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Supplementary materials 1 

 2 

Supplementary material A: Consistency of the results obtained for datasets built with a 3 

maximum error rate tolerance of 0.5 with datasets built with a maximum error rate 4 

tolerance of 0.1 5 

 6 

1. Relative abundance 7 

 8 

The best model obtained with the dredge (i.e., the one with the lowest AICc – second order 9 

bias correction for Akaike information criterion) was the following one:  10 

Relative abundance metric ~ Conifer_forest + Deciduous_forest + Julian_day + Moonlight + 11 

Small_woody_features + Habitat_diversity + ALAN + Cloud_cover + 12 

Difference_precipitations + Difference_temperature + Temperature + Latitude + 13 

Recorder_type + (1 | site / participation) 14 

 15 

In Table A.1, we can see that the results were highly consistent whether the maximum error 16 

rate tolerance (MERT) chosen was 0.5 or 0.1. The variables which were significant in the best 17 

model with the 0.5 MERT remained significant with the 0.1 MERT, estimates that were 18 

negative remained negative and estimates that were positive remained positive. 19 

  20 

Eq. (A.1) 
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Table A.1: Best model estimates and p-values (Anova II) for the “relative abundance” dataset 21 

with a MERT of 0.5 and 0.1. Latitude and recorder type are not represented as they were fixed 22 

terms in the dredge. All quantitative fixed effects were scaled. 23 

MERT 0.5 0.1 

 Estimate p-value Estimate p-value 

Conifer_forest 0.3523 9.776e-06 *** 0.5109 1.048e-07 *** 

Deciduous_forest 0.2659 0.0001009 *** 0.2725 0.0007871 *** 

Julian_day 0.3330 2.792e-08 *** 0.4641 7.438e-10 *** 

Moonlight -0.1641 0.0019158 ** -0.2748 1.486e-05 *** 

Small_woody_features 0.1945 0.0050122 ** 0.1867 0.0261389 * 

Habitat_diversity 0.1938 0.0109567 * 0.3240 0.0004355 *** 

ALAN -0.4374 1.481e-06 *** -0.6077 1.476e-07 *** 

Cloud_cover 0.0719 0.1155775 0.0004 0.9943969 

Difference_precipitations -0.1643 0.0006891 *** -0.2604 1.457e-05 *** 

Difference_temperature 0.3077 5.430e-07 *** 0.3816 8.046e-08 *** 

Temperature 0.2659 8.719e-05 *** 0.2289 0.0045416 ** 

 24 

2. Timing of activity 25 

 26 

The best model obtained with the dredge (i.e., the one with the lowest AICc) was the 27 

following one:  28 

Timing of activity metric ~ Julian_day + Julian_day² + Moonlight + ALAN + Cloud_cover + 29 

Difference_precipitations + Difference_temperature + Wind_speed + 30 

Latitude + autocov + Moonlight : ALAN + ALAN : Cloud_cover + (1 | site) 31 

 32 

In Table A.2, we can see that, apart from ALAN, results were highly consistent whether the 33 

MERT chosen was 0.5 or 0.1. The variables which were significant in the best model with the 34 

0.5 MERT remained significant with the 0.1 MERT, estimates that were negative remained 35 

negative and estimates that were positive remained positive. 36 

Eq. (A.2) 
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Table A.2: Best model estimates and p-values (Anova II) for the “timing of activity” dataset 37 

with MERT of 0.5 and 0.1. Latitude and autocov are not represented as they were fixed terms 38 

in the dredge. All quantitative fixed effects were scaled. 39 

MERT 0.5 0.9 

 Estimate p-value Estimate p-value 

Julian_day -86.20 0.5302259 328.18 0.0884699 . 

Julian_day² 354.78 0.0005707 *** 489.54 0.0008973 *** 

Moonlight 291.01 0.0087162 ** 334.29 5.815e-06 *** 

ALAN 734.67 0.0001537 *** -321.00 0.2231442 

Cloud_cover - 481.49 1.411e-12 *** -410.73 1.852e-09 *** 

Difference_precipitations -164.92 0.0243367 * -299.76 0.0027053 ** 

Difference_temperature 378.70 5.571e-08 *** 304.23 0.0006953 *** 

Windspeed -292.33 2.300e-05 *** -306.21 0.0001368 *** 

Moonlight : ALAN -264.33 0.0016276 ** -1233.08 3.010e-08 *** 

ALAN : Cloud_cover 178.24 0.0174029 * 457.85 0.0001788 *** 

 40 

 41 

 Despite being highly significant with a 0.5 MERT, ALAN became not significant with 42 

a 0.1 MERT. By choosing a low MERT, we only kept 11,513 E. serotinus passes instead of 43 

22,998 with a 0.5 MERT (i.e., -50% of passes) (Table A.3). The calculation of the timing of 44 

activity (i.e., the time of the median E. serotinus pass during the first 4 h 30 min of the night) 45 

may hence have been be less precise, and, as we only considered nights with at least 10 E. 46 

serotinus passes, it also led us to take into account less nights and sites. We may therefore 47 

have lost too much statistical power to detect any effect of ALAN.  48 

 To check it, we performed a power analysis to assess, with a 0.5 MERT, the minimum 49 

number of passes needed to detect an effect of ALAN on the timing of activity. To do so, we 50 

generated subsets of our dataset with a 0.5 MERT based on a selection of 1000 to 22,750 E. 51 

serotinus passes. For each number of passes, we generated 200 subsets, we removed nights 52 
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with less than 10 passes and recalculated the time of the median pass for each night. Then, on 53 

each subset, we ran our best model to extract ALAN estimate and p-value (Anova II). Finally, 54 

we computed the percentage of the 200 models, for each number of passes, for which ALAN 55 

estimate was positive with a significant p-value. When more than 80% of ALAN estimates 56 

were positive with a significant p-value, we concluded that the statistical power was strong 57 

enough to detect an ALAN effect on the timing of activity. We draw this percentage 58 

according to the number of E. serotinus passes in the dataset (Fig. A.1). We concluded that a 59 

minimum of roughly 13,500 passes should be included in the analyses to detect an effect of 60 

ALAN on the timing of activity, thus explaining why it was not detected with a 0.1 MERT 61 

which strongly restricted the number of E. serotinus passes to analyse. 62 

 63 

Table A.3: Number of sites, nights and sounds kept for a 0.5 and a 0.1 MERT for the “relative 64 

abundance” and the “timing of activity” datasets. 65 

 MERT Number of passes all night Number of passes first half of night 

Relative 

abundance 

0.5 21,452 / 

0.1 10,117 / 

Timing of 

activity 

0.5 22,998 19,489 

0.1 11,513 9,901 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 
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 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 

 86 

Fig. A.1: Power analysis results: for each number of E. serotinus passes (from 1000 to 87 

22,750), percentage of subsets that resulted in a positive and significant estimate for ALAN. 88 

The dotted line represents the minimum 0.8 threshold below which the statistical power 89 

become insufficient. The solid curve represents the result of a binomial regression on the 90 

percentage of subsets that resulted in a positive and significant estimate for ALAN according 91 

to the number of E. serotinus passes.  92 

  93 
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Supplementary material B: Threshold on the number of E. serotinus passes for the 94 

“timing of activity” analyses 95 

 96 

We postulated that no analysis of the timing of activity would be robust enough if there were 97 

not enough E. serotinus passes during the studied nights. Hence, we chose to only focus on 98 

nights with at least 10 E. serotinus passes. We then chose that the biological metric used to 99 

define the timing of activity would be the time of the median E. serotinus pass during the first 100 

half of the night (from 30 min before sunset to 4 h and 30 min after sunset).  101 

 We checked that the 10 passes threshold was a sensible choice by resampling the E. 102 

serotinus passes of the 100 nights with the most E. serotinus passes of our dataset (from 61 E. 103 

serotinus passes to 412). We followed procedure described in Fig. B.1. and drew the Fig. B.2. 104 

that synthesise the results obtained according to the number of passes considered. According 105 

to the generalised additive model (GAM) fitted to the data, for a 10 passes threshold, the 106 

predicted difference between the real median during the first half of the night and the 107 

calculated one would be of 5%, which made it a sensible threshold. For instance, the mean 108 

value of the median time for these 100 nights is 1 h 43 min 55 s, an incertitude of 5 % would 109 

hence be equal to 5 min 12 sec. Furthermore, we calculated the benefit in precision obtained 110 

when adding one more E. serotinus pass (Fig. B.3.). According to the GAM fitted to the data, 111 

when using 11 E. serotinus passes instead of 10, we only had a benefit in precision of about 112 

1.75% (for the mean time of the median – 1 h 43 min 55 s – of these 100 nights, it would 113 

correspond of a benefit in precision of 1 min 49 s) and this benefit kept on decreasing when 114 

the number of passes considered increased.  115 

 116 

 117 

 118 
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 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

