is verified:

`(w) + 1 ≥ j(α(j,m)+1)+ > (pm)max > jα(j,m)+

As we have ((pm)max)α(pm,m)− > k, kα(k,m)+ > jα(j,m)+ and α(k,m) = α(pm,m), we obtain

(pm)max > jα(j,m)+.

We always have `(w) + 1 ≥ j(α(j,m)+1)+ with equality iff jα(j,m)+ = jmax. In that case it is obvious that
j(α(j,m)+1)+ > (pm)max.

Suppose that we have (pm)max > j(α(j,m)+1)+. Then there exists δ > 0 such that:

`(w) + 1 ≥ j(δ+α(j,m)+1)+ > (pm)max > j(δ+α(j,m))+

and thus we have the arrow β(pm)max,j(δ+α(j,m))+,m+1 ∈ ΓWm+1 and then β(pm)max,j(δ+α(j,m))+,m+1 ∈ ΓWm .
Then, by ρ∗m−1 we have that α((pm)max)α(k,m−1)−,jδ+,m−1 ∈ Γ̃m−1. That is impossible by hypothesis on
the final barb.

Thus j(α(j,m)+1)+ > (pm)max and ρm is a graph morphism.

Lemma 7.20. In the cut seed (Gm, Γ̃m), 0 ≤ m < `(v) the line of color ipm+1 has a pure saw teeth
structure.

Proof. We consider the quiver ΓWm+1 . Thanks to Section 7.3 we know it has a saw teeth structure and
a pure saw teeth structure for the line ipm+1 . Then we know that Γ̃m = ρ∗m(ΓWm+1) and so we get Γ̃m
from ΓWm+1 by removing all vertices Gk,m such that ξ(k,m) > k ≥ pm+1 and for ik = ipm this interval
is empty. Thus we remove initial vertices of some line but not of ipm and, using the same reasonning as
Section 7.3, we have the result.

7.8 Conclusion of the induction
Lemma 7.20 gives us point 5 of the induction hypothesis of Theorem 7.10 and thus the induction is
proved.

If we look at point 6 of Theorem 7.10 when m = `(v) we have that fmin(k)α(k,m)⊕ = `(v) + 1 and
then the interval is empty and in fact (G`(v), Γ̃`(v)) is the empty seed.

Then µ•(Vw) is the sum of all evicted summands and the quiver µ•(Γw) is the quiver obtained by
applying the mutations to Γw and removing all deleted vertices. We will now show that µ•(Vw) is a
Cv,w-rigid maximal basic module and its Gabriel quiver is the quiver µ•(Γw).
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7.9 Conclusion
Proposition 7.21. The module µ•(Vw) is rigid.

Proof. Vw is rigid as it is the module of a seed for the cluster structure of Cw. Moreover, rigidity is
preserved through mutation. Then µ̂`(v) ◦ · · · ◦ µ̂1(Vw) is rigid. In addition, if the module M is rigid, then
any N ⊂M is also rigid. Then µ•(Vw) ⊂ µ̂`(v) ◦ · · · ◦ µ̂1(Vw) is rigid.

Proposition 7.22. The module µ•(Vw) is basic.

Proof. Vw was basic. Mutations preserves basicity and so does removing direct summands thus µ•(Vw)
is basic.

Proposition 7.23. The module µ•(Vw) is in the category Cv,w.

Proof. We will show first that µ•(Vw) ∈ Cw and then that µ•(Vw) ∈ Cv.
Vw ∈ Cw. Cw is stable by extensions so µ̂`(v) ◦ · · · ◦ µ̂1 ∈ Cw. In addition Cw is stable by taking direct

summands and direct sums so µ•(Vw) ∈ Cw.
To show that µ•(Vw) ∈ Cv we use Proposition 5.35. We know that every direct summands of µ•(Vw)

is an evicted module of the cut module G`(v) so, if M is a direct summand of µ•(Vw), ∆̃v̇(M) = 0 and,
by Proposition 5.35, M ∈ Cv. As Cv is stable by taking direct summands and direct sums, µ•(Vw) ∈ Cv.

Then µ•(Vw) ∈ Cv,w.

Proposition 7.24. The module µ•(Vw) is Cv,w-maximal rigid.

Proof. We know from Theorem 2.18 that a basic rigid module of Cv,w is maximal if it has `(w) − `(v)
direct summands. We know that Vw had `(w) direct summands and that we removed all summands
whose indices are in the set

⋃
k∈I{1 ≤ j ≤ `(w) | ij = ik | j > (jmax)α(k,`(v))−} or equivalently, as seen

with the cut seed: to remove one summand for each sequence of mutation µ̂m. As we perform `(v) such
sequencess, we remove `(v) summands and the final total number of summands is `(w) − `(v) and so
µ•(Vw) is Cv,w-rigid maximal.

Proposition 7.25. The Cv,w-projectives direct indecomposable summands of µ•(Vw) are the summands
corresponding to vertices of ΓR`(v) adjacent to summands deleted by S and to the vertices of S(Γ`(v))
adjacent to no other vertex of S(Γ`(v)).

