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Abstract

The regolith transport near the surface of an asteroid is inherently sensitive to the local topography. In this paper,
conditions of surface mass shedding and the subsequent evolution of the shedding material are studied for the
primary of 65803 Didymos, serving as a representative for a large group of top-shaped asteroids that rotate near
their critical spin limits. We considered the influences of an asymmetric shape and a non-spherical gravity, and
demonstrate that these asymmetries play a significant role in the shedding process as well as in the subsequent
orbital motion. The mass shedding conditions are given as a function of the geological coordinates, and show a
clear-cut dependency on the local topographic features. We find that at different stages of the Yarkovsky–
O’Keefe–Radzievskii–Paddack spin-up, the bulged areas exhibit a uniform superior advantage of enabling mass
shedding over the depressed areas. “Dead zones” free from mass shedding are found around the polar sites.
Numerical simulations show that the orbital motion of the shedding material experiences a drastic change as the
spin rate is approaching the critical limit. The “mass leaking” effect is reinforced as the spin rate increases; the
lower spin rates correspond to a higher capability of trapping the lofted particles in the vicinity of the asteroid,
which statistically improves the probability of collisional growth in orbit. We also find that the topological
transition of the equilibrium point can in practice lead to rapid clearance of the shedding material and transport of
their orbits to larger distances from the surface.

Key words: methods: analytical – minor planets, asteroids: general – minor planets, asteroids: individual (65803
Didymos) – planets and satellites: dynamical evolution and stability – planets and satellites: surfaces
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1. Introduction

The Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP)
effect is widely accepted to be a natural mechanism capable
of altering the rotational states of small bodies in the solar
system between the Sun and the inner main asteroid belt.
Theory predicts that the torques produced by the YORP effect
can change the spin rates of objects with finite thermal
conductivity as well as realign their spin vector to 0° or 180°
with respect to the body orbital plane (Bottke et al. 2006;
Vokrouhlický et al. 2015). This effect has been supported by
many observations, which show that several asteroids smaller
than 10 km have experienced non-gravitational acceleration/
deceleration of their rotation rates or progressive tilt of spin
vectors consistent with the theory (Kaasalainen et al. 2007;
Taylor et al. 2007).

Perhaps equally important as collisions and planetary
encounters, the YORP effect is considered to play a major
role in determining the current configurations and shapes of a
variety of small solar system bodies, especially those smaller
than a few kilometers in diameter. This is based on the fact that

a high proportion of small asteroids (<100 km) are likely
“rubble piles” that are aggregated only by self-gravity and
weak cohesion forces (Richardson et al. 2002), which implies
that the rotation and geologic structure of such asteroids are
highly coupled, i.e., local collapses or even global distortion
may occur when the interior stress distribution is modified as
the spin rate/orientation is gradually changed by the YORP-
induced torque. Observations show that an unusually large
number of small asteroids are spheroidal, largely axisymmetric,
and have equatorial ridges. A majority of these so-called top-
shaped asteroids (some are primaries of binary systems) have
high spin rates and low obliquities (Ostro et al. 2006; Brozović
et al. 2011; Busch et al. 2011; Nolan et al. 2013; Benner
et al. 2015). By carrying out numerical simulations of the spin-
up of cohesionless gravitational aggregates, Walsh et al.
(2008, 2012) demonstrated that the top-shaped primary of the
binary asteroid 1999 KW4 and its satellite may both be
consequences of continuously increasing angular momentum,
and presented comprehensive analyses of the formation of
binary systems with different shapes and internal structure
configurations, supporting the idea that YORP may contribute
to the formation of similar systems (Pravec et al. 2010; Walsh
& Jacobson 2015). The failure modes and yield conditions of a
small body due to the YORP spin-up effect have been explored
through analyzing the distribution of internal stress features
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derived from a plastic finite-element model (Hirabayashi 2015;
Hirabayashi et al. 2016). Hirabayashi et al. (2015) presented
the possible failure modes near final disruption, and pointed out
that the internal structure configuration plays an important role
in the failure modes of irregularly shaped bodies. Zhang et al.
(2017, 2018) studied the creep stability of a cohesionless
gravitational aggregate using a refined finite-element method
applied to the primary of binary asteroid 65803 Didymos. The
critical spin limit was found to depend strongly on both the
internal configuration and material properties, and new
constraints on the bulk density distribution and the friction
angle of Didymos’ primary were derived from the calculations.