Fig. B.1: Resampling procedure followed to check how many samples are needed for the 129 

timing of the median pass during the first half of the night to stabilize.  130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

Fig. B.2.: Boxplots synthesizing the mean difference between the known value of the median 142 

during the first half of the night and the calculated one after resampling according to a given 143 
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number of E. serotinus passes 300 times (for the 100 nights with the highest number of E. 144 

serotinus passes). The solid curve represents the result of a GAM fitted to the data. The 145 

dashed line represents a 5% threshold for the absolute difference with the real median value.  146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

Fig. B.3.: Boxplots synthesizing the benefit in precision obtained when adding one more E. 158 

serotinus pass. The solid curve represents the result of a GAM fitted to the data. The dashed 159 

line represents a benefit of 1.75% in precision when adding one more E. serotinus pass.  160 

  161 
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Supplementary material C: Comparison of the French radiance gradient with the 162 

radiance gradient in our datasets 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

Fig. C.1: Comparison of the French radiance gradient (radiance values of each raster cell of 174 

the VIIRS in France, which is below 500 m above sea level) with the radiance gradient of the 175 

studied sites in the “relative abundance” dataset (the radiance value considered is the radiance 176 

of the raster cell in which the site is located).  177 

  178 
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 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

Fig. C.2: Comparison of the French radiance gradient (radiance values of each cell of the 190 

VIIRS in France, which is below 500 m above sea level) with the radiance gradient of the 191 

studied sites in the “relative abundance” dataset (the radiance value considered is the mean 192 

radiance value across 3000 m buffer zones around sites). 193 

  194 
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 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

Fig. C.3: Comparison of the French radiance gradient (radiance values of each cell of the 205 

VIIRS in France, which is below 500 m above sea level) with the radiance gradient of the 206 

studied sites in the “timing of activity” dataset (the radiance value considered is the radiance 207 

of the raster cell in which the site is located).  208 

  209 
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 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

Fig. C.4: Comparison of the French radiance gradient (radiance values of each cell of the 222 

VIIRS in France, which is below 500 m above sea level) with the radiance gradient of the 223 

studied sites in the “timing of activity” dataset (the radiance value considered is the mean 224 

radiance value across 3000 m buffer zones around sites). 225 

  226 
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Supplementary material D: Influence of the spatial scale at which the ALAN metric is 227 

calculated 228 

 229 

1. Heterogeneity across 3000 m buffer zones 230 

In this study, we hypothesised that bat spatiotemporal distribution might not only be impacted 231 

by light pollution levels at the recorder sites but more generally by light pollution at a larger 232 

spatial scale, similar to the scale of their vital domain. For example, if a roost is located in a 233 

light-polluted area, bats may emerge later from it and arrive later to their foraging sites 234 

whether they are light-polluted or dark. Such delay may then result in a reduced efficient 235 

time-budget to forage (i.e., a reduced time period during which bats may forage on the prey 236 

their diets are mainly composed of) with potential consequences on individual fitness, 237 

population dynamics and, in fine, bat abundance. Thus, we chose to focus on light pollution at 238 

landscape scale so that the metric would include light pollution within the whole E. serotinus 239 

vital domain and not only where the recordings were carried out. To do so, we considered 240 

buffer zones with a radius of 3000 m around sites, as it covered the mean distance between 241 

foraging sites and roosts (Catto et al., 1996; Kervyn, 2001; Robinson & Stebbings, 1997).  242 

We measured radiance (i.e., ALAN) heterogeneity in the 3000 m buffer zones around 243 

sites by calculating standard deviations and coefficients of variation across them. The higher 244 

the mean radiance in the 3000 m buffer zones around sites, the higher was the standard 245 

deviation but the lower was the coefficient of variation in the buffer zones (see Table D.1 for 246 

a summary of these metrics for both dataset and Fig. D.1 and D.2 for graphic representations).  247 

Despite some heterogeneity in the buffer zones, the Pearson Correlation Coefficients 248 

(PCC) between the mean radiance in the 3000 m buffer zones around sites and the radiance at 249 

the sites were high (PCC = 0.87 for the “relative abundance” dataset and PCC = 0.86 for the 250 
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“timing of activity” dataset). Such correlations suggested that generally, the radiance at the 251 

recorder sites was representative of the radiance in the buffer zones around sites.  252 

 253 

Table D.1.: Number of raster cells, mean radiance, standard deviance and coefficient of 254 

variation in the 3000 m buffer zones around sites. The coefficient of variation is equal to 0 if 255 

the mean radiance and the standard deviation are equal to 0, to standard deviation divided by 256 

mean radiance otherwise. 257 

 Number of cells Mean radiance 
Standard 

deviation 

Coefficient of 

variation 

Relative 

abundance 

dataset  

mean: 229.2 

(min:225; max: 

232) 

mean: 6.34 

(min:0; max: 

74.1) 

mean: 4.7 

(min:0; max: 

36.7) 

mean: 2.4 

(min:0; max: 

15.2) 

Timing of 

activity dataset 

mean: 229.3 

(min:225; max: 

232) 

mean: 4.1 

(min:0; max: 

62.0) 

mean: 3.8 

(min:0; max: 

24.4) 

mean: 2.6 

(min:0; max: 

15.1) 

  258 

 259 

  260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

Fig. D.1: Radiance variation in each 3000 m buffer zone for the “relative abundance” dataset. 271 

Sites are ordered by increasing mean radiance value, this value being represented by the solid 272 

line. The grey ribbon upper limit corresponds to the mean radiance value in the buffer zone 273 
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plus the standard deviation in the buffer zone. The lower limit is equal to zero if the mean 274 

radiance is lower than the standard deviation, and to the mean radiance minus the standard 275 

deviation otherwise. The green dots represent the coefficient of variance of the radiance in 276 

each 3000 m buffer zone (equal to 0 if the mean radiance and the standard deviation in the 277 

buffer are equal to 0). 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

Fig. D.2: ALAN variation in each 3000 m buffer zone for the “timing of activity” dataset. 291 

Sites are ordered by increasing mean radiance value, this value being represented by the solid 292 

line. The grey ribbon upper limit corresponds to the mean radiance value in the buffer zone 293 

plus the standard deviation in the buffer zone. The lower limit is equal to zero if the mean 294 

radiance is lower than the standard deviation, and to the mean radiance minus the standard 295 

deviation otherwise. The green dots represent the coefficient of variance of the radiance in 296 

each 3000 m buffer zone (equal to 0 if the mean radiance and the standard deviation within 297 

the buffer are equal to 0). 298 

 299 

  300 
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2. Analyses with the ALAN value at the recorder sites  301 

We carried the same analyses as those presented in the main text, but with the ALAN value of 302 

the VIIRS raster cell (~351 m * 351 m) in which the sites were, instead of the mean ALAN 303 

value in 3000 m buffer zones around sites.  304 

Interestingly for both the “relative abundance” and “timing of activity” analyses, the 305 

AICc (second order bias correction for Akaike Information Criterion) was lower when 306 

considering the mean ALAN value in buffer zones rather than the ALAN value at the sites 307 

(Table D.2). For the “relative abundance” analyses, the results with the ALAN value at the 308 

sites were quite similar to those obtained with the mean ALAN value in the buffer zones, the 309 

same estimates had a 95% confidence interval that did not overlap zero (Table D.3). However, 310 

with the ALAN value at the sites, artificialized surfaces had a much higher sum of weights 311 

(SW = 0.87) than ALAN (SW = 0.13). For the “timing of activity” analyses, the results with 312 

the ALAN value at the sites were quite similar to those obtained with the mean ALAN value 313 

in the buffer zones, the same estimates had a 95% confidence interval that did not overlap 314 

zero, apart from the interactions (Table D.4). As a matter of fact, when considering the ALAN 315 

value at the site, the estimates of the interactions between ALAN and moonlight, and ALAN 316 

and cloud cover overlapped zero.  317 

  318 
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Table D.2: Results of the model averaging for the “relative abundance” and the “timing of 319 

activity” analyses. Even if a lot of models were selected in these analyses, the differences 320 

between the AICc of the null model and the AICc of the best model were always high. 321 

 

 Number of 

models in a 

∆AICc of 6 

AICc of 

the best 

model 

AICc of 

the null 

model 

AICc null 

model* – AICc 

best model 

Relative abundance 

dataset 

ALAN site 128 10,545 10,796 251 

ALAN buffer 373 10,542 10,796 254 

Timing of activity 

dataset 

ALAN site 350 27,844 27,991 147 

ALAN buffer 142 27,831 27,991 160 

 322 

*include the random effects for “relative abundance” and “timing of activity” analyses, 323 

include the weight on the logarithm of the number of E. serotinus passes for the “timing of 324 

activity” analyses. 325 

 326 

Table D.3: Model averaging results for a delta AICc of six points for the “relative abundance” 327 

analyses: estimate, sum of weights (SW) and 95% confidence interval (CI) for each variable 328 

