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Abstract—In recent years, vehicular communication has at-
tracted significant research attention for its potential as a fifth
generation (5G) application. The IEEE 802.11p standard enables
the wireless technology that defines vehicular communication
and, due to the time-varying characteristic, one of its critical
challenges is to ensure communication reliability. Moreover, this
standard is based on orthogonal frequency division multiplexing
(OFDM) transmission scheme, which may suffer from nonlinear
distortions induced by high power amplifiers (HPA) at the
transmitter, degrading the channel estimation and detection
performance of the receivers. In this work, the application of
deep learning (DL) based channel estimation schemes to the IEEE
802.11p standard in presence of HPA distortions is presented.
Simulation results show that the deep neural network (DNN)
based estimation schemes outperform conventional data-pilot
aided (DPA) and spectral temporal averaging (STA) estimators
in terms of bit error rate and normalized mean squared error,
evidencing their superiority in providing reliable estimation in
mobility scenarios in presence of HPA nonlinear distortions.
Furthermore, the hybrid solution, employing a joint DNN-
based post-processing and conventional estimation, achieves less
computational complexity than the DL-based proposal on top of
the initial DPA estimation.

Index Terms—IEEE 802.11p standard; OFDM; HPA distor-
tions; Channel estimation; Deep learning.

I. INTRODUCTION

Vehicular communication systems are important to enable
some of the key 5G applications, such as autonomous driv-
ing, route planning optimization and real-time traffic safety
information. The IEEE 802.11p [1] standard defines the phys-
ical layer specifications of these communication scenarios.
However, by considering OFDM transmission and using only
four pilot subcarriers to estimate the channel, combined to a
high mobile and complex communication environment, this
standard introduces several challenges to achieve accurate
estimation and, therefore, ensure communication reliability.

Several methods considered to perform channel estimation
in IEEE 802.11p networks are based on the DPA estima-
tion, that employs the demapped data symbols in order to
improve the limited number of data pilots, providing a low
computational complexity solution. By averaging the channels
estimations in both time and frequency domains, the STA
introduced by [2] improves the DPA initial estimation in
low SNR region, where the impact of noise and interference
are high and the averaging steps are capable to alleviate the

error. However, it suffers from relevant performance decrease
compared to the DPA in high SNRs, where this noise impact
becomes neglected, but there is a large impact from the
demapping error.

Recently, DNN-based schemes have been successfully em-
ployed to several wireless communication problems. In the
context of channel estimation to vehicular communication
scenarios, DNN techniques improve the accuracy from con-
ventional solutions by learning the channel frequency cor-
relation and correcting the error from previous estimators.
The AE-DNN proposed by [3] improves the DPA method
by implementing an offline trained DNN to reduce the error
propagation, while correcting the errors between the initial
DPA estimation and the ideal channel. However, besides these
improvements, this proposal presents considerable complexity.
The authors in [4] show that it is possible to reduce the
complexity of the DNN-based channel estimation schemes by
applying the offline trained DNN on top of the classical STA
estimator, in order to achieve fine channel estimation. The goal
of the DNN in [4] is to reconstruct the estimation from the
conventional method as close as possible to the ideal channel.
This nonlinear processing allows the estimator to capture
more features of the channel, providing less computational
complexity and performance improvements.

Furthermore, even though OFDM improves capacity and
spectral efficiency, it introduces significant power consumption
due to the high peak-to-average power ratio (PAPR) [5]. This
high PAPR leads to nonlinear distortions in the outputs of
the high power amplifiers (HPA) required at the transmitter,
affecting the channel estimation at the receivers and consid-
erably degrading the system performance. Several works in
the literature show the impact of a high PAPR in multicarrier
modulation techniques. For instance, the bit error rate (BER)
performance effects due to the presence of memoryless HPA in
OFDM are evaluated in [6]. In addition, different multicarrier
waveforms are further discussed in [7], where the authors
presented a theoretical characterization of nonlinear distortions
caused by HPAs in terms of symbols error rate, as well as
the analytical expressions to model communications systems
subjected to these distortions.

At the transmitter side, digital linearization is one of the
most employed techniques to mitigate the high PAPR in mul-
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Fig. 1: IEEE 802.11p packet structure [1].

ticarrier signals. This technique integrates the nonlinear HPA
with its inverse function modeled by one digital predistorter
(DPD) before transmission, enabling a more linear output from
the HPA, reducing PAPR effects. Many recent DPD designs
also employ neural networks in order to enhance perfor-
mance [8]–[11]. Nevertheless, remaining nonlinear distortions
are still present even in state-of-art DPD designs.

