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Some results on ramifications

Gilles Bertrand

Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France

Abstract. We investigate ramifications, which are simplicial complexes
defined by a very simple inductive property: if two complexes X and Y

are ramifications, then the union of X and Y is a ramification whenever
the intersection of X and Y is a ramification. We show that the collec-
tion of all ramifications properly contains the collection of all collapsi-
ble complexes, and that it is properly contained in the collection of all
contractible complexes. We introduce the notion of a ramification pair,
which is a couple of complexes satisfying also an inductive property. We
establish a strong relation between ramification pairs and ramifications.

Keywords: Combinatorial topology, ramifications, contractibility, col-
lapse, completions.

1 Introduction

Simple homotopy, introduced by J. H. C. Whitehead in the early 1930’s, may
be seen as a refinement of the concept of homotopy [1]. Two complexes are
simple homotopy equivalent if one of them may be obtained from the other by
a sequence of elementary collapses and expansions.

In this paper, we investigate ramifications, which are complexes defined by
a very simple inductive property: if two complexes X and Y are ramifications,
then the union of X and Y is a ramification whenever the intersection of X and
Y is a ramification.

It could be seen that the collection of all trees satisfies the above property.
Also, any complex of arbitrary dimension is a ramification whenever it is col-
lapsible, i.e., whenever it reduces to a single vertex with a sequence composed
solely of collapses.

Our main results include the following:
- We show that the collection R of all ramifications properly contains the collec-
tion E of all collapsible complexes. Also we show that R is properly contained
in the collection H of all contractible complexes, i.e., all complexes that are ho-
motopy equivalent to a single vertex.
- We introduce the notion of a ramification pair, which is a couple of complexes
satisfying also an inductive property. We show there is a strong relation between
the collection of all ramification pairs R̈ and R. In particular, R̈ is uniquely de-
termined by R.
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The paper is organized as follows. First, we give some basic definitions for
simplicial complexes (Sec. 2) and simple homotopy (Sec. 3). Then, we recall some
facts relative to completions, which allow us to formulate inductive properties
(Sec. 4). We investigate the containment relations between the collections E, R,
and H in Sec. 5. Then, we introduce the collection R̈ of ramification pairs and
give the fundamental relation between R̈ and R (Sec. 6).
Note that the paper is self contained. Other results on ramifications will be given
in a forthcoming paper [8].

2 Basic definitions for simplicial complexes

Let X be a finite family composed of finite sets. The simplicial closure of X is
the complex X− = {y ⊆ x | x ∈ X}. The family X is a (simplicial) complex if
X = X−. We write S for the collection of all finite simplicial complexes. Note
that ∅ ∈ S and {∅} ∈ S, ∅ is the void complex, and {∅} is the empty complex.

Let X ∈ S. An element of X is a simplex of X or a face of X . A facet
of X is a simplex of X that is maximal for inclusion. For example, the family
X = {∅, {a}, {b}, {a, b}} is a simplicial complex with four faces and one facet.
Note that the empty set is necessarily a face of X whenever X 6= ∅.

A simplicial subcomplex of X ∈ S is any subset Y of X that is a simplicial
complex. If Y is a subcomplex of X , we write Y � X .

Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number of
its elements minus one. The dimension of X , written dim(X), is the largest
dimension of its simplices, the dimension of ∅, the void complex, being defined
to be −1. Observe that the dimension of the empty complex {∅} is also −1.

A complex A ∈ S is a cell if A = ∅ or if A has precisely one non-empty
facet x. We set A◦ = A \ {x} and ∅◦ = ∅. We write C for the collection of all
cells. A cell α ∈ C is a vertex if dim(α) = 0.

The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. Thus, if
A ∈ C, with A 6= ∅, then A is precisely the unique facet of A. In particular, if α
is a vertex, we have α = {∅, α}.
We say that X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if
X ∩Y = ∅. Thus, X and Y are disjoint if and only if X ∩Y = ∅ or X ∩Y = {∅}.

If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simplicial complex
XY such that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and
XY = X if Y = {∅}. The join αX of a vertex α and a complex X ∈ S is a cone.

Let X ∈ S. We set X⋄ = {x ∈ X | x 6= ∅}. Let π = 〈x0, ..., xk〉 be a sequence
of faces in X⋄. The sequence π is a path in X (from x0 to xk) if xi ⊆ xi−1 or
xi−1 ⊆ xi, with i ∈ [1, k]. We say that X is path-connected if X 6= {∅} and for
any x, y ∈ X⋄, there exists a path in X from x to y.
Note that the void complex is path-connected, but the empty complex is not.
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3 Simple homotopy

We recall some basic definitions related to the collapse operator [1].