Proof. A module which is not in any of the two cases is in Cv,w and only adjacent to direct summands
of Cv,w. So, as Cv,w is extension-closed, mutating this summands will still give a Cv,w-module. If the
summand Rk to be mutated is adjacent to a summand of Cw \ Cv,w then the mutated summand will be
in Cw \ Cv,w so it is non Cv,w-mutable and so it has to be Cv,w-projective.

If the summand is adjacent to no other vertex, then it is non-mutable and thus Cv,w-projective.

Proposition 7.26. The quiver µ•(Γw) obtained from Γw by mutations and vertex removal is the quiver
of µ•(Vw)

Proof. By Proposition 7.25 the deleted vertices are adjacent to only Cv,w-frozen vertices and then deleting
these summands does not change the quiver of the neighbours of mutable vertices.

The quiver obtained is thus the quiver of a Cv,w-seed.

This finishes the proof of Theorem 6.8.

8 Corollaries
We now state some consequences of the existence of this algorithm.

8.1 Mutation sequence equivalence
In Sections 6.2 & 6.3 we saw two different formulations for the sequence of mutations, respectively µ̃m
and µ̂m for 1 ≤ m ≤ `(v). We now show that these two formulations are in fact equivalent.

Proposition 8.1. For any 1 ≤ m ≤ `(v) we have µ̃m = µ̂m.
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Proof. Using the results of Theorem 7.10, we can describe the vertices/summands mutated by µ̂m. We
know that the summands Gk,m−1 of the cut seed having ∆̃v̇,m(Gk,m−1) 6= 0 are the one mutated by µ̂m.
It amounts to the summands of color ipm with index fmin(k)α(k,m−1)⊕ ≤ m ≤ f(kα(k,m−1)+) and such
that k < (kmax)α(k,m)−.

The smallest index to be mutated is k such that m = f(kα(k,m−1)+) = fmin(k)α(k,m−1)⊕ and the
bigest is (kmax)α(k,m)−.

On the other side, following the µ̃m sequence, we mutate the indices ((pm)min)βm+, . . . , ((pm)max)γm−.
We recall that γm = α(pm,m) so µ̃m mutates all indices ((pm)min)βm+, . . . , ((pm)max)α(pm,m)−.
So we have to show that k = (kmax)α(k,m)− ⇔ k = ((pm)max)α(pm,m)− and

m = f(kα(k,m−1)+)⇔ k = ((pm)min)βm+.

The first equivalence is direct as (pm)max = kmax and α(k,m) = α(pm,m) as ik = ipm .
For the second equivalence, by definition of f , the smallest k such that f(kα(k,m−1)+) = m verifies

kα(k,m−1)+ = pm.
We can now rewrite the equivalence as pm = kα(k,m−1)+ ⇔ ((pm)min)βm+ = k.
Then, applying (γm − 1)+ = (α(k,m)− 1)+ = α(k,m− 1)+ to the right side we obtain:

((pm)min)(βm+γm−1)+ = kα(k,m−1)+

However we have by definition γm + βm = #{1 ≤ k ≤ pm | ik = ipm} that is, the number of letters
of color ipm and of index ≤ pm in w. So, the βm + γm − 1-th successor of (pm)min is pm and so we have
pm = kα(k,m−1)+ (see Section 7.1). Thus we have proved the equivalence.

8.2 Red-green sequences
In this section we examine the mutation sequence according to the theory of Keller’s red-green sequences.
We recall some definitions based on [KD19].

Given a quiver Q, we define the framed quiver Q̂ from Q by adding a vertex i′ for any vertex i ∈ Q0
and an arrow i′ → i. In this context the vertices i′ are called frozen.

Let Γ be a quiver obtained by Q̂ by a sequence of mutations. A vertex i is said to be green with
respect to Q̂ if it is the source of no arrow i→ j′ where j is a frozen vertex. Conversely a vertex i is said
to be red if it is the target of no arrow j′ → i.
Remark 8.2. Here we use the opposite conventions of [KD19] as we are working with the quiver of
EndΛ(Vw).

We have the following Theorem:
Theorem 8.3 ([KD19, Theorem 1.7.]). With respect to any quiver of the mutation class of Γ, every
non-frozen vertex of Γ is either green or red.

A sequence of vertices (k1, . . . , kN ) of an initial quiver Q is said to be green if for any 1 ≤ i ≤ N , the
vertex ki is green with respect to Q in the mutated quiver µki−1 ◦ · · · ◦ µk1(Q̂).

A sequence is maximal green with respect to Γ if it is green with respect to Γ and if all the non-frozen
vertices of µkN ◦ · · ·µk1(Q̂) are red with respect to Γ.

A sequence is reddening with respect to Γ if all non-frozen vertices of µkN ◦ · · ·µk1(Q̂) are red with
respect to Γ (the sequence does not have to be green).