(apart from latitude and recorder type that were fixed) (estimates in bold when the 95% 329 

confidence interval did not overlap zero and the SW was above 0.60). Results with the ALAN 330 

value at the recorder sites as the ALAN metric and with the mean ALAN value in the 3000 m 331 

buffer zones as the ALAN metric are both represented so that they might be compared. All 332 

quantitative fixed effects were scaled and estimates were standardized by dividing them by 333 

the standard deviation of the response variable. 334 

 

With the ALAN value at the 

sites as the ALAN metric 

With mean ALAN value in the 3000 m 

buffer zones as the ALAN metric 

Variables Estimates SW CI (95%) Estimates SW CI (95%) 

Temperature 0.0100 1.00 0.005 ; 0.015 0.0098 1.00 0.0047 ; 0.0150 
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Difference_temperature 0.0110 1.00 0.007 ; 0.016 0.0118 1.00 0.0071 ; 0.0164 

Windspeed -0.0020 0.46 -0.006 ; 0.001 -0.0025 0.47 -0.0060 ; 0.0011 

Difference_precipitations -0.0060 1.00 -0.010 ; -0.003 -0.0061 1.00 -0.0098 ; -0.0024 

Julian_Day 0.0120 1.00 0.008 ; 0.017 0.0124 1.00 0.0077 ; 0.0171 

(Julian_Day)² -0.0020 0.32 -0.007 ; 0.003 -0.0023 0.32 -0.0072 ; 0.0027 

Cloud_cover 0.0030 0.68 -0.001 ; 0.006 0.0026 0.67 -0.0009 ; 0.0061 

Artificialized_surfaces -0.0160 0.87 -0.023 ; -0.009 -0.0156 0.11 -0.0227 ; -0.0086 

Grassland -0.0040 0.37 -0.010 ; 0.003 -0.0047 0.50 -0.0114 ; 0.0020 

Deciduous_forest 0.0100 1.00 0.005 ; 0.016 0.0096 1.00 0.0041 ; 0.0151 

Conifer_forest 0.0130 1.00 0.007 ; 0.020 0.0124 1.00 0.0057 ; 0.0192 

Habitat_diversity 0.0090 1.00 0.003 ; 0.015 0.0068 0.82 0.0005 ; 0.0132 

Min_distance_freshwater -0.0030 0.31 -0.010 ; 0.004 -0.0039 0.37 -0.0116 ; 0.0037 

Small_woody_features 0.0090 1.00 0.003 ; 0.014 0.0082 1.00 0.0026 ; 0.0138 

ALAN -0.0140 0.13 -0.020 ; -0.007 -0.0186 0.89 -0.0268 ; -0.0104 

Moonlight -0.0060 1.00 -0.010 ; -0.002 -0.0065 1.00 -0.0105 ; -0.0025 

Difference_temperature 

:Temperature 
0.0010 0.27 -0.003 ; 0.005 0.0009 0.24 -0.0026 ; 0.0045 

Cloud_cover:Moonlight 0.0020 0.23 -0.002 ; 0.005 0.0015 0.21 -0.0017 ; 0.0047 

ALAN:Cloud_cover 0.0010 0.01 -0.004 ; 0.005 -0.0011 0.14 -0.0056 ; 0.0035 

Moonlight:ALAN 0.0000 0.01 -0.004 ; 0.005 -0.0006 0.19 -0.0048 ; 0.0036 

 335 

Table D.4: Model averaging results for a delta AICc of six points for the “timing of activity” 336 

analyses: estimate, sum of weights (SW) and 95% confidence interval (CI) for each variable 337 

(apart from latitude and the autocovariate that were fixed) (estimates in bold when the 95% 338 

confidence interval did not overlap zero and the SW was above 0.60). Results with the ALAN 339 

value at the recorder sites as the ALAN metric and with the mean ALAN value in the 3000 m 340 

buffer zones as the ALAN metric are both represented so that they might be compared. All 341 

quantitative fixed effects were scaled and estimates were standardized by dividing them by 342 

the standard deviation of the response variable. 343 

 344 
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With the ALAN value at the 

sites as the ALAN metric 

With mean ALAN value in the 3000 

m buffer zones as the ALAN metric 

Variables Estimates SW CI (95%) Estimates SW CI (95%) 

Temperature 0.034 0.28 -0.044 ; 0.112 0.031 0.31 -0.047 ; 0.110 

Difference_temperature 0.113 1.00 0.062 ; 0.164 0.114 1.00 0.064 ; 0.165 

Windspeed -0.092 1.00 -0.135 ; -0.048 -0.093 1.00 -0.136 ; -0.050 

Difference_precipitations -0.051 0.89 -0.097 ; -0.004 -0.053 0.91 -0.099 ; -0.006 

Julian_Day -0.013 1.00 -0.099 ; 0.074 -0.031 1.00 -0.119 ; 0.057 

(Julian_Day)² 0.152 1.00 0.074 ; 0.231 0.142 1.00 0.061 ; 0.223 

Cloud_cover -0.157 1.00 -0.201 ; -0.113 -0.155 1.00 -0.199 ; -0.110 

Artificialized_surfaces 0.169 0.12 0.053 ; 0.285 NA NA NA 

Grassland -0.019 0.16 -0.132 ; 0.095 0.012 0.18 -0.111 ; 0.135 

Deciduous_forest -0.077 0.31 -0.205 ; 0.052 -0.059 0.26 -0.189 ; 0.072 

Conifer_forest -0.026 0.18 -0.144 ; 0.092 -0.017 0.18 -0.138 ; 0.104 

Habitat_diversity 0.020 0.18 -0.087 ; 0.127 0.017 0.18 -0.090 ; 0.123 

Min_distance_freshwater 0.027 0.17 -0.121 ; 0.176 0.041 0.20 -0.107 ; 0.190 

Small_woody_features -0.044 0.25 -0.157 ; 0.068 -0.067 0.36 -0.181 ; 0.047 

ALAN 0.167 0.88 0.060 ; 0.273 0.235 1.00 0.117 ; 0.354 

Moonlight 0.076 0.99 0.016 ; 0.135 0.092 1.00 0.032 ; 0.152 

Difference_temperature 

:Temperature 
-0.011 0.04 -0.053 ; 0.031 -0.024 0.09 -0.066 ; 0.019 

Cloud_cover:Moonlight -0.007 0.17 -0.050 ; 0.035 -0.013 0.21 -0.055 ; 0.030 

ALAN:Cloud_cover -0.004 0.14 -0.053 ; 0.046 0.059 0.95 0.011 ; 0.106 

Moonlight:ALAN -0.044 0.39 -0.107 ; 0.020 -0.073 1.00 -0.12 ; -0.027 

 345 

In the “relative abundance” analyses, the selection of artificialized surfaces over 346 

ALAN when considering ALAN value at local scale might be explained by several 347 

mechanisms. First, Azam et al. (2016) showed that E. serotinus abundance at landscape scale 348 

was negatively impacted by light pollution. However, locally, E. serotinus can forage near 349 

streetlight to benefit from the high densities of insect they attract (Stone et al., 2015) but at a 350 

slighter higher scale (from 25 to 50 m from streetlights) an avoidance behaviour might be 351 
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observed (Azam et al., 2018). Hence, we hypothesised that ALAN would reduce E. serotinus 352 

abundance at landscape scale but we did not have strong hypotheses on what would be the 353 

local effect of light pollution on abundance. Furthermore, the mean ALAN value in the 3000 354 

m buffer zones around sites was highly correlated to the ALAN value at the sites (PCC = 0.87 355 

for the “relative abundance” dataset) but also to the percentage of artificialized surfaces in the 356 

3000 m buffer zones (PCC = 0.88). Hence, the artificialized surfaces effect might also reflect 357 

the ALAN effect at landscape scale. 358 

In the “timing of activity” analyses, we did not find any effect of the interactions 359 

between ALAN and moonlight, and ALAN and cloud cover when we considered the ALAN 360 

value at the recording sites. These two interactions were put in the model to evaluate how 361 

diffuse light pollution might interact with other environmental factors. Hence, it is not 362 

surprising that, when considering light pollution locally, these interactions did not have any 363 

effect any more. Moonlight affect the whole landscape (i.e., the whole E. serotinus vital 364 

domain) and thus, its effect might be weaker if globally there is a high light pollution 365 

intensity. Likewise, cloud cover might amplify diffuse light pollution at landscape scale 366 

whereas it should not have any effect on the local light pollution level directly created by 367 

several localised streetlights.  368 

 369 
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Supplementary material E: Details the calculation and selection of environmental 391 

variables 392 

 393 

1. Moonlight  394 

 395 

We included moonlight by extracting moon illumination at 9 PM (in %) (R package, lunar) 396 

and moonrise (R package suncalc) for each surveyed night. We then computed the following 397 

synthesis variable: 398 

 399 

𝑀𝑜𝑜𝑛𝑙𝑖𝑔ℎ𝑡 = 𝑀𝑜𝑜𝑛_𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 × 𝑀𝑜𝑜𝑛𝑟𝑖𝑠𝑒_𝑏𝑖𝑛 400 