Let X ∈ S and let x, y be two distinct faces of X . The couple (x, y) is a
free pair for X if y is the only face of X that contains x. Thus, the face y is
necessarily a facet of X . If (x, y) is a free pair for X , then Y = X \ {x, y} is an
elementary collapse of X , and X is an elementary expansion of Y .
We say that X collapses onto Y , or that Y expands onto X , if there exists a
sequence 〈X0, ..., Xk〉 such that X0 = X , Xk = Y , and Xi is an elementary
collapse of Xi−1, i ∈ [1, k]. The complex X is collapsible if X collapses onto ∅.
We say that X is (simply) homotopic to Y , or that X and Y are (simply)
homotopic, if there exists a sequence 〈X0, ..., Xk〉 such that X0 = X , Xk = Y ,
and Xi is an elementary collapse or an elementary expansion of Xi−1, i ∈ [1, k].
The complex X is (simply) contractible if X is simply homotopic to ∅.

Remark 1. We observe that a complex X , X 6= ∅, is an elementary collapse of
a complex Z if and only if we have Z = X ∪ γD and X ∩ γD = γD◦, where D,
D 6= ∅, is a cell, and γ is a vertex disjoint from D. In fact, the first definition of
an elementary collapse was formulated in this way (see [1], p. 247).

Let X,Y ∈ S, we observe that:
1) If x, y ∈ X \ Y , then (x, y) is a free pair for X if and only if (x, y) is a free
pair for X ∪ Y .
Furthermore, if α is a vertex disjoint from X ∪ Y :
2) If x ∈ X \ Y is a facet of X , then (x, α ∪ x) is a free pair for αX ∪ Y .
3) If x, y ∈ X , then the couple (x, y) is a free pair forX if and only if (α∪x, α∪y)
is a free pair for αX ∪ Y .

By induction, we have the following results which will be used in this paper.

Proposition 1. Let X,Y ∈ S. The complex X collapses onto X ∩Y if and only
if X ∪ Y collapses onto Y .

Proposition 2. Let X,Y ∈ S, and let α be a vertex disjoint from X ∪ Y .
The complex αX ∪ Y collapses onto α(X ∩ Y ) ∪ Y .
In particular, the complex αX collapses onto ∅. Thus any cone is collapsible.

Proposition 3. Let X,Y ∈ S, and let α be a vertex disjoint from X ∪ Y .
The complex X collapses onto Z if and only if αX∪Y collapses onto αZ∪X∪Y .
In particular, if X is collapsible, then αX ∪ Y collapses onto X ∪ Y .

4 Completions

We give some basic definitions for completions. A completion may be seen as a
rewriting rule that permits to derive collections of sets. See [4] for more details.
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Let S be a given collection and let K be an arbitrary subcollection of S.
Thus, we have K ⊆ S. In the sequel of the paper, the symbol K, with possible
superscripts, will be a dedicated symbol (a kind of variable).

Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that K is finitary,
if F is finite whenever (F,G) ∈ K.

Let 〈K〉 be a property that depends on K. We say that 〈K〉 is a completion (on
S) if 〈K〉 may be expressed as the following property:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉
where K is a finitary binary relation on 2S.

If 〈K〉 is a property that depends on K, we say that a given collection X ⊆ S
satisfies 〈K〉 if the property 〈K〉 is true for K = X.

Theorem 1 (from [4]). Let 〈K〉 be a completion on S and let X ⊆ S. There
exists, under the subset ordering, a unique minimal collection that contains X
and that satisfies 〈K〉.

If 〈K〉 is a completion on S and if X ⊆ S, we write 〈X; K〉 for the unique
minimal collection that contains X and that satisfies 〈K〉.

Let 〈K1〉, 〈K2〉, ..., 〈Kk〉 be completions on S. We write ∧ for the logical “and”.
It may be seen that 〈K〉 = 〈K1〉∧〈K2〉...∧〈Kk〉 is a completion. In the sequel, we
write 〈K1,K2, ...,Kk〉 for 〈K〉. Thus, if X ⊆ S, the notation 〈X; K1,K2, ...,Kk〉
stands for the smallest collection that contains X and that satisfies each of the
properties 〈K1〉, 〈K2〉, ..., 〈Kk〉.

We observe that, if 〈K〉 and 〈Q〉 are two completions on S, then we have
〈X; K〉 ⊆ 〈X; K,Q〉 whenever X ⊆ S.

Furthermore, if 〈K〉 is a completion on S and X ⊆ S, it could be seen that:
- We have 〈X; K〉 ⊆ 〈Y; K〉 whenever X ⊆ Y ⊆ S.
- If Z = 〈X; K〉, then 〈Z; K〉 = Z.
- We have 〈X; K〉 = 〈Y; K〉 whenever X ⊆ Y ⊆ 〈X; K〉.

5 Ramifications

5.1 Definition

The notion of a dendrite was introduced in [4] as a way for defining a collection
made of acyclic complexes. Let us consider the collection S = S, and let K denote
an arbitrary collection of simplicial complexes.