Such analytical and numerical efforts have improved the
understanding of geologic processes of small solar system
bodies driven by the YORP effect, and offered insights into
their formation and evolution. However, some mysteries
remain. Statler (2009) showed that the YORP effect is
inherently sensitive to small-scale topography, hence the
prediction of YORP torque calculated based on a radar shape
must be treated cautiously. On one hand, shape models with
sufficient photometric details are difficult to acquire from
ground-based observations, and only a few asteroids that have
ever been closely visited by space missions have such high-
resolution shape models; on the other hand, surface modifica-
tions resulting from other space processes (such as impacts,
planetary encounters, and micrometeorite bombardments) add
much uncertainty to the characterization of the local topo-
graphy (Clark et al. 2002). This makes it necessary to consider
the influence of the surface processes when discussing the
coupled evolution of an asteroid’s rotation and shape, to reduce
the ambiguity of YORP-effect predictions. Cotto-Figueroa
et al. (2015) developed a self-consistent model of the coupled
spin-shape evolution of small gravitational aggregates, and
numerically verified the conjecture of YORP self-limitation,
i.e., successive effects of structural and surface changes may
alter the spin evolution before a small rubble-pile asteroid
reaches the critical spin rate (∼2.2 hr in period for a typical
bulk density ∼2.2 g/cc), in which case the body may not
evolve into an axisymmetric top shape with equatorial ridges.

These studies demonstrated the complexity of the dynamics
of a deformable small body, in particular when it evolves
toward the critical spin limit. Loose regolith becomes less
stable and more active as the spin rate increases. Landslides
may occur frequently, as well as creep movement of internal
structure, which may be one source of intermittent seismic
quakes that trigger more slope failures. Scheeres (2015)
developed a semi-analytical model to determine the conditions
for regolith landslides/mass shedding occurring on a spinning
spheroidal asteroid, and further to determine the equilibrium
morphologies in terms of spin rates and friction angles.
Hirabayashi et al. (2015) and Sánchez & Scheeres (2018)
simulated the surface shedding mode using the two-layer
models of rubble-pile asteroids and showed that a possible
failure mode is surface shedding when the progenitor body has
a relatively strong core. The numerical study of Zhang et al.
(2017) reveals that surface shedding caused by rotational
instability would occur in a macroscopic uniform granular
asteroid due to the microscopic heterogeneity and discrete
nature of this body.

In addition to the mechanics of the shedding process, the
subsequent motion of the lofted regolith material could bear
more implications for the evolution of the progenitor body, for

different reasons: First, the “kick-start” energy that enables
material to lift off the surface is expected to be limited. Unlike
the ejecta from an impact, the lofted regolith from mass
shedding (without cohesion) may only gain enough energy to
maintain a relatively low-altitude orbit that evolves initially
close to the surface. Second, mass shedding could occur
episodically in different regions because of the irregular and
heterogeneous nature of asteroids and the randomness of the
triggering processes, such as seismic shaking, slope failures,
and cohesion failures. Correspondingly, the local topographic
modifications may take place over a long period even before
the critical spin limit is reached. Third, the mechanical
environment due to an uneven mass distribution and asym-
metric shape can be extremely complex, such that the lofted
regolith with small differences in starting conditions may have
totally different dynamical fates. The secular motion of lofted
particles depends on the irregular potential as much as on the
interactions with the asteroid surface, and may eventually end
up undergoing escape/reaccretion, which leads to cumulative
mass loss/regolith redistribution. In previous studies, Fahne-
stock & Scheeres (2009) indicated that the material displaced
from the primary of a binary asteroid may accrete on the
primary’s surface and affect the angular momentum transport.
Scheeres et al. (2006) presented the contour shapes of the
geopotential of 1999 KW4 Alpha (primary). Harris et al. (2009)
studied its shaping process and found that the equatorial loose
debris will levitate and redeposit because of the tide from Beta
(secondary), a process called “tidal saltation”. Jacobson &
Scheeres (2011) built a macroscopic model for the rotational
fission of an asteroid, and studied how the splitting of
components and the subsequent evolution could lead to
different kinds of synchronous binaries.
The current study explores the complex aspects of orbital

dynamics of the regolith material lofted from a YORP-torqued
asteroid. The target rotational speed is taken to be in a higher
range close to the critical spin limit, but not necessarily to be at
that limit (we chose periods below 10 hr), which covers a wide
range of systems, including those that may be in YORP self-
limitation (Statler 2009). The influence of asymmetric shape
and gravitational field are considered in the modeling. We
demonstrate that these asymmetries play a significant role in
the shedding process as well as in the orbital evolution of lofted
material. The outline of the paper is as follows. Section 2
describes the general formulation of the shedding mechanics on
the surface of an asteroid. Using the reference model of the
Didymos primary as an example, we present the conditions of
mass shedding as a function of the geological coordinates of
chosen points on its surface. Section 3 investigates the
dynamical behaviors of the particles shed from the surface,
and shows how the evolution of the lofted particles depends on
the dynamical environment as the asteroid is spun up near the
critical limit. Section 4 discusses the implications of these
analytical and numerical results for mass reconfiguration, shape
change, binary formation, etc. Section 5 presents the
conclusions.