With: 401 

Moon_illumination: moon illumination (in %) at 9 PM the day when the surveyed night began 402 

Moonrise_bin: equal to zero if moonrise happened after the first 4 h and 30 min after sunset, 403 

equal to 1 if moonrise happened before or during the first 4 h and 30 min hours after sunset.  404 

 405 

2. Weather  406 

 407 

2.1.Calculation of the difference of weather with previous days 408 

The difference of weather with previous days was defined as followed: 409 

𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝐷𝑖𝑓𝑓𝐷𝑎𝑦 𝑛 = 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝐷𝑎𝑦 𝑛 − (∑ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝐷𝑎𝑦 𝑛−𝑖 × (6 − 𝑖)

5

𝑖=1

) /15  410 

With: 411 

Weather: Temperature (anomaly), precipitations or windspeed  412 

Day n: Day during which the night began 413 

 414 

2.2. Calculation of the temperature and precipitation metrics 415 

Eq. (E.1) 

Eq. (E.2) 
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To extract temperature (in °C) and precipitation (in mm) data, we used the EObs daily gridded 416 

observational dataset for its high temporal (daily data) and spatial resolution (0.1 deg) 417 

(Copernicus, https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles, 418 

Cornes et al., 2018) (R package ncdf4). Each studied site was associated to the grid cell whose 419 

centre was closer, and for each night the mean temperature and the sum of precipitations of 420 

the day when the night began were extracted.  421 

 Absolute measures of temperature may be misleading if E. serotinus populations 422 

adapt to local climatic conditions: a given temperature may represent a mild day for one 423 

population but a cold day for another. We therefore chose to transform temperature in 424 

temperature anomalies, defined as followed:  425 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑌𝑌𝑌𝑌/𝑀𝑀/𝐷𝐷 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑌𝑌𝑌𝑌/𝑀𝑀/𝐷𝐷 − ( ∑ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖/𝑀𝑀/𝐷𝐷

2010

𝑖=1980

) /30 426 

With: YYYY/MM/DD: Day during which the surveyed night began (Year: YYYY, Month: MM, 427 

Day: DD) 428 

 429 

2.3. Calculation of windspeed 430 

For windspeed data, we used R package RNCEP (Kemp et al., 2012) to extract data from the 431 

NCEP/NCAR Reanalysis dataset (Kalnay et al., 1996). Data spatial resolution was 2.5 deg 432 

and we associated each site to the grid cell whose centre was closer. Data temporal resolution 433 

was high (6 hours) and we chose to extract data at 6 PM the day when the night began. We 434 

extracted the U-Wind Component [East/West] (in m.s-1) and the V-Wind Component 435 

[North/South] (in m.s-1) and defined windspeed (in m.s-1) as followed: 436 

 437 

𝑊𝑖𝑛𝑑_𝑠𝑝𝑒𝑒𝑑 =  √(𝑈_𝑤𝑖𝑛𝑑_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡)2 +  (𝑉_𝑤𝑖𝑛𝑑_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡)2  438 

  439 

Eq. (E.3) 

Eq. (E.4) 
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2.4. Correlations 440 

The precipitations of the day when the night began and the difference between the 441 

precipitations of the day when the night began and previous days (as defined in Eq. (B.2)) 442 

were correlated (Pearson Correlation Coefficient (PCC) = 0.62 for the “relative abundance” 443 

dataset and PCC = 0.56 for the “timing of activity” dataset), we therefore only kept the 444 

difference (it allowed to obtain a better AICc – second order bias correction for Akaike 445 

Information Criterion – when used in our full models for the timing of activity). 446 

The windspeed of the day when the night began and the difference between the 447 

windspeed of the day when the night began and previous days (as defined in equation (2)) 448 

were highly correlated (PCC = 0.77 for the “relative abundance” dataset and PCC = 0.79 for 449 

the “timing of activity” dataset), thus we only kept windspeed of the day (it allowed to obtain 450 

a better AICc when used in our full models for the timing of activity). 451 

 452 

2.5. Weather filter 453 

To avoid exceptional weather conditions, we only selected nights with a windspeed below 454 

12.5 m.s-1 and a sum of precipitations below 20 mm on the day when the night began and the 455 

five previous days. 456 

 457 

3. Land-use  458 

 459 

3.1. Landscape representativity 460 

The Vigie-Chiro program was originally design to study population trends for French bats. It 461 

should therefore be based on the representativeness of the sample design and, in particular, 462 

the representativeness of the habitat distribution in France. Thus, when a volunteer wanted to 463 

take part in the “stationary points protocol”, he was encouraged to survey sites that were 464 
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randomly sampled near a municipality that he chose. However, if he wanted to, he could also 465 

choose where he wanted to carry out surveys.  466 

Despite these precautions, the selection of sites might have been driven by unknown 467 

criteria, as the closeness to where the volunteers lived. To ensure that it was not an issue for 468 

our study, we compared the gradients of proportions of each land-use type in the 3000 m 469 

radius buffer zones around the monitored sites with what would have been found if the sites 470 

had strictly been randomly selected. To do so, we randomly sampled sites in a square grid 471 

(6000 m * 6000 m) in France and removed sites that were above 500 m above sea level (to fit 472 

with the altitude filter applied on our datasets). For each of the 12,252 randomly sampled 473 

sites, we calculated the proportion of each land-use type in 3000 m buffer zones and 474 

compared it with the proportion of each land-use type in the buffer zones around the studied 475 

sites of our datasets. Overall, the buffer zones around the sites of our datasets covered the 476 

same land-use type gradient as buffer zones around sites randomly selected in France. (Fig. 477 

E.1).  478 

 479 

3.2.Correlations 480 

Even though road density could be a relevant variable (Claireau et al., 2019), it was not 481 

included in the analyses due to multi-collinearity issues: it was correlated with both 482 

artificialized surfaces (PCC = 0.68 for the “relative abundance” dataset and PCC = 0.63 for 483 

the “timing of activity” dataset) and ALAN (PCC = 0.59 for the “relative abundance” dataset 484 

and PCC = 0.50 for the “timing of activity” dataset).  485 

Crops were the most frequent land-use type around sites and also led to multi-486 

collinearity issues: it was correlated with conifer forest (PCC = - 0,66 for the “relative 487 

abundance” dataset and PCC = -0.73 for the “timing of activity” dataset). As land-use impacts 488 

on bat abundance and timing of activity was not the focus of this study, we chose not to 489 
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consider crops. However, we kept in mind that other habitat effects might reflect those of this 490 

land-use type. 491 

ALAN and artificialized surfaces were highly correlated (PCC = 0.88 for the “relative 492 

abundance” dataset, PCC = 0.83 for the “timing of activity” dataset). 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 



Page 27 of 57 
 

Fig E.1: Gradients of proportions of each land-use type in 3000 m buffer zones around 519 

randomly sampled sites in France (every 6000 m), the sites of the “relative abundance” 520 

dataset and the sites of the “timing of activity” dataset. 521 
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Supplementary material F: Gradient of cloud cover for the studied nights 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

Fig. F.1: Gradient of cloud cover (in %) for the studied nights of the “relative abundance” 548 

dataset.  549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

Fig. F.2: Gradient of cloud cover (in %) for the studied nights of the “timing of activity” 557 

dataset. 558 

  559 
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Supplementary material G: Gradient of moonlight for the studied nights 560 

 561 

 562 

 563 

 564 

 565 

 566 

Fig. G.1: Gradient of moonlight for the studied nights of the “relative abundance” dataset. The 567 

high number of zeros is explained by the construction of the metric, which was equal to moon 568 

illumination (in %) if moonrise happened before the first 4 h and 30 min after sunset during 569 

the studied night and zero otherwise. 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

Fig. G.2: Gradient of moonlight for the studied nights of the “timing of activity” dataset. The 578 

high number of zeros is explained by the construction of the metric, which was equal to moon 579 

illumination (in %) if moonrise happened before the first 4 h and 30 min after sunset during 580 

the studied night and zero otherwise. 581 
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Table H: Variables extracted to control exogenous factors that could impact E. serotinus 582 

relative abundance and timing of activity at their foraging site. The variables that have 583 

been discarded due to multi-collinearity issues are in brackets. Ab = “relative 584 

abundance” dataset, Ta = “timing of activity” dataset. 585 

 586 

Variable 
Mean  

(Min / Max) 
Units Description References Data source 

Light pollution 

ALAN 

Ab 0.55 

(0.00 / 74.12) nW.sr-

1.cm-2 
Mean radiance / 

VIIRS DNB 
(a) Ta 0.38 

(0.00 / 62.98) 