Unlike the works cited above, our proposal focuses at the
receiver side. Thus, our goal is to deal with the remaining
nonlinear effects of the HPA by considering and comparing
different estimators at the receiver. In this paper we aim to:

• Analyze the effects of HPA-induced nonlinearities on a
vehicular communication scenario, typical of the IEEE
802.11p standard;

• Analyze the impact of HPA nonlinear distortions, com-
bined with a IEEE 802.11p mobility scenario, for both
conventional and DNN-based estimators’ proposed in
the literature, comparing performance in terms of BER,
NMSE and complexity in number of neurons.

To the best of our knowledge, the scenario including both
mobility deployed by the IEEE 802.11p standard and HPA-
induced nonlinearities has not been addressed in the literature.

Notations: We use capital letters and lowercase letters in
boldface to denote matrices and vectors, respectively. Notation
exp(·) denotes an exponential function.

The remainder of this paper is organized as follows. The
IEEE 802.11p communication scenario is presented in Sec-
tion II. The main features of the considered HPA model are
provided in Section III. The conventional and DNN-based
methods considered to provide channel estimation are detailed
in Section IV, while results and discussions are presented in
Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Let us consider a vehicular communication scenario follow-
ing the IEEE 802.11p standard [1], which is used to provide
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication. This standard considers an OFDM transmis-
sion scheme, with Figure 1 describing the IEEE 802.11p
frame structure, where each transmitted packet consists in a
preamble that includes known short and long training symbols
to conduct the synchronization of the channel, a signal field,
which carries the physical layer information, and a data field.
In the data field, K = 64 subcarriers are employed within
each OFDM symbol, in which only Kon = 52 are active and
12 are virtual, i.e., inactive subcarriers. For simplicity, perfect
synchronization at the receiver is assumed and the signal field
is ignored. In addition, considering the Kon subcarriers, only

4 of them are allocated as pilots, while the remaining 48
subcarriers carry the data. The channel estimation is constantly
updated utilizing the pilots, as well as the estimation from the
previous OFDM symbol. For each active subcarrier k ∈ Kon,
with Kon being the set of Kon active subcarriers, the OFDM
frame at the receiver is written as

Y[k, i] = H[k, i]U[k, i] +N[k, i], (1)

where for all k subcarriers within the i-th OFDM symbol,
H[k, i] represents the time variant frequency response of the
channel, U[k, i] is the transmitted OFDM symbol affected by
the HPA distortion and N[k, i] is the Gaussian noise, with
power

η0 =
εp

ξ ·K
, (2)

with εp being the preamble power per sample and ξ the
average signal-to-noise ratio (SNR) at the receiver.

Due to the mobility, the Doppler shift affects the per-
formance of the OFDM transmission. In this sense, H[k, i]
coefficients are modeled over a Rayleigh fading with Jakes’
Doppler spectrum with Doppler frequency given by

fD =
v

c
fc, (3)

where v is the velocity of the vehicle in m/s, c is the speed of
light in m/s and fc is the carrier frequency. To simplify this
analysis, the received OFDM symbols can be expressed as

yi[k] = hi[k]ui[k] + ni[k], (4)

where ui[k] denotes the k-th subcarrier in the i-th transmitted
OFDM data symbol affected by the HPA distortion.

Let us denote the signal at the input of the HPA as xi[k],
so that following [7] we have the output given by ũi[k] =
γ0xi[k]+ δ̃i[k], where δ̃i[k] is a nonlinear distortion with zero
mean and variance σδ̃

2, that is uncorrelated with the input,
while γ0 describes a complex gain. Then, since γ0 is usually
compensated at the transmitter, we can write the output of the
HPA as

ui[k] = xi[k] + δi[k], (5)

where δi[k] = δ̃i[k]/γ0 is the remaining nonlinear distortion
of the HPA, so that we can re-write (4) as

yi[k] = hi[k]xi[k] + hi[k]δi[k] + ni[k], (6)

in which the effect of the term hi[k]δi[k] usually yields a BER
floor at the receiver [6].