2. Shedding Mechanics of the Loose Regolith

2.1. Modeling the Mass Shedding on a Specified Asteroid

This study focuses on top-shaped asteroids that have
frequently been observed in recent decades, such as 1999
KW4, 101955 Bennu, 2008 EV5, and 65803 Didymos (Benner
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et al. 2010; Statler 2015). These asteroids have diameters
ranging from hundreds of meters to kilometers, have relatively
high spin rates, and similar overall shapes, i.e., moderate
oblateness, elevated bulge at the equator, and small-scale
topographic asymmetry about the spin axis. We treat the
considered body as a top-shaped homogeneous asteroid
uniformly rotating about the maximum principal axis of inertia,
which is a long-term stable state assuming that there is some
internal frictional dissipation. Mass shedding is expected to
occur with sufficient rotation speed, but it can be strongly
limited when cohesion is present, e.g., asteroids Didymos
(primary) and 1950 DA both have very high spin rates (2.26 hr
in period for Didymos, and 2.12 hr for 1950 DA), which are
supposed to be fast enough to cause overall reshaping if no
cohesion is present (Hirabayashi & Scheeres 2014; Zhang
et al. 2018).

In this section, we develop a dynamical model of a regolith
grain moving on and off the surface of an asteroid, which is
considered to be a spinning gravitational body with arbitrary
shape. To keep it a general discussion, we adopt dimensionless
quantities in the formulation. The rotational period T is taken as
the timescale, and the equivalent radius (the radius of a sphere
with equal volume) is taken as the length scale. The
accelerations of a unit-mass particle moving on (subscript s)
and off (subscript o) the surface are represented in
Equations (1) and (2), respectively,

a v fV2 , 1s w= - ´ -  + ( )
a v V2 , 2o w= - ´ -  ( )

where f in Equation (1) indicates the acceleration of the
particle affected by the contact with the surface, which consists
of the normal contact force and the tangential stick-slip force
(Schwartz et al. 2012). V is the potential of the centrifugal force
and the gravity of the body, defined by Equation (3),

r r
r

V GT d
1

2

1
, 32w w

r
rs= - ´ ´ -

-
∭( ) · ( )

∣ ∣
( )

where r, v indicate the position and velocity of the particle with
respect to the body-fixed frame. w is the vector of angular
velocity, which is a constant magnitude of 2π in the scaled
representation. dr indicates an infinitesimal volume with
position vector r, which is integrated over the three-
dimensional region occupied by the body. G indicates the
gravitational constant, and σ is the bulk density of the body.
Noting that the coefficient of the second term is dimensionless,
we introduce a factor κ below to describe the relative strength
of the gravity compared to the centrifugal force:

GT

3
. 4

2
k

s
p

= ( )

The factor κ measures the dynamical environment near a
homogenous rigid body rotating around a fixed axis at a
constant spin rate. For a homogenous rigid sphere, as the body
is spun up, the net gravitational and centripetal acceleration first
becomes zero at the equator when κ=1, which is hereafter
defined as the reference value of the normalized critical spin
limit. A non-cohesive grain will be gravitationally bound to the
surface if κ>1. Yu (2016) calculated the values of κ for 24
known asteroids based on measured or estimated density and
period, showing that their κ values are distributed over a wide
range from 1.68 to 193.16. We adopt κ as an intrinsic number

of the dynamical system. In the following discussion, we use it
as a key system parameter throughout all formulas; and in the
discussion of some real asteroid systems, we give both the κ
values and properties that have direct physical meaning.
The asteroid shape is described as a parametric surface S(θ,