Environnemental data 

(Crops) 

Ab 0.34 

(0.00 / 0.96) 

% 

Proportion of rape, 

cereal plant, protein, 

soya, sunflower and 

corn crops (3000 m 

buffer) 

(Azam et al., 2016) CESBIO (b) 
Ta 0.30 

(0.00 / 0.90) 

Artificialized 

surfaces 

Ab 0.22 

(0.00 / 0.97) 

% 

Proportion of dense and 

diffuse impervious 

surface, industrial and 

commercial estates 

(3000 m buffer) 

(Azam et al., 2016) CESBIO (b) 
Ta 0.18 

(0.01 / 0.93) 

Conifer forest 

Ab 0.06 

(0.00 / 0.85) 
% 

Proportion of conifer 

forest (3000 m buffer) 
/ CESBIO (b) 

Ta 0.09 

(0.00 / 0.85) 

Deciduous 

forest 

Ab 0.14 

(0.00 / 0.80) 
% 

Proportion of deciduous 

forest (3000 buffer m) 

(Boughey et al., 

2011; Robinson & 

Stebbings, 1997b) 

CESBIO (b) 
Ta 0.16 

(0.00 / 0.69) 

Grasslands 

Ab 0.13 

(0.00 / 0.74) 
% 

Proportion of 

grasslands (3000 m 

buffer) 

(Boughey et al., 

2011; Catto et al., 

1996; Robinson & 

Stebbings, 1997b; 

Vaughan et al., 1997) 

CESBIO (b) 
Ta 0.12 

(0.00 / 0.74) 

(Road density) 

Ab 2.30 

(0.22 / 8.93) 
km-1 

Road density (3000 m 

buffer) 

(Claireau et al., 

2019) 

ROUTE 500 

® (c) Ta 2.07 

(0.25 / 8.13) 

Habitat 

diversity 

Ab 1.74 

(0.67 / 2.48)  
/ 

Shannon’s diversity 

index describing habitat 
/ CESBIO (b) 
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Ta 1.74 

(0.67 / 2.45) 

diversity (R package 

landscapemetrics) 

(3000 m buffer) 

Small woody 

features 

density  

Ab 0.04 

(0.00 / 0.17) 

km-1 

Linear and patchy 

structures of trees, 

hedges, bushes and 

scrubs density (3000 m 

buffer) 

(Lacoeuilhe et al., 

2016; Verboom & 

Huitema, 1997) 

Copernicus (d) 
Ta 0.04 

(0.00 / 0.16) 

Minimum 

distance from 

freshwater 

Ab 945 

(0 / 6404) 
km 

Minimum distance from 

lakes and watercourses 

(Vaughan et al., 

1997) 

BD Carthage 
(e) Ta 949 

(0.00 / 4887) 

Meteorological and stronomical data 

Temperature 

anomaly 

Ab 1.27 

(-5.99 / 9.34) 
°C 

Mean temperature 

anomaly for the day 

when the night began  

(Catto et al., 1995; 

Vaughan et al., 1997) 
EObs (f) 

Ta 1.97 

(-5.26 / 9.34) 

Difference 

temperature 

anomalies 

Ar 0.48 

(-7.74 / 7.25) 
°C 

Difference in anomalies 

between the day when 

the night began and the 

five previous days  

(Catto et al., 1995) EObs (f) 
Ta 1.20 

(-4.99 / 7.25) 

Precipitations 

Ab 1.29 

(0.00 / 19.50) 
mm 

Sum of precipitations 

the day the night began 
(Catto et al., 1996) EObs (f) 

Ta 0.66 

(0.00 / 12.8) 

Difference 

precipitations 

Ab -0.40 

(-12.30 / 

19.32) mm 

Difference in 

precipitations between 

the day when the night 

began and the five 

previous days 

/ EObs (f) 

Ta -0.67 

(-8.90 / 12.28) 

Windspeed 

Ab 5.50 

(0.41 / 12.35) 
m.s-1 

Windspeed at 6 PM the 

day when the night 

began 

(Catto et al., 1996) 
NCEP/NCAR 

Reanalysis (g) Ta 5.38 

(0.57 / 12.30) 

Difference 

windspeed 

Ab -0.30 

(-7.57 / 9.40) 
m.s-1 

Difference in win speed 

between the day when 

the night began and the 

five previous days 

/ 
NCEP/NCAR 

Reanalysis (g) Ta -0.40 

(-7.57 / 9.40) 

Cloud cover 

Ab 44.23 

(0.00 / 100) 
% 

Cloud cover at 6 PM 

the day when the night 

began 

(Kyba et al., 2015; 

McAney & Fairley, 

1988) 

NCEP/NCAR 

Reanalysis (g) Ta 42.18 

(0.00 / 100) 

Moonlight 

Ab 0.43 

(0.00 / 1.00) 

% 

Equal to 0 if no moon 

in the first 4 h 30 min 

after sunset, equal to 

moon illumination 

otherwise 

(Appel et al., 2017; 

Kolkert et al., 2020; 

Lang et al., 2006) 

R packages 

suncalc and 

lunar 
Ta 0.37 

(0.00 / 1.00) 
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 587 

(a) EOG, https://eogdata.mines.edu/products/vnl/  588 

(b) OSO, http://osr-cesbio.ups-tlse.fr/oso/ 589 

(c) IGN, https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-590 

libres.html#route-500  591 

(d) Copernicus, https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-592 

features/small-woody-features-2015  593 

(e) IGN, https://geo.data.gouv.fr/fr/datasets/fa9cd96748649d68b59c2a65ebe78258dec4ceeb 594 

(f) Copernicus, https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles 595 

(g) Kalnay et al., 1996, extracted with R package RNCEP (Kemp et al., 2012) 596 
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Supplementary material I: Checks of model assumptions 658 

 659 

Model assumptions were tested according to the following procedure: multicollinearity was 660 

tested with R package performance (VIF below five for each variable and mean VIF below 661 

two), spatial and temporal autocorrelations were tested with R package DHARMa, QQ-plots 662 

were also drawn to assess if distribution choices were sensible. For “timing of activity” 663 

analyses, homoscedasticity was assessed with R package performance. For “relative 664 

abundance” analyses, we plotted standardized residuals against model predictions and 665 

controlled zero inflation with R package DHARM.  666 
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Supplementary material J: Analyses when considering full models without interactions 667 

including ALAN 668 

 669 

1. Relative abundance 670 

 671 

When we did not consider interactions including ALAN, ALAN still was a better predictor of 672 

E. serotinus relative abundance as its sum of weights (SW) was equal to 0.84 (it was in 73.6% 673 

of the models of the model set), compared to artificialized surfaces whose SW was equal to 674 

0.16 (it was in 26.4% of the models of the model set) (Table J.1) (see Table J.2 for details on 675 

the model averaging results). Both ALAN and artificialized surfaces estimates were negative, 676 

with ALAN one being even lower (-0.0186) than the artificialized surfaces one (-0.0156). 677 

 678 

Table J.1: Model averaging results for a delta AICc of six points for the “relative abundance” 679 

analyses: estimate, sum of weights (SW) and 95% confidence interval (CI) for each variable 680 

(apart from latitude and recorder type that were fixed) (estimates in bold when the 95% 681 

confidence interval did not overlap zero and the SW was above 0.60). Results without and 682 

with interactions including ALAN are represented so that they might be compared. All 683 

quantitative fixed effects were scaled and estimates were standardized by dividing them by 684 

the standard deviation of the response variable 685 

 

Without interactions including 

ALAN 
With interactions including ALAN 

Variables Estimates SW CI (95%) Estimates SW CI (95%) 

Temperature 0.0098 1.00 0.0047 ; 0.0150 0.0098 1.00 0.0047 ; 0.0150 

Difference_temperature 0.0117 1.00 0.0070 ; 0.0164 0.0118 1.00 0.0071 ; 0.0164 

Windspeed -0.0025 0.47 -0.0061 ; 0.0011 -0.0025 0.47 -0.0060 ; 0.0011 

Difference_precipitations -0.0061 1.00 -0.0097 ; -0.0024 -0.0061 1.00 -0.0098 ; -0.0024 

Julian_Day 0.0124 1.00 0.0076 ; 0.0171 0.0124 1.00 0.0077 ; 0.0171 
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(Julian_Day)² -0.0023 0.34 -0.0072 ; 0.0026 -0.0023 0.32 -0.0072 ; 0.0027 

Cloud_cover 0.0027 0.63 -0.0008 ; 0.0062 0.0026 0.67 -0.0009 ; 0.0061 

Artificialized_surfaces -0.0156 0.16 -0.0227 ; -0.0086 -0.0156 0.11 -0.0227 ; -0.0086 