We define the two completions 〈R〉 and 〈D〉 on S: For any S, T ∈ S,
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈R〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D〉

Let D = 〈C;R,D〉. Each element of D is a dendrite or an acyclic complex.
We have the general result [4]:
A complex is a dendrite if and only if it is acyclic in the sense of homology.
We set R = 〈C;R〉. Each element of R is a ramification. Thus, the collection

R is the unique minimal collection that contains C and that satisfies the prop-
erty 〈R〉. Also, the collection R is the very collection that may be obtained by
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starting from K = C, and by iteratively adding to K all the sets S ∪T such that
S, T ∈ K and S ∩ T ∈ K.

Note that the notion of a ramification corresponds to the buildable complexes
introduced by J. Jonsson [3]. Here, we have a formulation in terms of completions.

The collection of all cones provides a basic example of ramifications. If a
cone αZ has more than one facet, then it may be split in two distinct cones αX
and αY such that αZ = αX ∪ αY . Since αX ∩ αY is a cone, and αZ is a
cell whenever αZ has a single facet, it follows by induction that any cone is a
ramification.

By using also an inductive argument, it is easy to prove that a ramification
is necessarily path-connected.

5.2 Ramifications and collapsible complexes

Let us denote by E the collection of all complexesX such that ∅ expands onto X ,
i.e., such that X is collapsible. This collection may be described by completions.
See Sec. 6 of [4] and Sec. 8 of [7]. Now let us consider the alternative definition of
an elementary collapse given in Remark 1. If X is an elementary collapse of Z,
we have Z = X∪Y , where Y and X∩Y are cones. Since cones are ramifications,
and since the void complex is a ramification, we can again prove by induction
that any collapsible complex is a ramification. Thus, we have E ⊆ R. See [4]
and [7] (Sec. 8). See also [3] (Def. 3.14 and Prop. 5.17) where a slightly different
definition of a collapsible complex is used.

The Bing’s house [10] is a classical example of an object that is contractible
but not collapsible, see Fig. 1 (a). This two dimensional object is made of two
rooms. Two tunnels allow to enter to the upper room by the lower face, and to
the lower room by the upper face. Two small walls are attached to the tunnels
in order to make this object acyclic.

In [4], it was noticed that the Bing’s house B is a ramification. Let us consider
the two complexes B1 and B2 of Fig. 1 (b) and (c). We have B = B1 ∪ B2. If
B is correctly triangulated, then we can see that B1, B2, and B1 ∩ B2 are all
collapsible. Since E ⊆ R, these three complexes are ramifications. Thus, the
Bing’s house B is a ramification. But the Bing’s house is not collapsible, in fact
there is nowhere we can start a collapse sequence. In consequence, the inclusion
E ⊆ R is strict.

(a) (b) (c)

Fig. 1. (a): A Bing’s house B with two rooms, (b): An object B1 ⊆ B, (c): An object
B2 ⊆ B. We have B = B1 ∪ B2, the object B1 ∩B2 is outlined in (b) and (c).
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5.3 Ramifications and contractible complexes

Now, let us consider the collection H made of all contractible complexes. We
have H ⊆ D, this inclusion is strict (see [7]).

It was shown [3] (Prop. 5.17) that any buildable complex (or any ramification)
is contractible. The arguments given for the proof are based on the Hurewicz
theorem (Th. 4.32 of [12]). It follows that these arguments do not allow to explicit
a sequence of collapses and expansions that transform any ramification into the
void complex. In fact, it is undecidable to determine whether a finite simplicial
complex is contractible or not (for example see [13], Appendix). Thus, such an
explicit sequence cannot, in general, be given.

In Appendix A, we provide a direct proof that permits to build such a se-
quence. We illustrate an aspect of this proof with the decomposition B = B1∪B2

of the Bing’s house given Fig. 1.
Let α be a vertex disjoint from B. Since B1 is collapsible, B expands onto the

complex C = αB1∪B2 (Prop. 3, by replacing collapses by expansions). Now, we
can collapse C onto the complex D = α(B1 ∩B2)∪B2 (Prop. 2). Since B1 ∩B2

is collapsible, the complex D collapses onto B2 (Prop. 2), which is collapsible.
Thus, the sequence B ր αB1 ∪ B2 ց α(B1 ∩ B2) ∪ B2 ց B2 ց ∅ gives an
homotopic deformation between B and ∅; the symbol ր stands for expansions
and the symbol ց for collapses. Now, let us consider a complex B′ = B′

1 ∪ B′

2

where B′

1 and B′

2 are two copies of B such that B′

1 ∩ B′

2 is a ramification.
The complex B′ is a ramification but, since B′

1 and B′

2 are not collapsible, the
above sequence is no longer valid. Furthermore, this process may be iterated by
considering two copies of B′, and so on. In Appendix A, we handle this problem
by proposing an inductive construction which allows us to perform iteratively
the above sequence.