f), in which θ, f are the local angular coordinates of the
surface. It offers a complete representation for arbitrary “star-
shaped” body, which refers to a limited class of objects for
which there exists a point in the interior of the object, standing
on which the whole surface is visible. The system dynamical
model is then completely determined by S(θ, f) and κ.
Although the YORP effect imparts a secular change in the
rotational state (Rubincam 2000; Lowry et al. 2014), numerical
experiments show that non-catastrophic reshaping occurs
intermittently and the structural disturbance of each reshaping
only lasts for a short period in comparison (Walsh et al. 2008).
In reality, the lifetimes of shed-off regolith particles may cover
a wide range, depending on their size, initial positions, and
velocities, and other physical properties. We concentrate on
hours to months after the particles detach from the body, which
is considered to be a violent stage of the body’s evolution.
Within this period, the orbits of the particles will be restricted
to the vicinity of the body, and the motion is dominated by the
gravity and centrifugal force (we consider the case of a small
total shedding mass compared to the mass of the body). The
shape and the spin rate of the body are both assumed to be
constant within this short period, so the orbital evolution is
essentially governed by Equation (2). Given that a YORP spin-
up/spin-down timescale for kilometer-sized near-Earth aster-
oids (NEAs) is 104–106 years (Rubincam 2000), we can see
that the factor κ changes quite slowly versus the dynamical
timescale of the particle in the vicinity of the surface. Thus in
this study, we adopt a specific value of κ for each short-term
simulation (<1 year), but consider different κ values in parallel
to reflect representative moments of the whole geologic history
of a spun-up asteroid.
We investigate the shape of the primary of the Didymos

system as an example. Combined radar and photometric
observations show that the primary has typical features of a
top-like shape, and is rotating at a critical speed (∼2.26 hr in
period), with the spin vector lying near (310°,−84°) in J2000
ecliptic coordinates (Pravec et al. 2006; Scheirich &
Pravec 2009; Benner et al. 2010). Figure 1 shows the shape
model of the primary in spherical harmonics, truncated to
degree 20. The coefficients of the harmonics were derived by
applying a fitting algorithm to the Cartesian coordinates of the
vertices of the polyhedron model (Benner et al. 2010). The
parametric surface of the basic shape can be formulated as

S c Y, , , 5
l m l

l

l
m

l
m

0
å åq f q f=
=

¥

=-

( ) ( ) ( )

where cl
m are complex coefficients of the harmonics and the
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Y
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+
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in which Pl
m is the associated Legendre function. Equation (5)

presents a general formulation for the star-shaped surfaces
(Floater & Hormann 2004), i.e., it establishes an injective map
from the spherical angles (θ, f) to the radial distance of the
projected point on the surface. So when we introduce a unit
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orientation vector r ,q fˆ ( ), the position vector of the projected
point is S rS= · ˆ. Figure 1 also defines the geographic
coordinate system: the x-axis points to longitude 0°, the y-axis
points to the eastern hemisphere, and the z-axis points to the
North Pole. We apply this general model to explore the role of
asymmetric shape S(θ, f), and in particular, that of the induced
irregular gravitational field near the equator. Aiming for a
generalized understanding of the dynamics near an asymmetric
body close to its spin limit, we discuss the orbital behaviors of
lofted particles as a function of the dimensionless factor κ. The
reshaping effects of the body owing to a changing κ are
ignored, because 1. the κ range explored in this study is
narrow, i.e., “near the spin limit”; and 2. we seek to examine
the influence of a single variable in this paper. An investigation
of the influence of the shape modification is left to future work.

2.2. Mass Shedding Conditions

We consider loose regolith particles resting on the surface of
the considered body with no cohesive forces. As the spin rate is
near the critical limit, instantaneous separation from the body
can be triggered easily by various low-energy events, e.g.,
landslides that accelerate the particles to escape speed, or
propagation of seismic quakes that give initial lifts. Otherwise,
particles that gain no launching energy are trapped on the
surface until the spin rate is high enough for the gradient
direction of the geopotential to become outward (making the
local surface unstable so that no loose particles can attach to it).
This section takes into account the detailed shape model of the
primary of Didymos and discusses the mass shedding
conditions of regolith material in terms of local topography.
The spherical harmonic shape S(θ, f) and a polyhedral
gravitational field are applied to analysis of the mass shedding
scenario, which occurs in two cases: particles being levitated
when the local surface becomes unstable, as stated above, and
particles being involved in a slope failure and boosted to a
speed that exceeds the local escape speed.

2.2.1. Shedding-off Due to the Unstable Surface

The normalized potential V is called geopotential in the
vicinity of the considered body. The surface geopotential is

defined as

SV V , , 7s q f= ◦ ( ) ( )

which is a fundamental function that describes the tendency of
migration of the dense flow moving on the asteroid surface, i.e.,
regolith particles tend to migrate from high geopotential to
low geopotential on the surface. The operator ◦indicates the
composition of two functions. Note that in our model the
distribution of Vs is determined by both S(θ, f) and κ.
The minimum Vs on an oblate shape is not always located near
the equator, which occurs only if κ reduces below a limit. For
very high κ values, as the latitude increases, the decrement of
the gravitational potential is larger than the increment of
centripetal potential, in which case the minimum Vs appears
near the polar region. Scheeres (2015) explained the role of
geopotential in trapping the shedding regolith in the vicinity of
the body. It was shown that as the spin rate increases, the
Roche lobe of a spherical body first touches the high-latitude
region, and particles in these regions will have sufficient energy
to start moving, and probably escape from the asteroid.
We first use a direct method to derive the levitating condition