Grassland -0.0047 0.50 -0.0114 ; 0.0020 -0.0047 0.50 -0.0114 ; 0.0020 

Deciduous_forest 0.0096 1.00 0.0041 ; 0.0151 0.0096 1.00 0.0041 ; 0.0151 

Conifer_forest 0.0124 1.00 0.0056 ; 0.0191 0.0124 1.00 0.0057 ; 0.0192 

Habitat_diversity 0.0070 0.80 0.0005 ; 0.0134 0.0068 0.82 0.0005 ; 0.0132 

Min_distance_freshwater -0.0039 0.37 -0.0115 ; 0.0037 -0.0039 0.37 -0.0116 ; 0.0037 

Small_woody_features 0.0082 1.00 0.0026 ; 0.0138 0.0082 1.00 0.0026 ; 0.0138 

ALAN -0.0186 0.84 -0.0268 ; -0.0104 -0.0186 0.89 -0.0268 ; -0.0104 

Moonlight -0.0064 1.00 -0.0104 ; -0.0024 -0.0065 1.00 -0.0105 ; -0.0025 

Difference_temperature 

:Temperature 
0.0009 0.26 -0.0026 ; 0.0045 0.0009 0.24 -0.0026 ; 0.0045 

Cloud_cover:Moonlight 0.0015 0.21 -0.0017 ; 0.0048 0.0015 0.21 -0.0017 ; 0.0047 

ALAN:Cloud_cover    -0.0011 0.14 -0.0056 ; 0.0035 

Moonlight:ALAN    -0.0006 0.19 -0.0048 ; 0.0036 

 686 

 687 

Table J.2: Results of the model averaging for the “relative abundance” and the “timing of 688 

activity” analyses without interactions including ALAN. Even if a lot of models were selected 689 

in these analyses, the differences between the AICc of the null model and the AICc of the best 690 

model were always high. 691 

 

Number of 

models in a 

∆AICc of 6 

AICc of the 

best model 

AICc of 

the null 

model 

AICc null 

model* – AICc 

best model 

Relative abundance 216 10,542 10,796 254 

Timing of activity 130 27,840 27,991 151 

 692 
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*include random effects for “relative abundance” and “timing of activity” analyses, include 693 

the weight on the logarithm of the number of E. serotinus passes for “timing of activity” 694 

analyses. 695 

 696 

2. Timing of activity 697 

 698 

When we did not consider interactions including ALAN, ALAN still was a better predictor of 699 

the median time of activity as its SW was equal to 0.997 (it was in 99.2% of the models of the 700 

model set), compared to artificialized surfaces whose SW was equal to 0.003 (it was in 0.8% 701 

of the models of the model set) (Table J.3) (see Table J.2 for details on the model averaging 702 

results). Furthermore, both ALAN and artificialized surfaces estimates were positive, with 703 

ALAN one being even greater (0.218) than the artificialized surfaces one (0.171).  704 

 705 

Table J.3: Model averaging results for a delta AICc of six points for the “timing of activity” 706 

analyses: estimate, sum of weights (SW) and 95% confidence interval (CI) for each variable 707 

(apart from latitude and the autocovariate that were fixed) (estimates in bold when the 95% 708 

confidence interval did not overlap zero and the SW was above 0.60). Results without and 709 

with interactions including ALAN are both represented so that they might be compared. All 710 

quantitative fixed effects were scaled and estimates were standardized by dividing them by 711 

the standard deviation of the response variable 712 

 

Without interactions including 

ALAN 

With interactions including 

ALAN 

Variables Estimates SW CI (95%) Estimates SW CI (95%) 

Temperature 0.042 0.36 -0.037 ; 0.12 0.031 0.31 -0.047 ; 0.110 

Difference_temperature 0.112 1.00 0.059 ; 0.165 0.114 1.00 0.064 ; 0.165 

Windspeed -0.089 1.00 -0.133 ; -0.046 -0.093 1.00 -0.136 ; -0.050 
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Difference_precipitations -0.052 0.90 -0.098 ; -0.005 -0.053 0.91 -0.099 ; -0.006 

Julian_Day -0.017 1.00 -0.104 ; 0.071 -0.031 1.00 -0.119 ; 0.057 

(Julian_Day)² 0.154 1.00 0.077 ; 0.231 0.142 1.00 0.061 ; 0.223 

Cloud_cover -0.155 1.00 -0.199 ; -0.111 -0.155 1.00 -0.199 ; -0.110 

Artificialized_surfaces 0.171 0.00 0.061 ; 0.28 NA NA NA 

Grassland 0.004 0.17 -0.115 ; 0.123 0.012 0.18 -0.111 ; 0.135 

Deciduous_forest -0.057 0.26 -0.186 ; 0.072 -0.059 0.26 -0.189 ; 0.072 

Conifer_forest -0.025 0.20 -0.145 ; 0.095 -0.017 0.18 -0.138 ; 0.104 

Habitat_diversity 0.023 0.19 -0.082 ; 0.128 0.017 0.18 -0.090 ; 0.123 

Min_distance_freshwater 0.031 0.20 -0.116 ; 0.177 0.041 0.20 -0.107 ; 0.190 

Small_woody_features -0.057 0.32 -0.169 ; 0.056 -0.067 0.36 -0.181 ; 0.047 

ALAN 0.218 1.00 0.102 ; 0.335 0.235 1.00 0.117 ; 0.354 

Moonlight 0.076 0.99 0.016 ; 0.136 0.092 1.00 0.032 ; 0.152 

Difference_temperature 

:Temperature 
-0.008 0.05 -0.05 ; 0.034 -0.024 0.09 -0.066 ; 0.019 

Cloud_cover:Moonlight -0.008 0.18 -0.05 ; 0.035 -0.013 0.21 -0.055 ; 0.030 

ALAN:Cloud_cover    0.059 0.95 0.011 ; 0.106 

Moonlight:ALAN    -0.073 1.00 -0.120 ; -0.027 

 713 

 714 

  715 
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Supplementary material K: Checking of the robustness of the model averaging results 716 

 717 

1. Comparison between the model averaging approach and the model selection one 718 

 719 

Relative abundance 720 

The best model obtained with the dredge (i.e., the one with the lowest AICc – second order 721 

bias correction for Akaike Information Criterion) was the following one:  722 

 723 

Relative abundance metric ~ Conifer_forest + Deciduous_forest + Julian_day + Moonlight + 724 

Small_woody_features + Habitat_diversity + ALAN + Cloud_cover + 725 

Difference_precipitations + Difference_temperature + Temperature + Latitude + 726 

Recorder_type + (1 | site / participation) 727 

 728 

As shown in Table K.1, the estimates (standardized) of the best model were highly similar to 729 

those obtained with the model averaging. The variables that had a sum of weights (SW) above 730 

0.60 and whose 95% interval did not overlap zero were all in the best model and their p-value 731 

was significant. Hence, the model averaging and the model selection approaches were 732 

consistent. Our conclusions would have been the same whatever the approach chosen. 733 

 734 

Table K.1: Comparison between the result obtained with a model selection approach (model 735 

with the lowest AICc) and the model averaging approach for the “relative abundance” 736 

analyses. In bold, in the column “estimates best model”, are the estimates whose p-value was 737 

below 0.05 (Anova II). In bold, in the column “estimates model averaging”, are the estimate 738 

whose SW were above 0.6 and whose 95% confidence interval did not overlap 0. (In this table 739 

we did not put latitude and recorder type that were fixed for “relative abundance” analyses). 740 

Eq. (K.1) 
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All quantitative fixed effects were scaled and estimates were standardized by dividing them 741 

by the standard deviation of the response variable 742 

Variables 
Estimates 

best model 
p-value 

Estimates model 

averaging 

SW > 0.60 and 95% 

interval did not 

overlap 0 

Temperature 0.0101 8.7e-05*** 0.0098 Yes 

Difference_temperature 0.0117 5.4e-07*** 0.0118 Yes 

Windspeed NA NA -0.0025 No 

Difference_precipitations -0.0063 6.9e-04*** -0.0061 Yes 

Julian_Day 0.0127 2.8e-08*** 0.0124 Yes 

(Julian_Day)² NA NA -0.0023 No 

Cloud_cover 0.0027 1.2e-01 0.0026 No 

Artificialized_surfaces NA NA -0.0156 No 

Grassland NA NA -0.0047 No 

Deciduous_forest 0.0101 1.0e-04*** 0.0096 Yes 

Conifer_forest 0.0134 9.8e-06*** 0.0124 Yes 

Habitat_diversity 0.0074 1.1e-02* 0.0068 Yes 

Min_distance_freshwater NA NA -0.0039 No 

Small_woody_features 0.0074 5.0e-03** 0.0082 Yes 

ALAN -0.0167 1.5e-06*** -0.0186 Yes 

Moonlight -0.0063 1.9e-03** -0.0065 Yes 

Difference_temperature 

:Temperature 
NA NA 0.0009 No 

Cloud_cover:Moonlight NA NA 0.0015 No 

ALAN:Cloud_cover NA NA -0.0011 No 

Moonlight:ALAN NA NA -0.0006 No 

 743 

Timing of activity 744 

The best model obtained with the dredge (i.e., the one with the lowest AICc) was the 745 

following one:  746 

 747 
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Timing of activity metric ~ Julian_day + Julian_day² + Moonlight + ALAN + Cloud_cover + 748 