Thus, we have R ⊆ H. Are there contractible complexes that are not ramifi-
cation? This question corresponds to a conjecture formulated by J. Jonsson [3]
(Problem 5.21). In Appendix B, we give a positive answer to this question. The
counter-example is given by the dunce hat [11], which is another classical ex-
ample of an object that is contractible but not collapsible. Note that we only
proved that a specific triangulation of the dunce hat is not a ramification. This
leaves open the question for any triangulation of this complex.

The following proposition summarizes the facts given in this section.

Proposition 4. We have E ⊆ R ⊆ H ⊆ D, all these inclusions are strict.

6 Ramification pairs

In order to achieve a better understanding of the collection R of all ramifications,
we will consider an extension ofR. This leads to a collection R̈, which is composed
of couples of complexes. It should be noted that the following completion 〈R̃〉
has already been introduced in a previous paper [4]. Nevertheless, it was always
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associated with another completion (its dual), so that all the following results
are new.

We set S̈ = {(X,Y ) | X,Y ∈ S, X � Y } and C̈ = {(A,B) ∈ S̈ | A,B ∈ C}.
The notation K̈ stands for an arbitrary subcollection of S̈.
We define the completion 〈R̃〉 on S̈: For any (S, T ), (S′, T ′) in S̈,

−> If (S, T ), (S′, T ′), (S ∩ S′, T ∩ T ′) ∈ K̈, then (S ∪ S′, T ∪ T ′) ∈ K̈. 〈R̃〉

We set R̈ = 〈C̈ ∪ Ï; R̃〉, where Ï = {(X,X) | X ∈ S}.
Each couple of R̈ is a ramification pair.
In fact, the collection R̈ may be generated with a smaller starting collection.

Proposition 5. We have R̈ = 〈C̈#; R̃〉, where C̈# = C̈ ∪ {({∅}, {∅})}.

Proof. Since C̈# ⊆ C̈ ∪ Ï, we have 〈C̈#; R̃〉 ⊆ R̈.

Since C̈ ⊆ C̈#, it is sufficient to show that Ï ⊆ 〈C̈#; R̃〉.
If X = ∅, then we have (X,X) ∈ C̈. Suppose that, for any X with Card(X) ≤ k,

we have (X,X) ∈ 〈C̈#; R̃〉. Let X such that Card(X) = k + 1. If X has a
single facet, then we have either X = {∅} or X ∈ C. In both cases, we have
(X,X) ∈ C̈#. If X has more that one facet, then there exist two complexes
Y and Z, with Card(Y ) ≤ k and Card(Z) ≤ k, such that X = Y ∪ Z. By
the induction hypothesis, the couples (Y, Y ), (Z,Z), and (Y ∩ Z, Y ∩ Z) are in

〈C̈#; R̃〉. By 〈R̃〉, it means that (X,X) is in 〈C̈#; R̃〉. �

Remark 2. Let (X,Y ) ∈ S̈. We can check that we have (X,Y ) ∈ 〈C̈; R̃〉 if and
only if X ∈ R and Y ∈ R. Choosing C̈∪ Ï in the definition of a ramification pair
will allow us to build a much wider collection.

ST

T’ S’

�
�
�
�

��
��
��
��

T

S’

S

T’

(a) (b)

Fig. 2. Four couples (S, T ), (S′, T ′), (S ∩ S′, T ∩ T ′), (S ∪ S′, T ∪ T ′), which are rami-
fication pairs; (a): S and S′ are two simple open curves, S ∩S′ is made of two vertices.
(b): S and S′ are also two simple open curves, but S ∩ S′ is a segment.

The four couples given in Fig. 2 correspond to the four couples appearing
in the definition of the completion 〈R̃〉. In this specific illustration, we observe
that, if (X,Y ) is one of these four couples, then Y collapses onto X (under an
appropriate triangulation).
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We introduce the notion of a ∆-form, the symbol ∆ corresponds to a binary
relation over S̈ and S.

Let (X,Y ) ∈ S̈ and Z ∈ S. We write ∆(X,Y, Z) if there exists a vertex α,
disjoint from Y , such that Z = αX ∪ Y . In this case, we write α(X,Y ) for the
complex Z, and we say that α(X,Y ) is a ∆-form. We also say that α(X,Y ) is
a ∆-form of (X,Y ) or a ∆-form of Z.

If Z ∈ S and α is an arbitrary vertex, it may be seen that there exists a
unique couple (X,Y ) ∈ S̈ such that Z = α(X,Y ). We have:

X = {x ∈ Z | x ∩ α = ∅ and x ∪ α ∈ Z} and Y = {x ∈ Z | x ∩ α = ∅}.
The complex X is the so-called link of the face α in Z, and Y is the so-called
deletion of α from Z, see [3]. Thus, we have:

α(X,Y ) = α(X ′, Y ′) if and only if (X,Y ) = (X ′, Y ′).
Note that we have X = ∅ and Y = Z whenever α is disjoint from Z.