III. HIGH POWER AMPLIFIER

To address the high PAPR issue and, therefore, the dis-
tortions caused by HPA in OFDM transmission, we use a
memoryless HPA based in the polynomial model as in [7]. This
model is based on a commercial evaluation of a HPA following
the 3GPP model and the description in [12], which exhibits
both amplitude to amplitude (AM/AM) and amplitude to phase
(AM/PM) distortions by approximating its characterizations



with a polynomial. Thus, for a given input signal xi[k], the
amplified output signal ui[k] can be expressed as

ui[k] = ϕa (ρ[k]) exp [j(ϕp (ρ[k]) + φ[k])]

= ς (ρ[k]) exp (jφ[k]),
(7)

in which ρ[k] = |xi[k]| is the input signal modulus, φ[k] =
∠xi[k] is the input signal phase, ϕa (ρ[k]) and ϕp (ρ[k])
represent the AM/AM and AM/PM characteristics of the HPA,
respectively, while ς (ρ[k]) = ϕa (ρ[k]) exp [jϕp (ρ[k])] is the
complex soft envelope of the amplified output signal ui[k].

Moreover, the soft envelope of the amplified signal em-
ployed in our simulations is approximated by

ς (ρ[k]) ≈
P∑
l=1

alρ[k]
l, (8)

where, following the description to the polynomial model [7],
al denotes the complex coefficients of the polynomial with
order P = 9, obtained with a least square (LS) method.

Finally, in order to reduce the effects of the nonlinearities,
the HPA operates at a given Input Back-off (IBO) from the
1 dB compression point, which refers to the input power level
where the characteristics of the amplifier have dropped by 1 dB
from the ideal linear characteristics [13]. In this matter, before
amplifying the signal by the HPA, it is scaled by the gain ϱ
to ensure the desired IBO, given by

ϱ =

√
τ1dB

10
IBO
10 τxi[k]

, (9)

where τ1dB is the input power at 1 dB compression point and
τxi[k] is the mean power of the input signal.

IV. CHANNEL ESTIMATION SCHEMES

Several methods to provide channel estimation in time
varying channels have been proposed in the literature. In this
section, we present the DPA and STA conventional estimators,
as well as DNN-based estimators such as the AE-DNN and
the STA-DNN.

A. Conventional Channel Estimators

1) DPA initial estimation: The basic method considered
to provide initial channel estimation in the IEEE 802.11p
standard is the LS estimator [2]–[4]. In this case, the preamble
is divided into two long training predefined symbols tp,1 and
tp,2, which are demodulated to obtain the received frequency
domain symbols for each k-th subcarrier, denoted by yp,1[k]
and yp,2[k]. Thus, the LS channel estimation is given by

ĥLS[k] =
yp,1[k] + yp,2[k]

2p[k]
, (10)

where p[k] is the predefined preamble sequence in frequency
domain. Then, the estimate ĥLS[k] is applied to equalize all re-
ceived data in the frame, which causes significant degradation
due to variations over its duration.

The DPA method enhances the LS estimator performance by
exploring the high correlation characteristics between adjacent

symbols in OFDM, so that it employs the previous received
symbol as a preamble to estimate the channel for the cur-
rent symbol. Considering the initial estimate as ĥDPA0 [k] =
ĥLS[k], the equalization of the current i-th symbol at the k-th
subcarrier is given by

ŷeqi
[k] =

yi[k]

ĥDPAi−1
[k]

, (11)

so that ŷeqi
[k] is then demapped to the nearest constellation

point to result in the di[k]. The DPA initial channel estimate
is obtained as

ĥDPAi [k] =
yi[k]

di[k]
. (12)

2) STA estimation: Several channel estimation schemes
based on DPA method have been proposed in the literature to
rapidly track varying channels. For instance, the STA method
has been introduced in [2], where an average of the estimated
channels in time and frequency domains is performed after the
DPA estimation. First, averaging (12) in the frequency domain
we have that

ĥupdatei [k] =

λ=β∑
λ=−β

ωλĥDPAi [k + λ], (13)

where ωλ = 1
2β+1 , with β being the frequency averaging

coefficient. Next, the STA channel estimation is computed as

ĥSTAi
[k] =

(
1− 1

α

)
ĥSTAi−1

[k] +
1

α
ĥupdatei [k], (14)

with α being the time averaging coefficient that, as well as
β, is an integer parameter inherent to the STA method. It
is worth to mention that to improve the STA performance,
α and β must be chosen experimentally depending on the
channel variation and fixing these parameters can increase the
gradually accumulated demapping error from di[k] [2].