Difference_precipitations + Difference_temperature + Wind_speed + 749 

Latitude + autocov + Moonlight : ALAN + ALAN : Cloud_cover + (1 | site) 750 

 751 

As shown in Table K.2, the estimates (standardized) of the best model were highly 752 

similar to those obtained with the model averaging. The covariates that had a sum of weights 753 

(SW) above 0.60 and whose 95% interval did not overlap zero were all in the best model and 754 

their p-value was significant. Hence, the model averaging and the model selection approaches 755 

were consistent. Our conclusions would have been the same whatever the approach chosen. 756 

 757 

Table K.2: Comparison between the result obtained with a model selection approach (model 758 

with the best AICc) and the model averaging approach for the “timing of activity” analyses. 759 

In bold, in the column “estimates best model”, are the estimate whose p-value was below 0.05 760 

(Anova II). In bold, in the column “estimates model averaging”, are the estimates whose SW 761 

were above 0.6 and whose 95% confidence interval did not overlap 0. (In this table we did not 762 

put latitude and the autocovariate that were fixed for “timing of activity” analyses). All 763 

quantitative fixed effects were scaled and estimates were standardized by dividing them by 764 

the standard deviation of the response variable 765 

Variables 
Estimates 

best model 
p-value 

Estimates model 

averaging 

SW > 0.60 and 95% 

interval did not 

overlap 0 

Temperature NA NA 0.031 No 

Difference_temperature 0.120 5.6e-08*** 0.114 Yes 

Windspeed -0.093 2.3e-05*** -0.093 Yes 

Difference_precipitations -0.052 2.4e-02* -0.053 Yes 

Julian_Day -0.027 5.3e-01 -0.031 No 

(Julian_Day)² 0.140 5.7e-04*** 0.142 Yes 

Cloud_cover -0.153 1.4e-12*** -0.155 Yes 

Eq. (K.2) 
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Artificialized_surfaces NA NA NA NA 

Grassland NA NA 0.012 No 

Deciduous_forest NA NA -0.059 No 

Conifer_forest NA NA -0.017 No 

Habitat_diversity NA NA 0.017 No 

Min_distance_freshwater NA NA 0.041 No 

Small_woody_features NA NA -0.067 No 

ALAN 0.233 1.5e-04*** 0.235 Yes 

Moonlight 0.092 8.7e-03** 0.092 Yes 

Difference_temperature 

:Temperature 
NA NA -0.024 No 

Cloud_cover:Moonlight NA NA -0.013 No 

ALAN:Cloud_cover 0.058 1.7e-02* 0.059 Yes 

Moonlight:ALAN -0.074 1.6e-03** -0.073 Yes 

 766 

2. Complex model issue 767 

 768 

For the model averaging, we chose not to follow Richards et al., (2011) parsimonious 769 

approach consisting in post hoc elimination of models that are more complex versions of any 770 

model with a lower AICc value. As a matter of fact, it would have been very time-consuming 771 

(our model sets were composed of 373 models for the “relative abundance” analyses and 142 772 

models for the “timing of activity” analyses) and, according to Symonds & Moussalli, (2011), 773 

it was uncertain if such a method would have consistently improved the model averaging ; 774 

whereas Grueber et al. (2011) underlined that some complex models may be composed of 775 

unique predictor variables of potentially strong ecological importance that should not be 776 

removed in such cases.  777 

Nonetheless, because we did not discard these complex models, there was a risk of 778 

overweighting the predictor variables contained in overly complex models. However, as we 779 

presented in the first part of this Supplementary materiel (Comparison between the model 780 
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averaging approach and the model selection one), for both analyses the best models already 781 

contained all the variables for which we found an effect with the model averaging approach. 782 

Hence, none of these variables would have been discarded by following Richards et al. (2011) 783 

approach. 784 

However, Richards et al. (2011) parsimonious approach could potentially change the 785 

sum of weights (SW) and confidence interval of these variables. Nonetheless, for the “relative 786 

abundance” analyses, almost all variables which had an effect according to our model 787 

averaging approach (SW > 0.60 and a 95% confidence interval that did not overlap 0), were in 788 

all the models of the models set (373 models) and their p-value was significant in all these 789 

models. The exceptions were (1) small woody features but it was in 99.5% of the models and 790 

its p-value was significant in all these models; (2) habitat diversity which was a variable that 791 

was not discussed in the main text, it had just been added to control potential effect of 792 

landscape structure on bat abundance; (3) and ALAN but the models in which this variable 793 

was not were those with artificialized surfaces, with no model containing neither of these two 794 

variables, ALAN was significant in all the models in which it was included (Table K.3).  795 

Likewise, for the “timing of activity” analyses, almost all variables that had effect with 796 

our model averaging approach were also included in all the models selected in the model set 797 

used for the model averaging and their p-value was significant in all these models. The 798 

exceptions were difference of precipitations and the interaction between cloud cover and 799 

ALAN, but there were nonetheless in a high percentage of models (respectively 87.3% and 800 

92.3%) and their p-values were significant in all the models in which they were included 801 

(Table K.4). 802 

Moreover, as shown in Fig. K.2 and K.3 of the third part of this Supplementary 803 

material (Multicollinearity effect on coefficient estimates), the estimates of the variables 804 

which had an effect according to our model averaging approach were quite similar in all the 805 
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models selected in the model set of the model averaging for both analyses. For both analyses, 806 

in all the models including ALAN, the absolute value of its estimate was greater than those of 807 

the other variables. Hence, we are confident that Richards et al. (2011) approach would have 808 

resulted in the same variable selection, in similar estimates, and that ALAN would have 809 

stayed the variable whose estimate was the greater in absolute value. 810 

  811 
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Table K.3: Comparison between the obtained results when considering all the models within a 812 

∆AICc of six points individually and the results of the model averaging for the “relative 813 

abundance” analyses. In bold are the estimates whose SW were above 0.6 and whose 95% 814 

confidence interval did not overlap 0. (In this table we did not put latitude and recorder type 815 

that were fixed for “relative abundance” analyses). All quantitative fixed effects were scaled 816 

and estimates were standardized by dividing them by the standard deviation of the response 817 

variable 818 

Variables 

Estimates 

model 

averaging 

SW > 0.60 and 

95% interval did 

not overlap 0 

Percentage of 

models in the 

model averaging 

Percentage of 

models in which 

the p-value is <0.05 

Temperature 0.0098 Yes 100 100 

Difference_temperature 0.0118 Yes 100 100 

Windspeed -0.0025 No 48.0 0 

Difference_precipitations -0.0061 Yes 100 100 

Julian_Day 0.0124 Yes 100 100 

(Julian_Day)² -0.0023 No 40.5 0 

Cloud_cover 0.0026 No 71.0 0 

Artificialized_surfaces -0.0156 No 15.3 15.3 

Grassland -0.0047 No 55.5 11.8 

Deciduous_forest 0.0096 Yes 100 100 

Conifer_forest 0.0124 Yes 100 100 

Habitat_diversity 0.0068 Yes 74.5 55.5 

Min_distance_freshwater -0.0039 No 44.2 0 

Small_woody_features 0.0082 Yes 99.5 99.5 

ALAN -0.0186 Yes 84.7 84.7 

Moonlight -0.0065 Yes 100 100 

Difference_temperature 

:Temperature 
0.0009 No 32.3 0 

Cloud_cover:Moonlight 0.0015 No 27.1 0 

ALAN:Cloud_cover -0.0011 No 19.3 0 

Moonlight:ALAN -0.0006 No 26.8 0 



Page 47 of 57 
 

Table K.4: Comparison of the obtained results when considering all models within a ∆AICc 819 

of six points individually with the results of the model averaging for the “timing of activity” 820 

analyses. In bold are the estimate coefficient whose SW were above 0.6 and whose 95% 821 

confidence interval did not overlap 0. (In this table we did not put latitude and the 822 

autocovariate that were fixed for “timing of activity” analyses). All quantitative fixed effects 823 

were scaled and estimates were standardized by dividing them by the standard deviation of 824 

the response variable 825 

Variables 

Estimates 

model 

averaging 

SW > 0.60 and 

95% interval did 

not overlap 0 

Percentage of 

models in the 

model averaging 

Percentage of 

models in which 

the p-value is <0.05 

Temperature 0.031 No 32.3 0 

Difference_temperature 0.114 Yes 100 100 

Windspeed -0.093 Yes 100 100 

Difference_precipitations -0.053 Yes 87.3 87.3 

Julian_Day -0.031 No 100 0 

(Julian_Day)² 0.142 Yes 100 100 

Cloud_cover -0.155 Yes 100 100 

Artificialized_surfaces NA NA NA NA 

Grassland 0.012 No 24.6 0 

Deciduous_forest -0.059 No 32.4 0 

Conifer_forest -0.017 No 23.9 0 

Habitat_diversity 0.017 No 23.2 0 

Min_distance_freshwater 0.041 No 25.4 0 

Small_woody_features -0.067 No 38.7 0 

ALAN 0.235 Yes 100 100 

Moonlight 0.092 Yes 100 100 

Difference_temperature 

:Temperature 
-0.024 No 11.3 0 

Cloud_cover:Moonlight -0.013 No 26.1 0 

ALAN:Cloud_cover 0.059 Yes 92.3 92.3 

Moonlight:ALAN -0.073 Yes 100 100 
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3. Multicollinearity effect on coefficient estimates 826 