We now clarify the correspondence between R̈ and R induced by ∆-forms:
1) If (X,Y ) ∈ S̈, then, up to a renaming of the vertex α, the couple (X,Y ) has
a unique ∆-form Z = α(X,Y ). Thus, up to this renaming, there is a unique
complex in S which is the ∆-form of a couple in S̈.
2) If Z ∈ S, and for a given α, there is a unique couple (X,Y ) such that Z =
α(X,Y ). Now, for all possible choices of α, we observe that there are precisely
k+1 different such couples, where k is the number of vertices included in Z (we
have to consider the case where α is disjoint from Z). Thus, in general, there are
several different couples in S̈ which are the ∆-forms of a complex in S.

Proposition 6. Let α(X ′, Y ′) and α(X ′′, Y ′′) be two ∆-forms.
1) We have α(X ′, Y ′) ∪ α(X ′′, Y ′′) = α(X ′ ∪X ′′, Y ′ ∪ Y ′′).
2) We have α(X ′, Y ′) ∩ α(X ′′, Y ′′) = α(X ′ ∩X ′′, Y ′ ∩ Y ′′).

Proof. Let α(X ′, Y ′) and α(X ′′, Y ′′) be two ∆-forms. Then X ′ ∪ X ′′ �
Y ′ ∪Y ′′, X ′ ∩X ′′ � Y ′ ∩Y ′′, and α is disjoint from Y ′ ∪ Y ′′ and Y ′ ∩ Y ′′. Thus,
both α(X ′ ∪X ′′, Y ′ ∪ Y ′′) and α(X ′ ∩X ′′, Y ′ ∩ Y ′′) are ∆-forms.
1) Let Z = α(X ′, Y ′) ∪ α(X ′′, Y ′′). We have Z = (αX ′ ∪ Y ′) ∪ (αX ′′ ∪ Y ′′) =
α(X ′ ∪X ′′) ∪ (Y ′ ∪ Y ′′) = α(X ′ ∪X ′′, Y ′ ∪ Y ′′).
2) Let Z = α(X ′, Y ′) ∩ α(X ′′, Y ′′). Thus Z = (αX ′ ∪ Y ′) ∩ (αX ′′ ∪ Y ′′).
Therefore Z = α(X ′ ∩X ′′) ∪ (Y ′ ∩ Y ′′) ∪ (αX ′ ∩ Y ′′) ∪ (αX ′′ ∩ Y ′).
Since (αX ′∩Y ′′)∪ (αX ′′ ∩Y ′) ⊆ Y ′ ∩Y ′′, we have Z = α(X ′∩X ′′)∪ (Y ′ ∩Y ′′).
We obtain Z = α(X ′ ∩X ′′, Y ′ ∩ Y ′′). �

By induction on R and R̈, Prop. 6 leads to the following relation between
these two collections.

Theorem 2. Let (X,Y ) ∈ S̈ and let Z ∈ S such that ∆(X,Y, Z).
We have (X,Y ) ∈ R̈ if and only if Z ∈ R.

Proof. Let Z = α(X,Y ).
1) Suppose (X,Y ) is a ramification pair. If (X,Y ) ∈ C̈ ∪ Ï, we easily check that
Z = α(X,Y ) is a ramification. If (X,Y ) 6∈ C̈ ∪ Ï, then there exist (X ′, Y ′) ∈ R̈

and (X ′′, Y ′′) ∈ R̈, with (X ′ ∩ X ′′, Y ′ ∩ Y ′′) ∈ R̈, such that X = X ′ ∪ X ′′,
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Y = Y ′ ∪ Y ′′. We observe that α(X ′, Y ′) and α(X ′′, Y ′′) are ∆-forms.
By Prop. 6, we have Z = α(X ′ ∪X ′′, Y ′ ∪ Y ′′) = α(X ′, Y ′) ∪ α(X ′′, Y ′′).
Furthermore, we have α(X ′, Y ′) ∩ α(X ′′, Y ′′) = α(X ′ ∩X ′′, Y ′ ∩ Y ′′).
Thus, if α(X ′, Y ′), α(X ′′, Y ′′), and α(X ′∩X ′′, Y ′∩Y ′′) are ramifications, then Z

is a ramification. By induction on R̈ = 〈C̈ ∪ Ï; R̃〉, it follows that the complex Z