of a cohesionless particle on a surface with the shape of
Didymos. When we assume that no sliding occurs before
shedding, the levitation occurs when the local geopotential
force −∇V switches from inward to outward, i.e., the normal
components of the gravitational and centrifugal forces balance
at the moment of the switching:

nV 0, 8s =· ˆ ( )

where n̂ indicates the unit normal vector of the local surface
(pointing outward). ∇Vs indicates the gradient of the
geopotential at the surface. Equation (8) defines the levitating
condition. Particles in the region subject to nV 0s  · ˆ will be
lofted if there are no cohesive interactions with the surface, and
in contrast, particles in the region nV 0s >· ˆ are still allowed
to be bound to the surface without tensile strength. For the
loose particles that were sitting on the surface with weak or no
cohesion, the levitation can only lead to small hops of low
relative speeds, which are termed “saltation” by Harris et al.
(2009). The subsequent evolution relies on the coupling effects

Figure 1. Spheric harmonic shape model of the primary of 65803 Didymos, truncated to degree 20 and represented in the body-fixed frame.
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with the complex morphology and mechanics of the surface.
Taking the primary of Didymos, for example, according to the
bulk density 2.146 g/cc and rotation period 2.26 hr derived
from observations (Michel et al. 2018), the dimensionless
factor κ≈1.0048, which we denote κ*, and which is slightly
above the reference value 1. We confirm that for this fast
rotator the surface geopotential Vs shows a largely monotonous
decrease as the latitude decreases, and the minimum value is
around the equator, which is consistent with the oblate nature
of the shape.

To explore the levitation behavior, we change κ within a
range close to the critical spin limit, i.e., from κ=0.21 to
κ=1.06. The boundaries of stable regions are determined by
Equation (8). Figure 2 illustrates the solutions for different
κ values and gives the results as functions of the geographic
coordinates. Areas enclosed by the solution curves correspond
to nV 0s <· ˆ . Note that for a value as low as κ=0.21, the
rotation period is 1.04 hr, which in observations is only found
for very small asteroids (<200 m in size) that must have non-
zero tensile strength. For comparison, the color map in Figure 2
shows the surface distribution of the scaled elevation, which
measures the small-scale topographic features of Didymos
shape model.

We find that the value κ* derived from observations leads to
the consequence that the equatorial region is mostly unstable.
The narrow band around the equator, as outlined by the dashed
curves in Figure 2, has larger centrifugal force than gravity
along the local normal directions, except for a small area in the
neighborhood of (135°W, 0°). This suggests that any
cohesionless material should be rapidly cleared in this region,
exposing unweathered subsurface material; and a loose regolith
layer is only possible at the equator near longitude 135°W,
which, as illustrated in Figure 1(b), is an obvious low-elevation
area. To make this analysis more general, we intentionally
excluded the effect of the secondary. Even so, we cannot rule
out the possibility that our finding of an unstable equator could
be caused by modeling errors, because we used the polyhedral

methodology to estimate the gravity near the surface (Werner
& Scheeres 1997). Moreover, the shape model based on remote
observation does not perfectly reconstruct the small-scale
topology, and the bulk density has estimated uncertainties as
large as 20% (Zhang et al. 2017; Michel et al. 2018).
Figure 2 reveals some interesting dependencies. First, the

unstable region expands from low latitude to high latitude as κ
decreases, i.e., while the rotation is accelerating, loose regolith
particles originally resting in low-latitude regions tend to be
displaced or shed first. Since the equatorial ridge is interpreted
as a structure formed in a YORP spin-up, it may also disrupt as
the spin is further accelerated (in the absence of tensile
strength). At κ=0.85 (2.08 hr period), the unstable region
occupies the region between 20°S and 20°N, which is
essentially the entirety of the equatorial ridge. Second, the
bulges of the shape correspond to favored regions for mass
loss, compared with the flat and depressed regions. It is evident
that on the equator the bulged terrains reach the levitation
condition prior to other terrains; e.g., when κ�1.06 (period
�2.32 hr), the unstable regions split into a chain of isolated
islands, and each of these islands corresponds to a bulged place
at the equator. It implies a basic mechanism in the formation of
the top shape: regolith particles are easier shed from the bulged
terrains, and are easier deposited on the depressed terrains,
which helps the equator to evolve into a basically round shape.