B. DNN-Based Channel Estimation

It is worth mentioning that the estimators presented in Sec-
tion IV-A suffer from considerable performance degradation
when applied to high mobility scenarios, due to the increasing
error propagation over the OFDM frame [4]. Therefore, DNN-
based solutions appear as reasonable tools, since these algo-
rithms are capable of capturing varying characteristics and,
given the proper training and architecture, they involve low
computational complexity. Figure 2 illustrates the AE-DNN
and the STA-DNN deployments considered in this work. As
we can notice, both designs receive as input the ĥDPAi

[k]
estimate obtained in (12), while different structures for the
DNN are used in these methods, which are detailed as follows.

1) AE-DNN estimation: The AE-DNN solution proposed
in [3] improves the DPA method by combining it with an
offline trained AE with three hidden layers, consisting respec-
tively of 40, 20 and 40 neurons, which are used to update the
channel estimations while correcting the errors between the
DPA estimate and the ideal channel. The authors in [3] have
shown that the AE-DNN is capable of learning the frequency
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Fig. 2: Block diagram of the DNN-based estimators: AE-DNN and STA-DNN.

domain characteristics of the channel, recovering estimation
errors and attenuating the error propagation issue from the
previous DPA process.

However, the drawback of the AE-DNN solution is its high
computational complexity, due to the high number of neurons
of the hidden layers, necessary to deploy a network capable
to relate the ideal estimation to the initial DPA estimation.
Figure 2 illustrates such approach as a complete DNN that uses
ĥDPAi

[k] as input and delivers ĥAE−DNNi
[k] at its output.

2) STA-DNN estimation: In order to reduce complexity
when compared to the scheme proposed in [3], the authors
in [4] considered a three layer DNN, with 15 neurons in each
layer, which is used as a post-process to the conventional
STA estimator. Figure 2 illustrates such approach, in which
ĥDPAi

[k] is used by the STA estimator in (14), so that
ĥSTAi [k] is used as the input of the DNN in order to produce
ĥSTA−DNNi

[k].
The goal of the employed DNN is to minimize the mean

squared error (MSE) between the ideal channel and the STA
estimate, so that

MSESTA−DNN =
1

NT
·
NT∑
i=1

(
hideali − ĥSTAi

)
, (15)

where NT is the number of training samples. Unlike the pro-
posal in [3], the nonlinear processing along with the classical
STA allows the proposed estimator to capture more features of
the time and frequency correlations of the channel. The results
demonstrated that the proposed STA-DNN scheme provides a
performance improvement while reducing the computational
complexity of the solution.

In the present work, the same training objective and hy-
perparameters from the learning process presented in [3] and
[4] are considered. However, while employing the DNNs to
reduce the MSE between the ideal performance and the chan-
nel estimation from the conventional method, HPA-induced
distortions are considered into the communication environment
and, in order to provide proper channel estimation, the DNNs
are required to deal with both mobility and HPA-induced

nonlinear effects. Since the STA scheme is suited to deal with
the correlation between successive OFDM symbols, we expect
to reduce the complexity of the DNN, in terms of number of
neurons, when comparing STA-DNN and AE-DNN schemes.
In addition, the HPA-induced nonlinear distortions are usually
seen at the receiver as an additional source of noise, so that
we also expect that the DNN training will be able to deal with
this effect, reducing the BER floor typically observed in these
scenarios.

V. SIMULATION RESULTS

This section presents the performance analysis for the
conventional and DNN-based channel estimators when applied
to the IEEE 802.11p standard in presence of distortions due
to HPA nonlinearities. V2V Urban Canyon (V2V-UC) [14]
is considered as vehicular channel model, that deploys the
communication channel between two vehicles moving at
v = 48 km/h in a dense traffic environment. We assume a
carrier frequency of fc = 5.9 GHz and 10 MHz of signal
bandwidth. The estimations are performed by considering 16-
QAM modulation and a transmitted OFDM frame size of
100 symbols. Finally, we compare the IEEE 802.11p wireless
communication scenario without HPA nonlinearities and when
including HPA nonlinearities, based on the polynomial model
as described in Section III.

Figure 3 and Figure 4 present the normalized mean squared
error (NMSE) and the BER performance, respectively, when
considering a fixed IBO = 4 dB. Let us highlight that
the objective of the DNN in both DL-based solutions is to
minimize the MSE between the ideal channel and the channel
estimation from the chosen conventional method. However,
in our proposed scenario, this is done without any prior
knowledge regarding the HPA nonlinearities. The superior-
ity of the DNN-based methods in estimating the channel
can be seen in Figure 3, presenting that using DNN as
a nonlinear process considerably enhance the conventional
estimators performance, adding the ability to learn features
about the channel and reducing the error between its estimation
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Fig. 3: NMSE performance in the IEEE 802.11p wireless communication scenario with v = 48 km/h.