We have the following conjecture and proposition:
Conjecture 8.4. The sequence of vertices of Γw mutated by µ• is a green sequence with respect to Γw.
Proposition 8.5. The sequence of mutated vertices of Γẇ by µ• is a green sequence with respect to Γv̇.
Proof. The quiver Γẇ is in the mutation class of Γv̇. Indeed, thanks to Matsumoto’s lemma (see Section
5.3) we have a sequence of 2 and 3-moves linking v̇ and ẇ. Moreover 2-moves translate in a reindexation
of the vertices and 3-moves as a mutation and a reindexation of vertices.

Let Fv̇ denote the functor HomΛ(Vv̇,−). According to the proof of the algorithm (and particularly
the proof of Lemma 7.17), in any of our mutation to compute ∆̃v̇-vectors of mutated summands, we
only consider short exact sequences where the summand to mutate is the kernel. Thanks to [GLS11,
Proposition 12.4.], there is an equivalence between the Fv̇-exactness of a short exact sequence and a
condition on dimension vectors of the summands which is equivalent to taking the sequence where Rk is
the kernel. According to [BK20] this is equivalent to the fact that the mutation is green with respect to
Vv̇.

Thus the mutations of µ• are green mutations with respect to Vv̇.
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Remark 8.6. According to [Mén21a, Exemple 5.2.7.] the mutation sequence of µ• can be neither maximal
green nor reddening.
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A Configurations, inheritance and teeth shift principle
In this section, we translate [Mén21a, Sections 4.10 & 4.11].

Consider the seed (Rm,Γm) with the notations of Theorem 7.10, verifying in particular the points 4
and 5.

We will consider the configurations in the cut seed (G, Γ̃) (with the notations of Lemma 7.14) around
the vertex that will be mutated in any bicolor subquiver (ik, ij).

Due to the definition of the sequence of mutations in Definition 6.5, and the fact we are working in
the cut seed, the mutation sequence amounts to mutating all vertices of the line except the last which is
deleted. There can be eviction, but, according to Corollary 7.9, the vertex Gk+ can only be evicted if Gk
has been evicted. Conversely, if Gk is not evicted, no successor of Gk can be evicted. Thus we will only
study evictions in initial cases here.

At any time we will take configurations of Tables 5 & 6, adapting if necessary the indexation of
vertices. We will always suppose that Gk2+ exists, on the contrary, Gk+ is the last vertex of its line so it
will not be mutated and it will be erased when considered.

A.1 Initial configurations
If Gk is the first of its line (in Γ̃) then, according to hypotheses 4 and 5 of Theorem 7.10, the only possible
configurations are the one listed in Table 5. Due to point 5, the first vertex of the line can have at most
one ordinary arrow, being its target.

Case α0 if eviction If we are in case α0 before mutation, after its mutation we evict Gk and now Gk+

is the first vertex of the line in the new quiver Γ̃.If Gk+ had no ordinary arrow we are once again in a
case α0. If there is one, it has Gk+ as target, being Gj → Gk+ and then, we are in case α1 if there is no
arrow Gk2+ → Gj or in case α2 if it exists.

Case α0 without eviction If there is no eviction, we continue by now considering the vertex Gk+ . If
Gk+ had no ordinary arrow, it still does not and we are in case β0. As previously if it has an ordinary
arrow, it has only one Gj → Gk+ , being its target. Then, depending on the existence of an arrow
Gk+ → Gj we are in case β1 or β2.

Case α1 with eviction If G∗k is evicted after mutation, G+
k becomes the first vertex of the line.

However, we have an arrow Gj → Gk coming from the mutation at G∗k. It is the only ordinary arrow
adjacent to Gk+ because either the initial arrow Gj → Gk was the only ordinary between two lines (as a
final barb) or it was the beginning of a tooth Gkγ+ → Gj → Gk with γ > 1 as the tooth is long, the left
arrow being preserved in spite of the eviction. Then we have only one ordinary arrow pointing at Gk+

and if we were on the beginning of tooth and γ = 2 the we are now in case α2, otherwise in case α1.

Case α1 without eviction If we have now eviction, we still know there is only one ordinary arrow
adjacent to Gk+ : Gj → Gk+ and there is one ordinary arrow Gj ← Gk. Thus, depending on the length
of the tooth or, equivalently, the configuration around Gk2+ we are either in case β3 or β4.

Case α2 with eviction If we have eviction Gk+ becomes the first vertex of its line. In addition there
is no arrow between Gk+ and Gj (the original Gk+ → Gj being deleted by the mutation at Gk). Then
either there exists a γ > 0 such that Gjγ+ → Gk+ exists and then we are now in case α1 or α2 depending
on what happens at Gk2+ , or not and there was only one ordinary arrow, the final barb and now we are
on case α0 then β0 (when evictions stop) until the end of the line.