is a ramification whenever (X,Y ) is a ramification pair.
2) Suppose Z is a ramification.
i) Suppose Z ∈ C. If X = ∅, we have (X,Y ) ∈ C̈. If X = {∅}, we must have
Y = {∅}, otherwise Z would not be path-connected. Thus (X,Y ) ∈ Ï. If X 6= ∅
and X 6= {∅}, it may be seen that we must have X ∈ C and Y = X , thus
(X,Y ) ∈ C̈.
ii) If Z 6∈ C, then there exists Z ′ ∈ R and Z ′′ ∈ R , with Z ′ ∩ Z ′′ ∈ R, such
that Z = Z ′ ∪ Z ′′. Let us consider the couples (X ′, Y ′) and (X ′′, Y ′′) such
that Z ′ = α(X ′, Y ′) and Z ′′ = α(X ′′, Y ′′). By Prop. 6, we have Z ′ ∩ Z ′′ =
α(X ′ ∩X ′′, Y ′ ∩ Y ′′). We also have Z = α(X,Y ) = α(X ′ ∪X ′′, Y ′ ∪ Y ′′).
Since there exists a unique couple (X,Y ) such that Z = α(X,Y ), we have
X = X ′ ∪X ′′ and Y = Y ′ ∪ Y ′′. If (X ′, Y ′), (X ′′, Y ′′), (X ′ ∩X ′′, Y ′ ∩ Y ′′) are

ramification pairs, then (X ′∪X ′′, Y ′∪Y ′′) is a ramification pair (by 〈R̃〉), which
means that (X,Y ) is a ramification pair .
By i) and ii), we may affirm, by induction on R = 〈C;R〉, that (X,Y ) is a
ramification pair whenever α(X,Y ) is a ramification. �
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Conjecture, Lectures on Modern Mathematics II, Wiley, 93–128 (1964)

11. Zeeman, E.C.: On the dunce hat, Topology, Vol. 2, 341–358 (1964)

12. Hatcher, A.: Algebraic topology, Cambridge University Press (2001)

13. Tancer, M.: Recognition of collapsible complexes is NP-complete, arXiv 1211.6254
(2012)



10 Some results on ramifications

A Ramifications and contractibility

In this section, we show that any ramification is contractible. We present a con-
struction that provides a sequence of expansion and collapse operations, which
transform any ramification into a single vertex (equivalently into the void com-
plex).

Let X,Y ∈ S with X � Y , and let α be a vertex disjoint from Y . If X is
collapsible, then we say that the complex Z = αX ∪ Y is an α-expansion of Y .
We observe that:
1) If Y � T and α is disjoint from T , then Z is an α-expansion of T whenever Z
is an α-expansion of Y .
2) The complex Z collapses onto Y , i.e., Y expands onto Z, whenever Z is an
α-expansion of Y . This fact is a direct consequence of Prop. 3.

We say that Y is a conic expansion of X , or that (X,Y ) is a CE-pair, if there
exist a sequence 〈X0, ..., Xk〉, with X0 = X and Xk = Y , and a sequence of
distinct vertices 〈α1, ..., αk〉 such that Xi is an αi-expansion of Xi−1, i ∈ [1, k].
Thus, by 2), the complex Y collapses onto X whenever (X,Y ) is a CE-pair.

Let (X, X̃) and (Y, Ỹ ) be two CE-pairs. We say that (X, X̃) and (Y, Ỹ ) are

independent if X̃ ∩ Ỹ = X ∩ Y .
Thus, two CE-pairs (X, X̃) and (Y, Ỹ ) are independent if the vertices involved in

the sequences relative to (X, X̃) and (Y, Ỹ ) are all distinct and if these vertices
are disjoint from X ∪ Y . If two CE-pairs are not independent, it is sufficient to
rename the vertices of the sequences in order to obtain independent pairs. In the
following, we will consider only independent CE-pairs.

The two following facts are a direct consequence of independence.
3) Let X,Y ∈ S and let (X, X̃), (Y, Ỹ ) be two independent CE-pairs. Then

(X ∪Y, X̃ ∪ Ỹ ) is a CE-pair. Furthermore X̃ ∪ Ỹ collapses onto X̃ ∪Y and X̃ ∪Y

collapses onto X ∪ Y .
4) LetX,Y ∈ S. Let (X, X̃), (Y, Ỹ ) and (X∩Y, T̃ ) be three mutually independent

CE-pairs. Let X̃+ = X̃ ∪ T̃ and Ỹ + = Ỹ ∪ T̃ . Then (X, X̃+), (Y, Ỹ +) are two

CE-pairs such that X̃+∩ Ỹ + = T̃ . Furthermore, (X ∪Y, X̃+∪ Ỹ +) is a CE-pair.

Proposition 7. Let X,Y ∈ S and let (X, X̃), (Y, Ỹ ), (X∩Y, T̃ ), be three mutu-

ally independent CE-pairs such that X̃, Ỹ , T̃ are collapsible. We set X̃+ = X̃∪T̃
and Ỹ + = Ỹ ∪ T̃ . We consider the complexes Z = X ∪ Y and Z̃ = αX̃+ ∪ Ỹ +,
where α is a vertex disjoint from X̃+ ∪ Ỹ +.
Then (Z, Z̃) is a CE-pair. Furthermore the complex Z̃ is collapsible.