2.2.2. Shedding Due to the Slope Failure

The analysis of Section 2.2.1 is based on the hypothesis that
no tangential slips occur before the surface geopotential
reverses, which is not always true because landslides may
occur before the spin rate satisfies Equation (8). Nevertheless,
we realize that landslides do not have to take place even when
the local slope exceeds the angle of repose βr, not only because
of a plausible existence of cohesive forces, but also because of
the diversity of local small-scale topographies, e.g., the regolith
particles can be geometrically stuck in tangential directions.
On the other hand, considering that there is a tangential

speed in regolith flows (landslides), the shedding-off condition
will become more variable. The local slope angle is defined by

nV

V
acos , 9s

s
b =

-
-

⎛
⎝⎜

⎞
⎠⎟

· ˆ
∣ ∣

( )

in which 0�β�π, and if β�π/2, the levitating condition is
met. The tangential component of the geopotential force at the
surface is

l n nV V . 10s s= - + ( · ˆ) ˆ ( )

The vector l̂ is the unit vector that determines the steepest
descent direction of the geopotential on the surface (also known
as the “slope direction”). We assume that the regolith flow is
down the slope direction when a landslide happens. It is a
simplified assumption that applies to a short-lived landslide,
but for grains in a long flow, the direction could be altered
strongly by Coriolis forces (Statler et al. 2014). The velocity of
a particle moving on the surface is given in the surface
coordinates (θ, f) by

l S Sv , 11q f= +q fˆ ˙ ˙ ( )

where the subscripts denote the partial derivative with respect
to θ and f. The operator ˙ indicates derivatives with respect to
time. v is the magnitude of the velocity. A surface particle

Figure 2. Solutions of the levitating condition, Equation (8), for different κ,
and the scaled elevation across the asteroid surface. The solution curves are
represented in the coordinate system of longitude and latitude, and the labels
indicate the κ value for each curve. The dashed line indicates the solution curve
to the actual value κ* of the primary of Didymos that is derived from
observations. The full color spectrum is measured from the minimum to the
maximum elevations of the surface in scaled length units.
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undergoing a landslide is governed by Equation (1), and the
condition for a lifting off from the surface is

f n 0, 12=· ˆ ( )

which is, at the moment the normal component of the coupling
force reaches zero, when the particle is viewed as being
separated from the surface. In order to solve Equation (12), we
have to introduce the local geometry of the shape model.
Combining Equations (1) and (12), and using the parametric
expression S ,q f( ), we can derive the particle-lifting condition
in terms of (θ, f). The first and second fundamental forms of
the parametric surface S ,q f( ) are defined by

S S S S

S S S S
h , 13ij =

q q q f

q f f f

⎡
⎣⎢

⎤
⎦⎥{ }

· ·
· · ( )

S n S n

S n S n
g . 14ij =

qq qf

qf ff

⎡
⎣⎢

⎤
⎦⎥{ }

· ˆ · ˆ
· ˆ · ˆ ( )

hij{ } and gij{ } are metric tensors that together determine the
extrinsic invariants of S ,q f( ), i.e., the curvature at arbitrary
position on the surface. The detailed expansions of the first and
second derivatives of the vector-valued function S ,q f( ) are
given in the Appendix. We can then define a 2×1 array bi{ }
consisting of the projections of the two tangential vectors onto
the slope direction l̂ :

S l

S l
b . 15i = q

f

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥{ }

· ˆ

· ˆ ( )

Finally, a 3×3 orientation matrix {cij} is defined to
describe the relation between the angular momentum of the
asteroid, the local normal vector at the surface, and the local
slope direction:

l nc . 16ij w= ⎡⎣ ⎤⎦{ } ˆ ˆ ( )

Substituting the expression of f (derived from Equations (1)
to (12)), and combining Equations (13)–(16), the particle-
lifting condition can be written as

nV c v

b h g h b v

2 det

inv inv 0, 17

s ij

i
T

ij
T

ij ij i
2

 +

+ =

· ˆ ({ })
{ } ({ }) { } ({ }){ } ( )

which is a quadratic polynomial of v. Equation (17) shows that
the distribution of solutions depends on the local curvatures,
the local slope, and the local orientation with respect to the
rotating direction. Physically permitted landslide speeds that
lead to a separation from the surface correspond to the positive
real roots of Equation (17), which are defined hereafter as the
separation speeds for regolith material sliding down in the
slope direction.

Figure 3 illustrates the distribution of the separation speed
for Didymos, with a contour plot of the slope angle, for four
cases of different spin rates (κ values). The dotted, dashed, and
solid curves indicate the boundaries of regions where the slope
angle is below the specified value βr (the angle of repose)—i.e.,
in the regions satisfying β<βr loose regolith is allowed to be
deposited—while beyond these regions (β>βr), the regolith
material tends to migrate because of local landslides.