Case α2 without eviction Without eviction then Gk+ is, after mutation of Gk, the source of two
horizontal arrows and, potentially an arrow Gjγ+ → Gk+ where γ > 0. The ordinary arrow Gj → Gk is
no longer our concern so, up to renaming jγ+  j and k+  k we are in case β0 if there was no ordinary
arrow or β1 or β2 if there was one.

Finally, for any of the 3 initial possible configurations, after mutation, we are in only 8 possible
different configurations for Gk+ .
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Config. α0 α1 α2
Nickname Initial simple Initial long tooth Initial short tooth

G Gk+ Gk
Gj+ Gj

Gk+ Gk

∅
Gj+ Gj

Gk+ Gk

µk(G) Gk+ G∗k

Gj+ Gj

Gk+ G∗k

Gj+ Gj

Gk+ G∗k

∅

Next if no eviction β0, β1, β2 β3, β4 β0, β1, β2
Next if eviction α0, α1, α2 α1, α2 α0, α1, α2

Table 5: Initial possible configurations and evolutions

Config. β0 β1 β2 β3 β4
Nickname Start and end Entrance long tooth Entance short tooth Middle (long) tooth End tooth

G Gk+ Gk G∗k−

Gj

Gk+ Gk G∗k−

∅ ∅
Gj

Gk+ Gk G∗k−

∅
Gj

Gk+ Gk G∗k−

∅
Gj

Gk+ Gk G∗k−

µk(G) Gk+ G∗k G∗k−

Gj

Gk+ G∗k G∗k−

Gj

Gk+ G∗k G∗k−

∅
Gj

Gk+ G∗k G∗k−

∅
Gj

Gk+ G∗k G∗k−

∅ ∅

Next β0, β1, β2 β3, β4 β0, β1, β2 β3, β4 β0, β1, β2

Table 6: General configuration possible and evolutions
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Example A.1. We illustrate all this reasoning by Figure 10.

Gj2 Gj1

Gk4 Gk3 Gk2 Gk1

Gp

(B)

(A)

Gj2 Gj1

Gk4 Gk3 Gk2

Gp

(C)

(D)

Gj2 Gj1

Gk4 Gk3 Gk2 G∗k1

Gp

(D)

(F )

µk1 with eviction µk1 without eviction

Figure 10: Evolutions of initial configurations

Initially we have a quiver whose vertices j2 and j1 are of color ij , ki of color ik and p of color ip.
The bicolor subquiver (ik, ij) is in configuration α2 for Gk1 (arrows in blue dashes and horizontal

arrows around (A)). The bicolor subquiver (ik, ip) is in configuration α1 around Gk1 (dotted red arrows
around (B) and horizontal arrows).

Then, after mutation a Gk1 , if it is evicted, we observe that the bicolor subquiver (ik, ij) is now in
configuration α1 around Gk2 (violet dashes, letter (C)). On the other side, the bicolor subquiver (ik, ip)
is now in configuration α2 (green dots, (D)). We remark that if the initial teeth was Gk4 → Gp → Gk2 ,
(D) would still be in configuration α1.

If there is no eviction, then the bicolor subquiver (ik, ij) configuration around Gk2 is of type β1
(orange dashes, (D)). If the teeth Gk4 → Gj2 → Gk2 was shorter (Gk3 → Gj2 → Gk2), we would have a
configuration of type β2.

The configuration of the bicolor subquiver (ik, ip) is of type β4 (3 magenta dotted ordinary arrows,
(F)). We remark, as before that if the tooth was longer and if we had originally Gk4 → Gp → Gk1 we
would be in configuration β3.

A.2 General configurations
At this point we will now encounter at least 5 general configurations. We will show that under our
hypothesis, there is no other configuration emerging. Recall that thanks to Corollary 7.9, as here Gk− is
not evicted, Gk cannot be evicted either.

Case β0 After mutating Gk, Gk+ can have at most one ordinary arrow (whom it is the target). If there
is not such an arrow we are again in a case β0, if there is one, we are in case β1 or β2.

Case β1 After mutation at Gk, there is a triangle G∗k → Gj → Gk+ . Moreover, as in case α1, there
cannnot be an arrow Gjγ+ → Gk+ for any γ > 0. Thus we are in the case β3 or β4

Case β2 In that case, as in α2, we will potentially have an arrow Gjγ+ → Gk+ and, as there is no arrow
Gk+ ∅ Gj , we can rename the vertices. If the arrow Gjγ+ → Gk+ does not exist, we are in case β0 and
that was the last tooth with no final barb and we will only have β0 cases until the end. If this arrow
exists, we are now in case β1 or β2.
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Case β3 As in β1, we have only one ordinary arrow Gj → Gk+ . Thus, depending on Gk2+ we are in
case β3 or β4

Case β4 As in β2 there is no connection between Gj and Gk+ and, if there is an ordinary arrow it is
Gjγ+ → Gk+ . If there is no such arrow we are in case β0 until the end, if there is one we are in case β1
or β2.

Example A.2. We will illustrate this on Figure 11.