 827 

According to Cade (2015), the presence of multicollinearity leads to different scaling of units 828 

for the regression coefficient of a given predictor variable across candidate models with 829 

different combinations of predictor variables. To solve this issue and ensure that multimodel 830 

inferences are sound, he suggested to standardize estimates based on partial standard 831 

deviations. 832 

By excluding predictor variables that were responsible for multicollinearity (difference 833 

of windspeed, sum of precipitations of the day, crops, road density) and by never including 834 

artificialized surfaces and ALAN in the same models, we ensured that the variance inflation 835 

factor (VIF) of our predictor variables and the mean VIF of our models would stay very low. 836 

However, Cade (2015) suggested that even when the VIFs are low, there might be changes in 837 

the scaling of predictors under different model covariance structures. 838 

Hence, as suggested by Cade (2015), we decided to standardised estimates based on 839 

partial standard deviations for their variables. As this method was not implemented in the 840 

model.avg and the dredge functions (R package MuMIn) for models fitted with the function 841 

glmmTBM (R package glmmTMB), we did it by following the procedure shown in Fig. K.1. 842 

As shown in Table K.5, Fig. K.2 and Fig. K.3, such standardisation did not change our 843 

conclusions: ALAN still was the covariate whose estimate was the highest in absolute value 844 

for both analyses. For the “relative abundance” analyses, ALAN estimate was higher than the 845 

estimate of artificialized surfaces. Furthermore, even if the standardisation based on partial 846 

standard deviation reduced the absolute values of the estimates, their values remained close to 847 

those obtained with a “classical” standardisation such as the one used in the main text.  848 

  849 
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 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

Fig. K.1: Procedure followed to standardised estimates based on partial standard deviations in 861 

the model averaging (Cade, 2015) 862 

  863 
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Table K.5: Comparison of the obtained coefficient estimates with the model averaging with a 864 

“classical” standardisation of the coefficient estimates and with a standardisation based on 865 

partial standard deviations for the “relative abundance” and “timing of activity” analyses 866 

(estimates are in bold when the 95% confidence interval did not overlap zero and the SW was 867 

above 0.60). (In this table we did not put latitude and recorder type that were fixed for 868 

“relative abundance” analyses and latitude and the autocovariate that were fixed for “timing 869 

of activity” analyses) 870 

 Relative abundance Timing of activity 

Variables Classical SD partial Classical SD partial 

Temperature 0.0098 0.0072 0.031 0.022 

Difference_temperature 0.0118 0.0088 0.114 0.103 

Windspeed -0.0025 -0.0024 -0.093 -0.089 

Difference_precipitations -0.0061 -0.0058 -0.053 -0.051 

Julian_Day 0.0124 0.0114 -0.031 -0.024 

(Julian_Day)² -0.0023 -0.0020 0.142 0.110 

Cloud_cover 0.0026 0.0025 -0.155 -0.144 

Artificialized_surfaces -0.0156 -0.0122 NA NA 

Grassland -0.0047 -0.0037 0.012 0.010 

Deciduous_forest 0.0096 0.0082 -0.059 -0.051 

Conifer_forest 0.0124 0.0086 -0.017 -0.013 

Habitat_diversity 0.0068 0.0053 0.017 0.016 

Min_distance_freshwater -0.0039 -0.0033 0.041 0.041 

Small_woody_features 0.0082 0.0069 -0.067 -0.062 

ALAN -0.0186 -0.0146 0.235 0.223 

Moonlight -0.0065 -0.0064 0.092 0.086 

Difference_temperature 

:Temperature 
0.0009 0.0009 -0.024 -0.022 

Cloud_cover:Moonlight 0.0015 0.0015 -0.013 -0.013 

ALAN:Cloud_cover -0.0011 -0.0010 0.059 0.057 

Moonlight:ALAN -0.0006 -0.0006 -0.073 -0.070 

 871 
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 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

Fig K.2: For the “relative abundance” analyses, variations of the values of the estimates in the 886 

373 models within a ∆AICc of six points compared to the best model. Only the variables 887 

which had an effect according to the model averaging approach are represented. Their 888 

estimates are represented according to the ∆AICc of the model in which they have been 889 

estimated. The solid curves represent the result of generalized linear models fitted to the data. 890 

The left panels correspond to all the models in which ALAN was selected and the right panels 891 

correspond to all the models in which artificialized surfaces were selected. There was no 892 

model with neither ALAN nor artificialized surfaces. The upper panels correspond to 893 

“classical” standardised estimates and the lower panels correspond to standardised estimates 894 

based on partial standard deviations. 895 

  896 
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 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

Fig K.3: For the “timing of activity” analyses, variations of the values of the estimates in the 905 

142 models within a ∆AICc of six points compared to the best model. Only the covariates 906 

which had an effect according to the model averaging approach are represented. Their 907 

estimates are represented according to the ∆AICc of the model in which they have been 908 

estimated. The solid curves represent the result of generalized linear models fitted to the data. 909 

ALAN was selected over artificialized surfaces in all models. The upper panels correspond to 910 

“classical” standardised estimates and the lower panels correspond to standardised estimates 911 

based on partial standard deviations. 912 
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Table L: Results of the model averaging for the “relative abundance” and the “timing of 929 

activity” analyses. Even if a lot of models were selected in these analyses, the differences 930 

between the AICc of the null model and the AICc of the best model were always high. 931 

 932 

 

Number of 

models in a 

∆AICc of 6 

AICc of the 

best model 

AICc of 

the null 

model 

AICc null 

model* – AICc 

best model 

Relative abundance 373 10,542 10,796 254 

Timing of activity 142 27,831 27,991 160 

 933 

*include random effects for “relative abundance” and “timing of activity” analyses, include 934 

the weight on the logarithm of the number of E. serotinus passes for “timing of activity” 935 

analyses. 936 
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Table M: Mean of the mean radiances (in nW.sr-1.cm-2) of the French municipalities 938 

according to their population size (only municipalities that are below 500 m above sea 939 

levels are considered). 940 

 941 

Population Mean of the mean radiances Number of municipalities 

> 900,000 62.83 1 (Paris) 

]200,000 ; 900,000] 39.7 10 

]50,000 ; 200,000] 35.5 103 

]10,000 ; 50,000] 19.6 802 

]5000 ; 10,000] 7.8 1122 

]1000 ; 5000] 2.2 7446 

]500 ; 1000] 0.75 6537 

]100 ; 500] 0.35 14,959 

< 100 0.24 3458 

 942 

 943 
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Fig. N: Interaction between cloud cover and ALAN: Predicted values and 95% 945 

confidence intervals of the timing of activity (i.e., the time of the median E. serotinus 946 

pass during the first half of the night) with all variables equal to zero (i.e,. all variables 947 

equal to their mean, as they were previously scaled) apart from cloud cover and ALAN. 948 

This graph represents the median time of activity according to cloud cover (back 949 

transformed in %) for three values of ALAN (2.2 nW.sr-1.cm-2 being the mean radiance 950 

of French municipalities of 1000 to 5000 inhabitants and 7.8 nW.sr-1.cm-2 being the mean 951 

radiance for municipalities of 5000 to 10,000 inhabitants, see Table M). 952 

 953 

 954 
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Figure O: Interaction between ALAN and moonlight: Predicted values and 95% 956 

confidence intervals of the timing of activity (i.e., the time of the median E. serotinus 957 

pass during the first half of the night) with all variables equal to zero (i.e., all variables 958 

equal to their mean, as they were previously scaled) apart from ALAN and moonlight. 959 

This graph represents the median time of activity according to ALAN (radiance back 960 

transformed in nW.sr-1.cm-2) for three values of moonlight. 961 
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