A nonlinear scale is adopted for the color map in Figure 3, in
which separation speeds above 30 cm s−1 are all marked in

monocolor. The threshold value 30 cm s−1 is sufficiently high
to exceed, according to our calculation, the maximum expected
speed of a true landslide. “Dead zones” are found around the
polar sites in all four cases of Figure 3 (marked in black; the
north polar zone is larger than the south polar zone); particles in
these regions are required to have infinitely high speeds to
separate from the surface (v  +¥), i.e., the local landslides
would never lead to mass shedding in these areas (note that we
consider material that carries only tangential velocity on the
local surface). The “dead zones” have emerged around
the polar sites of Didymos (primary), and their areas shrink
as the body is spinning up. These depressed areas at the polar
sites of Didymos (see Figure 1) show the capability of keeping
the sliding material bound to the local surface, which is
independent of the sliding speed down the slope.
Figure 3 reveals several explicit dependencies of the

separation speed on κ. First, the surface separation speed
generally increases with increasing latitude. For κ=0.85 and
κ=κ*, the minimum separation speed is distributed along the
edge of the unstable band (see Section 2.2.1); for κ=1.27 and
κ=1.70 (when the unstable strip disappears), the minimum
separation speed is distributed along the equator. This means
that during slope failure, the loose regolith at low latitudes
requires lower speeds to be shed from the surface than that at
high latitudes, which is consistent with the levitating condition.
Second, the separation speed decreases rapidly as the body is
spun up. According to the parametric model of Didymos, as the
rotation period decreases from 2.94 to 2.08 hr, the minimum
surface separation speed drops from 1.73 cm s−1 to
0.12 mm s−1, which was calculated from the dimensionless
results in Figure 3. This suggests that the surface becomes
increasingly unstable as the body approaches its critical spin
limit. Third, a dependence on the local topography is noted,
especially at the equatorial ridges. The bulges correspond to
local minimum values of the separation speed, and the
depressed terrains correspond to local maximum values. This
result reflects the correlation of separating condition with local
curvature, according to Equation (17), and it is also consistent
with the levitating condition. In effect, material is likely to
escape from the bulges and be deposited at the depressed
terrains, which provides a secular mechanism to force the ridge
into good average roundness.
In addition to the separating condition, Figure 3 also shows

the contour lines of the slope angle. If we assume that the angle
of repose of cohesionless regolith βr=45°, which is a rather
conservative estimate of the angle of repose based on the values
of terrestrial dry sands (a similar analysis applies to βr=15°
and βr=30°), at κ=1.70, the surface of the primary is
globally below βr, and at κ=1.27, part of the mid-latitude
region exceeds the angle of repose βr where regional failures
seem to occur first. For the rapid rotation cases κ=8 and
κ=κ*, the wide region between 45°S and 45°N has exceeded
the angle of repose βr. This means that a vast region of the
surface beyond the polar areas is unstable according to the
parametric model, so the loose regolith over this region should
have been rearranged and unweathered subsurface material is
probably exposed. Combining the steep slopes and low
levitating/separating condition, we speculate that cohesionless
material has been removed from the mid-low latitudes on the
surface of Didymos (primary).
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2.3. Energy Transport of Shedding Processes

Once the surface shedding conditions are met, particles start
to enter a complicated phase of evolution. Based on our model,
the lofted particles seem very unlikely to enter a high-eccentric
trajectory after the first detachment from the surface. Without
cohesive forces, the particles can be levitated or slide down the
local slope, but neither is capable of causing a sharp increment
in kinetic energy. The ballistic motion of a particle departing
from the surface is governed by the local gravity, and
subsequent collisions with the surface might occur frequently.
After this stage, which is highly coupled with the surface
topography, it is possible that the particle becomes trapped by
and settles down on the surface again (reaccretion), or gains
enough energy that it maintains a temporary low-altitude
cycling orbit, i.e., with the periapsis close to the surface of the
asteroid. For our analysis, we define a particle to be in cycling
motion if no collisions with the surface occur between two
consecutive periapsis passages.