Gj2 Gj1

Gk4 Gk3 Gk2 Gk1 G∗k0

Gp

(A)

(B)

Gj2 Gj1

Gk4 Gk3 Gk2 G∗k1
G∗k0

Gp

(C)

(D)

Gj2 Gj1

Gk4 Gk3 G∗k2
G∗k1

G∗k0

Gp

(E)

(F )

µk1

µk2

Figure 11: Evolutions of general configurations

Initially in the bicolor subquiver (ik, ij) we have a configuration β4 around Gk1 (green dashes, (A)).
In the bicolor subquiver (ik, ip) we have a configuration β1 (red dots, (B)).

After mutation µk1 , in the subquiver (ik, ij), we have around Gk2 a configuration β2 (violet dashed,
(C)). In the subquiver(ik, ip), we have a configuration β3 (blue dots, (D)).

After mutation µk2 , in the subquiver (ik, ij) we have a configuration β0 around Gk3 ((E), no ordinary
arrow). In the subquiver (ik, ip), we have a configuration β4 once again (magenta dots).

A.3 Teeth shift
Using the previous knowledge of configuration, we will describe a more "macro" behaviour on the bicolor
subquiver (ik, ij) after performing the whole sequence of mutation µ̂.

Proposition A.3 (Teeth shift). Suppose that a line ik of the subquiver (ik, ij) is in pure saw teeth
configuration. After mutating all the vertices of the line except the last one that we delete, we get a saw
teeth structure. Precisely, any tooth Gkα+ → Gj → Gk becomes a tooth G∗

k(α−1)+ → Gj → G∗k− with the
following derogation:

• if k is the first of its line, the tooth Gkα+ → Gj → Gk becomes the arrow G∗
k(α−1)+ → Gj.

• If the last ordinary arrow is in the orientation Gj → Gk and that k is not the last vertex of the
line, then there appears a tooth G∗kα+ → Gj → G∗k− (with the previous correction if k is the first of
its line) where G∗kα+ is the last vertex of the line after deletion of the previous one.

Proof. We will rely on the previous study of all cases.
We will start the reasoning at the first teeth non evicted.
If the line starts with a sequence of vertices linked by horizontal arrows without any ordinary arrow

(in the sense of Definition 4.7), we do the mutations until reaching the first tooth (there is no initial barb
due to point 5 of Theorem 7.10). For the sequence of initial vertices, the arrow Gk+ ← Gk is reversed by
mutation at Gk but reversed back by mutation at Gk+ so, globally there is no change on it.
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Long tooth Short tooth
Initial vertex α1 α2

Non-initial vertex. β1 β2

Table 7: Initial configurations

When reaching the right end of the teeth sequence, we have 4 possible cases. The vertex is either the
initial one or not and the initial tooth has length one or more. We then have the configuration shown in
Table 7.

We first consider short cases. If we are in case α2, after mutation, we have an only arrow G∗k → Gj
as remnant of the initial tooth as instructed by the first derogation. Then there is no arrow between Gj
and another vertex of the line of Gk and thus we will be in a case β for the next summuit, considering a
new tooth of the sequence.

If we are in case β2, we directly have the tooth switch: Gk+ → Gj → Gk becoming Gk → Gj → Gk− .
By the same reasoning we will then be in case β1 or β2 for the next vertex, right end of the next tooth.

We now study the long cases. The case α1 will be almost the same reasoning as for the case β1
provided we consider that the arrow Gj → Gk is deleted as in case α2. We will see this case through the
β1 case (but there α1 leads to the apparition of an inital barb).

For the general case of a long tooth, we start with configuration β1. The arrow Gkγ+ → Gj forming the
left side of the tooth is not represented on the drawing, as it is too remote from Gk (γ > 1). Mutation of
Gk gives us the arrow Gj → G∗k− (provided we are not looking at the α1 case), the tilting of the ordinary
arrow in G∗k → Gj and the appearance of an arrow Gj → Gk+ . The first ordinary arrow targeting Gk−
will now stay untouched by following mutations and will form the right end of the shifted tooth.

We now consider the next vertex, being in case β3 if γ > 2 or β4 if γ = 2.
If we are now in case β3 around the new vertex Gk+ , by mutating it, the arrow Gk → Gj is deleted,

the arrow Gj → Gk+ is tilted and there is a new arrow Gj → Gk2+ . Then the following vertex will be
in configuration β3 if the left end of the initial tooth is not Gk3+ and then we use the same reasoning as
the current one.

On the contrary if we reach a configuration β4 we will mutate Gkγ−1+ and from the initially considered
tooth, we have:

• the shifted arrow Gj → G∗k− (not existing if Gk was the initial vertex of the line)

• the arrow Gk(γ−2)+ → Gj

• the arrow Gj → Gk(γ−1)+

• the arrow Gkγ+ → Gj which is the initial left side of the tooth

After mutation the first arrow in unchanged, the second one is deleted, the third is tilted in, Gk(γ−1)+ →
Gj , the left side of the new tooth and the fourth arrow is deleted. In total the initial tooth Gkγ+ →
Gj → Gk has been shifted in Gk(γ−1)+ → Gj → Gk− .