Proof. By 3) the complex X̃+ = X̃ ∪ T̃ collapses onto X̃ ∪ (X ∩ Y ) = X̃.

Thus, the complex X̃+ is collapsible. Similarly Ỹ + is collapsible.
By 4) the couple (X ∪ Y, X̃+ ∪ Ỹ +) is a CE-pair and we have X̃+ ∩ Ỹ + = T̃ .

The complex Z̃ = αX̃+ ∪ Ỹ + is an α-expansion of X̃+ ∪ Ỹ +. Thus (X ∪ Y, Z̃) is
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a CE-pair. By Prop. 2, the complex αX̃+∪ Ỹ + collapses onto α(X̃+∩ Ỹ +)∪ Ỹ +.

Thus, Z̃ collapses onto αT̃ ∪ Ỹ +. By Prop. 3, the complex αT̃ ∪ Ỹ + collapses
onto Ỹ +. Therefore, the complex Z̃ is collapsible. �

By induction, one can immediately deduce that any ramification is con-
tractible. The base step is obtained noting that any cell is collapsible. The induc-
tive step is a direct consequence of Prop. 7 and the completion 〈R〉 that defines

a ramification. For any ramification X , there exists a collapsible complex X̃ such
that (X, X̃) is a CE-pair. Since X̃ also collapses onto X , this shows that X is
contractible.

B Ramifications and the dunce hat

In this section we show that a certain triangulation of the dunce hat is not a
ramification. Our arguments are based on homology modulo 2, see [9].

Let Z ∈ S. If x ∈ Z and dim(x) = p, we say that x is a p-simplex. We denote
by Z[p] the set composed of all p-simplexes of Z.
If A ⊆ Z[p+ 1], the boundary of A is the set ∂(A) ⊆ Z[p] such that a p-simplex
x is in ∂(A) iff the number of (p+ 1)-simplexes of A containing x is odd.
Let B ⊆ Z[p]. The set B is a boundary in Z if there exists A ⊆ Z[p + 1] such
that ∂(A) = B. The set B is a cycle in Z if ∂(B) = ∅.
It is well-known that every boundary in Z is a cycle in Z. The converse is, in
general, not true. We say that Z is acyclic if each cycle in Z is a boundary in Z.

We introduce a tool that will allow us to check boundaries in the dunce hat.
Let Z ∈ S and let B ⊆ Z[p] be a cycle in Z. We define the binary relation
R ⊆ Z[p+ 1]× Z[p+ 1] which is such that (x, y) ∈ R iff:
1) We have x ∩ y ∈ Z[p] \B; and
2) The simplexes x and y are the only simplexes of Z[p+ 1] containing x ∩ y.

We denote by R̂ the reflexive and transitive closure of R. Since R is symmetric,
the relation R̂ is an equivalence relation. The equivalent class of x ∈ Z[p + 1]

under R̂ is the extension of x for B. If x ∈ B and y ∈ Z[p + 1] are such that
x ⊆ y, then we say that the extension of y for B is a B-extension of x.

Let Z ∈ S and let B ⊆ Z[p] be a cycle in Z. Let A ⊆ Z[p + 1] such that
∂(A) = B. Let x ∈ Z[p + 1] and let E ⊆ Z[p + 1] be the extension of x for B.
From the above definitions, we can see that we have E ⊆ A whenever x ∈ A.
Furthermore, if x ∈ B, then there exists a B-extension of x that is a subset of A.

In the following the complex Z corresponds to the triangulation of the dunce
hat represented Fig. 3 (a).

We first illustrate the preceding property through an example on Z, see Fig.
3 (b). We consider the set B ⊆ Z[1] such that B = {{1, 5}, {5, 4}, {4, 3}, {3, 1}}.
The set B is a cycle in Z. Let x = {4, 5, 6}. Suppose there exists A ⊆ Z[2] such
that ∂(A) = B and such that x ∈ A. Let us consider the simplex y = {4, 6, 8}.
We have x ∩ y = {4, 6}. Since x ∩ y is not in B and since x, y are the only



12 Some results on ramifications

simplexes of Z[2] containing x ∩ y, we have (x, y) ∈ R. We see that we must
have y ∈ A otherwise the simplex x ∩ y would be in ∂(A). By induction, the
extension of x for B must be a subset of A. Observe that this extension E is also
a B-extension of the simplex {4, 5} ∈ B. The set E is highlighted Fig. 3 (c). In
fact, in this example, it turns out that we have ∂(E) = B.

In the following we consider a decomposition of Z. We set Z = X ∪Y , where
X and Y are proper subcomplexes of Z. We will show it is not possible that X
and Y are both acyclic. Since a ramification is necessarily acyclic, we get the
desired result.