0 5 10 15 20 25 30

SNR (dB)

10-4

10-3

10-2

10-1

B
E

R

Perfect Channel

Initial DPA

STA

AE-DNN

STA-DNN

(a) Without HPA nonlinearities.

0 5 10 15 20 25 30

SNR (dB)

10-4

10-3

10-2

10-1

B
E

R

Perfect Channel

Initial DPA

STA

AE-DNN

STA-DNN

(b) With HPA nonlinearities and IBO = 4 dB.

Fig. 4: BER performance in the IEEE 802.11p wireless communication scenario with v = 48 km/h.

and the ideal channel, even when impacted by non-expected
distortions. Figure 3a shows that, starting from the SNR of
ξ = 20 dB, the AE-DNN presents less channel estimation
error than the STA-DNN estimator, once the impact due to
demapping error is small for high SNR region and the initial
DPA estimation emerges over STA. Moreover, the results
presented by Figure 3b show that, when the impacts from
HPA distortions are considered, the STA-DNN hybrid solution
slightly outperforms the AE-DNN, proving to be more likely
to capture the nonlinearities of the HPA while reducing also
the computational complexity due to its DNN architecture.
In addition, Figure 4 shows that the DNN-based estimators
outperform the BER provided by the conventional estimators
in all considered scenarios. Moreover, in Figure 4b we observe
that the DNN-based estimators still present a BER floor at
high SNR when the HPA-induced distortions are included.
Nevertheless, they are still capable to provide a BER of around
10−2 at ξ = 20 dB, while the conventional estimators suffer
from severe performance degradation.

It is worth to highlight that, in performing an average of
the estimated channels in time and frequency domains, the
classical STA takes more about the correlation of the channel
gain over successive received OFDM symbols into account
than the initial DPA estimation, providing a better entry for
the DNN. As a consequence, the complexity of the STA-DNN
in terms of number of neurons of the DNN can be considerably
reduced when compared to the AE-DNN, while still providing
a slightly better BER performance in all considered scenarios.

In order to compare the estimators with different nonlinear
distortion effects, Figure 5 presents the BER performance by
employing different IBO values. Intuitively, since increasing
the IBO represents an approximation to the characteristics
of the ideal HPA and its linear properties, a lower IBO
implies in a worse BER performance as an expected result. In
accordance with that, it is possible to notice that both classical
and DNN-based estimators show better performance with the
increase of the IBO. Nevertheless, the DNN-based estimators
are more robust to these nonlinear effects, since the variation
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in performance is smaller than the one from the conventional
estimators. The results presented in Figures 5a and 5b show
that, even for the scenario with IBO = 2 dB, both AE-DNN
and STA-DNN are capable to achieve BER lower than 10−2 at
ξ = 25 dB, whereas the conventional initial DPA estimator and
the STA estimator exhibit respectively high error rates of 0.25
and 0.22. This performance difference validates the hybrid
approach, using classical estimation techniques together with
a DNN, considered in this work. It is also possible to notice
a performance improvement when we compare the results
obtained with the STA-DNN estimator with the ones from
the AE-DNN scheme.

VI. CONCLUSION

This work analyzes the impact of HPA nonlinearities on
the performance of channel estimation schemes employed in
a vehicular scenario, typical of the IEEE 802.11p standard.
The simulations show that the use of DNNs present better
performance compared to conventional estimators, in terms
of both NMSE and BER. In addition, the combination of
the DNNs with conventional estimators is also shown as an
important design characteristic. By comparing the AE-DNN
scheme, which is composed by a neural network processing

after the initial DPA estimation, with the STA-DNN scheme,
which employs a DNN after the conventional STA estimator,
we observe that STA-DNN presents the best performance, with
less complexity, i.e., with a smaller number of neurons per
layer. As future works, we aim to explore noise cancellation
techniques in order to further reduce the effects of the HPA
distortions, as well as to investigate how to improve the
DNN training by inserting more information regarding the
dynamic scenario, the HPA model and by considering more
advanced DL algorithms such as long short-term memory
(LSTM). Another work extension aims to consider more
vehicules communicating in the traffic environment and, with
this increase in the complexity of the channel, we expect that
DL-based solutions will be even more suitable for channel
estimation given their generalization properties.
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