After the tooth shift, the next vertex will be on configuration β1 or β2 (if there is another tooth or a
final barb) or β0 (if we are at the end of the tooth sequence). In that final case we use the same reasoning
as the first β0 until the end of the line.

If we have a tooth we repeat the reasoning as before.
If we have a final barb, then we will have a configuration β1 followed by configurations β3 but with

no β4 configuration to end the tooth. If Gkζ+ is the last vertex of the line, the last mutated vertex will
be Gk(ζ−1)+ . After mutation we will have an arrow Gk(ζ−1)+ → Gj closing the end having the shift of the
final barb as right side and an arrow Gj → Gkζ+ which will disappear immediatly with the deletion of
the vertex Gkζ+ . The new appeared left side of the tooth will be a minor inconvenience as we will never
more mutate on Gk(ζ−1)+ , the new last vertex of the line.

Example A.4. We will take again Example A.2
We have initially the tooth Gk3 → Gj2 → Gk2 shifted in G∗k2

→ Gj2 → G∗k1
after µk2 ◦ µk1 , this is the

non-initial short tooth case.
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Let us look at the configuration before the mutation µk0 . It is:

Gj2 Gj1

Gk4 Gk3 Gk2 Gk1 Gk0

Gp

(A)

Then we see a tooth (A) Gk2 → Gj1 → Gk0 that, after µk1 ◦µk0 reduces to the initial barb G∗k1
→ Gj1.

That is the case of an initial long teeth.
To illustrate the second part of Proposition A.3, we consider the quiver:

Gj2 Gj1

Gk5 Gk4 Gk3 Gk2 Gk1

.

In that case, after µk4 ◦ · · · ◦ µk1 we have:

Gj2 Gj1

Gk5 G∗k4
G∗k3

G∗k2
G∗k1

,

which becomes, after deletion of Gk5 :

Gj2 Gj1

G∗k4
G∗k3

G∗k2
G∗k1

.

We have here the appearance of a tooth G∗k4
→ Gj2 → G∗k2

when we initially only have a final barb
Gj2 → Gk2 .

Nevertheless, we remark that it does not perturbate the saw teeth structure neither upcoming muta-
tions, the vertex Rk4 will not be mutated anymore and then the arrow will not be taken into account in
the computation of ∆-vectors in upcoming mutations.

B Examples
Example B.1. We take again the data of Example 6.2 p.22. Recall that we are in the case W of type
A5 with w = [1, 3, 2, 4, 3, 2, 4, 5, 4, 3, 2, 1, 2] and v = s2s4s5s3s1s2. We represent the initial seed on Figure
12 with the quiver Γw labelled by socle decomposition of the direct summands of Vw. On Example 6.2
we saw that we had the mutation sequences:

µ̃1 = µ8 ◦ µ3 ◦ µ1, µ̃2 = µ2, µ̃3 = µ9 ◦ µ4, µ̃4 = id, µ̃5 = µ7, µ̃6 = µ3

We recall on Table 8 the modules defining the ∆v̇-vectors. This gives the ∆-vectors of the Table 9.
On this table, the color of the canonical vector fm relates to the color ipm . The indices m > 6 are not
colored as their refer to an arbitrary completion of v in v̇.

In order to define the first sequence of mutation µ̂1(Vw) we determine the set:

A1(Vw) = {1 ≤ j ≤ 8 | ∆v̇,1(Vw) 6= 0} = {1, 3, 8}

We then have µ̂1(Vw) = µ8 ◦ µ3 ◦ µ1 that we apply. Note that, as expected, we have µ̂1 = µ̃1 of Example
6.2.

We apply Proposition 5.9 to compute the ∆v̇-vector of V ∗1 . Here we do not do the auxilliary compu-
tation with d∆ as, thanks to the proof of Lemma 7.17, only one of the two computations gives a vector
of N`(w0).



B EXAMPLES 41

V1 = 2

V2 = 2
1

V3 = 1
2

V4 = 1
2

3

V5 = 1
2

3
4

V6 = 1
2

3
4

5

V7 = 1
2

3 5
4

V8 = 2
1 3

2

V9 = 2
1 3 5

2 4
3

V10 = 2
1 3

2 4
3 5

4

V11 = 5
2 4

1 3
2

V12 = 2 4
1 3 5

2 4
3

V13 = 5
4

3
2

1

Figure 12: Seed (Vw,Γw)

k 1 2 3 4 5
Mk,v̇ 2 2

1
2

3
5 2

3 5
4

k 6 7 8 9 10
Mk,v̇ 2

1 3
3 2

1 3 5
4

3 5
4

5
4

k 11 12 13 14 15
Mk,v̇ 1 2

3
4

2
1 3

4
3

4
4

Table 8: Strata defining the ∆v̇-stratification

k 1 2 3 4 5 6 7
∆v̇(Vk) f1 f2 f1 + f11 f3 + f11 f12 f4 + f12 f5 + f11

k 8 9 10 11 12 13
∆v̇(Vk) f1 + f6 f3 + f8 f5 + f11 + f13 f1 + f6 + f10 f3 + f8 + f15 f2 + f7 + f10

Table 9: ∆v̇-vectors of Vw direct indecomposable summands

We either have
∆v̇(V ∗1 ) ?= ∆v̇(V3)−∆v̇(V1) = f1 + f11 − f1 = f11

or
∆v̇(V ∗1 ) ?= ∆v̇(V2)−∆v̇(V1) = f2 − f1.