First let us consider the set B ⊆ Z[1] such that B = {{1, 2}, {2, 3}, {3, 1}},
see Fig. 3 (a). The set B is a cycle in Z. Furthermore we observe that ∂(Z) = B.
Now supposeX is acyclic and suppose B is a subset of X , i.e., we have B ⊆ X [1].
There must exists at least one set A in X [2] such that ∂(A) = B. Let us consider
the three simplexes x1 = {1, 3, 6}, x2 = {1, 3, 5}, and x3 = {1, 3, 4}. Since {1, 3}
is in B, the set A must contain at least one of the simplexes x1, x2, x3. We can
check that, for each i = 1, 2, 3, the extension of xi for B is precisely the com-
plex Z. In other words, any B-extension of {1, 3} is equal to Z. It follows that
Z is the unique subcomplex of Z such that ∂(Z) = B. Thus, it is not possible
that X is a proper subcomplex of Z.
Therefore, we have three possible cases up to a renaming of X and Y .

1. Suppose {1, 3} ∈ X \ Y and {2, 1} ∈ Y \ X . It implies that the three
2-simplexes containing {1, 3} must be in X \ Y and that the three 2-simplexes
containing {2, 1} must be in Y \X , see Fig. 4 (a).
- Suppose {4, 8} is in Y . Thus the cycle B = {{2, 4}, {4, 8}, {8, 2}} is in Y . In this
case the cycle B is not a boundary in Y . In other words, it is not possible there
exists a set A ⊆ Y [2] such that ∂(A) = B. To see this, we observe that, since
{4, 8} is in B, such a set A would contain one of the two simplexes x1 = {3, 4, 8}
or x2 = {4, 6, 8}. But we see that the two extensions of x1 and x2 contain some
simplexes of X \ Y . Therefore {4, 8} is not in Y and the simplexes {3, 4, 8} and
{4, 6, 8} are in X \ Y . We obtain the configuration of Fig. 4 (b)
- Now let us consider the cycle B = {{3, 6}, {6, 4}, {4, 3}}. We have B ⊆ X .
Again, it is not possible there exists a set A ⊆ X [2] such that ∂(A) = B. To
see this, we observe that, since {4, 6} is in B, such a set A would contain one of
the two simplexes x1 = {4, 5, 6} or x2 = {4, 6, 8}. But the two extensions of x1

and x2 contain some simplexes of Y \X . Thus, this case leads to a contradiction.

The two other cases may be analyzed in the same way.

2. Suppose {1, 3} ∈ X \ Y and {3, 2} ∈ Y \X , we obtain the configuration
depicted Fig. 4 (c).
- We must have {4, 5} 6∈ X . Otherwise B = {{3, 5}, {5, 4}, {4, 3}} would be a
cycle in X but not a boundary in X (the two B-extensions of {4, 5} contain
some simplexes of Y \X). We obtain the configuration of Fig. 4 (d).
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- We must have {4, 8} 6∈ Y . Otherwise B = {{2, 4}, {4, 8}, {8, 2}} would be a
cycle but not a boundary in Y (the two B-extensions of {4, 8} contain some
simplexes of X \ Y ). We obtain the configuration of Fig. 4 (e).
- Now let us consider the cycle B = {{3, 6}, {6, 4}, {4, 3}}. We have B ⊆ X . The
cycle B is not a boundary in X since the two extensions of {4, 6, 8} and {4, 5, 6}
contain some simplexes of Y \X .

3. Suppose {2, 3} ∈ X \ Y and {1, 2} ∈ Y \X , we obtain the configuration
depicted Fig. 4 (f).
- We must have {7, 8} 6∈ X . Otherwise B = {{2, 7}, {7, 8}, {8, 2}} would be a
cycle but not a boundary in X (the two B-extensions of {7, 8} contain some
simplexes of Y \X). We obtain the configuration of Fig. 4 (g).
- We must have {4, 8} 6∈ Y . Otherwise B = {{2, 4}, {4, 8}, {8, 2}} would be a
cycle but not a boundary in Y (the B-two extensions of {4, 8} contain some
simplexes of X \ Y ). We obtain the configuration of Fig. 4 (h).
- We must have {4, 5} 6∈ X . Otherwise B = {{3, 5}, {5, 4}, {4, 3}} would be a
cycle but not a boundary in X (the two B-extensions of {4, 5} contain some
simplexes of Y \X). We obtain the configuration of Fig. 4 (i).
- Now let us consider the cycle B = {{2, 4}, {4, 6}, {6, 7}{7, 2}}.We have B ⊆ Y .
The cycle B is not a boundary in Y since the two extensions of {4, 6, 8} and
{4, 5, 6} contain some simplexes of X \ Y .
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Fig. 3. (a): a triangulation of the dunce hat; (b): a cycle B (in red) and two simplexes x
(dark grey) and y (light grey) such that (x, y) ∈ R; (c) the extension of x for B (dark
grey).
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Fig. 4. The highlighted 2-simplexes are the simplexes that belong to X \Y (dark grey)
and to Y \X (light grey). The 1-simplexes highlighted in red correspond to cycles.