Only the first computation is then possible and ∆v̇(V ∗1 ) = f1.
Note that these computations echoes the short exact sequences used to determine the mutated mod-

ules:
2→ 1

2
→ 1, 1→ 2

1
→ 2. (4)

and then the mutated module V ∗1 is the simple module S1. But only one short exact sequence translated
into a valid computation regarding ∆v̇-vectors: the first one.

After this mutation, we have the module of Figure 13 (modified arrows are in thick magenta).
We now compute ∆v̇(V ∗3 ) by the same method.

∆v̇(V ∗3 ) = ∆v̇(V ∗1 ) + ∆v̇(V8)−∆v̇(V3) = f11 + f1 + f6 − f1 − f11 = f6
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V ∗1 = 1

V2 = 2
1

V3 = 1
2

V4 = 1
2

3

V5 = 1
2

3
4

V6 = 1
2

3
4

5

V7 = 1
2

3 5
4

V8 = 2
1 3

2

V9 = 2
1 3 5

2 4
3

V10 = 2
1 3

2 4
3 5

4

V11 = 5
2 4

1 3
2

V12 = 2 4
1 3 5

2 4
3

V13 = 5
4

3
2

1

Figure 13: Module µ1(Vw)

V ∗1 = 1

V2 = 2
1

V ∗3 = 2
1 3

V4 = 1
2

3

V5 = 1
2

3
4

V6 = 1
2

3
4

5

V7 = 1
2

3 5
4

V8 = 2
1 3

2

V9 = 2
1 3 5

2 4
3

V10 = 2
1 3

2 4
3 5

4

V11 = 5
2 4

1 3
2

V12 = 2 4
1 3 5

2 4
3

V13 = 5
4

3
2

1

Figure 14: Module µ3 ◦ µ1(Vw)

We have V ∗3 = 2
1 3

and the module µ3 ◦ µ1(Vw) is the one of Figure 14.

And finally we get ∆v̇(V ∗8 ) by the computation:

∆v̇(V ∗8 ) = ∆v̇(V ∗3 ) + ∆v̇(V11)−∆v̇(V8) = f6 + f1 + f6 + f10 − f1 − f6 = f6 + f10.

We then have as ∆v̇-vectors for µ̂1(Vw) Table 10 and the module is on Figure 15.

k 1 2 3 4 5 6 7
∆v̇(Rk,1) f11 f2 f6 f3 + f11 f12 f4 + f12 f5 + f11

k 8 9 10 11 12 13
∆v̇(Rk,1) f6 + f10 f3 + f8 f5 + f11 + f13 f1 + f6 + f10 f3 + f8 + f15 f2 + f7 + f10

Table 10: ∆v̇-vectors of µ̂1(Vw)

Having completed µ̂1, we now rename the summands

V ∗1  R1,1, V
∗
3  R3,1, V

∗
8  R8,1, Vk  Rk,1, k 6∈ {1, 3, 8}.
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V ∗1 = 1

V2 = 2
1

V ∗3 = 2
1 3

V4 = 1
2

3

V5 = 1
2

3
4

V6 = 1
2

3
4

5

V7 = 1
2

3 5
4

V ∗8 = 5
2 4

1 3

V9 = 2
1 3 5

2 4
3

V10 = 2
1 3

2 4
3 5

4

V11 = 5
2 4

1 3
2

V12 = 2 4
1 3 5

2 4
3

V13 = 5
4

3
2

1

Figure 15: Module µ̂1(Vw)

We now determine A2(µ̂1(Vw)) et µ̂2.
We have

A2(R1) = {1 ≤ i ≤ 2 | ∆v̇,2(Ri,1)} = {2}

and so
µ̂2 = µ2 = µ̃2.

We now apply µ̂2 = µ2 to µ̂1(Vw), and get Figure 16 and ∆v̇-vectors of Table 11.

k 1 2 3 4 5 6 7
∆v̇(Rk,2) f11 f7 + f10 f6 f3 + f11 f12 f4 + f12 f5 + f11

k 8 9 10 11 12 13
∆v̇(Rk,2) f6 + f10 f3 + f8 f5 + f11 + f13 f1 + f6 + f10 f3 + f8 + f15 f2 + f7 + f10

Table 11: ∆v̇-vectors of µ̂2 ◦ µ̂1(Vw)

R1,1 = 1

R∗2,1 = 5
4

3

R3,1 = 2
1 3

R4,1 = 1
2

3

R5,1 = 1
2

3
4

R6,1 = 1
2

3
4

5

R7,1 = 1
2

3 5
4

R8,1 = 5
2 4

1 3

R9,1 = 2
1 3 5

2 4
3

R10,1 = 2
1 3

2 4
3 5

4

R11,1 = 5
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Figure 16: Module µ̂2 ◦ µ̂1(Vw)

We again rename the indecomposables factors R∗2,1  R2,2 et Rk,1  Rk,2 pour k 6= 2.
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We now compute:
A3(R2) = {1 ≤ i ≤ 9 | ∆v̇,3(Ri,3) 6= 0} = {4, 9}

and we have µ̂3 = µ9 ◦ µ4 and again µ̂3 = µ̃3.
We get the module R3 represented on Figure 17 with ∆v̇-vectors of Table 12.

R1,2 = 1
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1 3
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4
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4
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1 3 5

4
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4
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2

1

Figure 17: Module µ̂4 ◦ µ̂3 ◦ µ̂2 ◦ µ̂1(Vw) = µ̂3 ◦ µ̂2 ◦ µ̂1(Vw)

k 1 2 3 4 5 6 7
∆v̇(Rk,3) f11 f7 + f10 f6 f8 f12 f4 + f12 f5 + f11

k 8 9 10 11 12 13
∆v̇(Rk,3) f6 + f10 f8 + f15 f5 + f11 + f13 f1 + f6 + f10 f3 + f8 + f15 f2 + f7 + f10

Table 12: ∆v̇-vectors of µ̂3 ◦ · · · ◦ µ̂1(Vw)

We rename R∗4,2  R4,3, R∗9,2  R9,3 et Rk,2  Rk,3.
We compute

A4(R3) = {1 ≤ i ≤ 0|∆v̇,4(Ri,3) 6= 0} = ∅

and so µ̂4 = id = µ̃4.
As µ̂4 = id,we rename Rk,3  Rk,4.
We compute

A5(R4) = {1 ≤ i ≤ 7|∆v̇,5(Ri,4) 6= 0} = {7}.

So µ̂5 = µ7 = µ̃5 and then R5 = µ̂5 ◦ · · · ◦ µ̂1(Vw) is the module on Figure 18 whose ∆v̇-vectors are on
Table 13.

k 1 2 3 4 5 6 7
∆v̇(Rk,5) f11 f7 + f10 f6 f8 f12 f4 + f12 f11 + f13

k 8 9 10 11 12 13
∆v̇(Rk,5) f6 + f10 f8 + f15 f5 + f11 + f13 f1 + f6 + f10 f3 + f8 + f15 f2 + f7 + f10

Table 13: ∆v̇-vectors of µ̂5 ◦ · · · ◦ µ̂1(Vw)

We rename R∗7,4 = R7,5 et Rk,4 = Rk,5 et k 6= 7.

A6 = {1 ≤ i ≤ 3|∆v̇,6(R5) 6= 0} = {3}

and so we have µ̂6 = µ3 = µ̃6.
That gives µ̂6 ◦ · · · ◦ µ̂1(Vw) represented on Figure 19 whose ∆v̇-vectors are on Table 14.
We rename R∗3,5  R3,6 and Rk,5  Rk,6 for k 6= 3.
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Figure 18: Module µ̂5 ◦ µ̂4 ◦ µ̂3 ◦ µ̂2 ◦ µ̂1(Vw)

k 1 2 3 4 5 6 7
∆v̇(Rk,6) f11 f7 + f10 f10 f8 f12 f4 + f12 f11 + f13

k 8 9 10 11 12 13
∆v̇(Rk,6) f6 + f10 f8 + f15 f5 + f11 + f13 f1 + f6 + f10 f3 + f8 + f15 f2 + f7 + f10

Table 14: ∆v̇-vectors of µ̂6 ◦ · · · ◦ µ̂1(Vw)
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Figure 19: Module µ̂6 ◦ µ̂5 ◦ µ̂4 ◦ µ̂3 ◦ µ̂2 ◦ µ̂1(Vw)

In order to get µ•, we compute (kmax)α(k,`(v))− for any color. For color 1, we have (2max)α(2,6)− =
13− = 2. For color 2, we have (1max)α(1,6)− = 112− = 3. For color 3, we have (4max)α(4,6)− = 12− = 9.
For color 4, we have (5max)α(5,6)− = 10− = 7. For color 5, we have (6max)α(6,6)− = 6− = 0.

Then µ• removes the indecomposable summands of indices 6, 8, 10, 11, 12, 13 and we get module of
Figure 20 (with R2,6 a non-connected vertex).

Then, according to Theorem 6.8, µ•(Vw) is a Cv,w-maximal rigid basic module, whose quiver is the
one of Figure 20.
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R1,6 = 1R2,6 = 5
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Figure 20: Module µ•(Vw)
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