Here we consider the energy transported to a unit mass
shedding during the scenario described above. Note that the
analysis in Sections 2.2.1 and 2.2.2 shows that the shedding
process first occurs at the equator, so we make the simple
assumption that the lofted particles depart from the equatorial
plane. To conduct a simplified analysis, the scaled total energy
of the cycling orbit of a particle at the equator of a spinning
spherical body is

E 2 1 2 , 182p k= -( ) ( )

note E<−2π2 if κ>1. The Keplerian energy of the cycling
orbit of a unit mass of the lofted material is

E
a

2
, 19

2p k
¢ = - ( )

where a is the semimajor axis of the orbit, satisfying E E¢ .
The considered particle does not permanently orbit in the
vicinity of the surface, but returns to the surface sometime. We
define the energy increment to a single change of the velocity
of the particle Δv, and the increment in energy is given as the
result of a sudden change in velocity:

E E v v
1

2
2 , 202 p¢ - = D + D ( )

and we scale the velocity change via

v

2
. 21h

p k
=

D ( )

Substituting Equations (18), (19), and (21) into
Equation (20), we have

a
2 1

. 22
2

k
k h k

=
- +( )

( )

Because the eccentricity of the orbit is negligible, i.e., e≈0,
in this analysis, the dynamical fate of a test particle is only
determined by two parameters, a and κ. The Roche lobe
defines the spatial region that is energetically accessible to the

Figure 3. Distribution of the separation speed across the asteroid surface subject to different κ values, together with the contour plot of the angle of repose βr. The
spherical harmonic shape of the Didymos primary was used to generate the maps, and four maps with κ=0.85, 1κ*, 1.27, 1.70 are shown. The color spectrum (blue–
yellow) corresponds to separation speeds ranging from 0 to 30 cm s−1, and the areas satisfying v 30 cm s 1> - (separation speed above an empirically high value) are
colored in bright yellow. The strip areas that meet the levitating condition are colored in gray, which identify the region inapplicable to Equation (17). The dark areas
indicate that the separation speed approaches infinity. The dotted, dashed, and solid curves indicate the contour lines of the angle of repose βr=15°, 30°, and 45°,
respectively, which enclose the regions where the loose regolith material must satisfy a minimum angle of repose to remain stable.
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particle moving around the body (Scheeres 2015). Considering
an orbiting particle in the equatorial plane, the radius of the
synchronous orbit for the spherical model is given by

q . 233 k= ( )
The synchronous orbit is defined as a natural circular orbit

about the target body with its period equal to the spinning
period. The Roche lobe is represented in the rotating frame.
The orbital motion bounded in the vicinity of the asteroid
should satisfy the condition

a q
J J
1

,
24

a q

< <
<

⎧⎨⎩ ( )

where Ja and Jq indicate the Jacobi integrals of the orbits of
semimajor axis a and the synchronous orbit, respectively. The
dimensionless form of the Jacobi integral is given as

J
r

r v
4

2
1

2
, 25

2
2 2 2p k

p= - - + ( )

then substituting the orbital radii and velocities (in the rotating
frame) into the second inequality of Equation (24) yields

a
a

a
a2

1 1
0. 26

2
2 23 3k
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k

k- - - - - <
⎛
⎝⎜

⎞
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Figure 4 presents a κ versus a diagram that maps out the
equivalent orbital altitude of particles lofted from the equator of
the central body versus the rotation period. The semimajor axis
a is represented as a function of κ as defined by Equation (22).
The parametric function is varied by the energy transported via
surface coupling, which is described using η in Equation (22).
Figure 4 illustrates the function curves for three η values, 0.0,
0.1, and 0.2. As an estimate of the upper limit, η=0.2 is
capable of lofting particles originating from the equator of the
target body with κ<1.56 (T<2.82 hr for Didymos), and
η=0.1 is the same for κ<1.24 (T<2.50 hr). η=0.0 is the
case of no extra energy transported so that only particles from

the body with κ<1 will be shed. Within the considered
parameter range, we find that transported orbits are limited to a
region closely above the surface (a<3.0), and the modified
energy is quite insufficient to allow escape from the vicinity of
the asteroid.
Figure 4 also illustrates the region confined by the Roche lobe in

the equatorial plane (shadowed area), which is defined by
Equations (24) and (26). Scheeres (2015) stated that the particles
that cycle around the body in a region below the synchronous orbit
are permanently trapped in the vicinity of the asteroid, and
conversely, particles moving in regions beyond are allowed to
escape to arbitrary distances away from the body. The shadowed
area in Figure 4 shows that as an asteroid is spinning up (or κ is
decreasing), the region bounded by the Roche lobe shrinks rapidly,
and vanishes at the reference value κ=1. Thus given the same
ratio of energy transport η, a larger κ corresponds to a wider Roche
lobe radius than a smaller κ. Statistically, this means that an
asteroid in slow rotation has the capability of trapping the lofted
particles in its vicinity. Note that this analysis is based on the
assumption of equal energy transports via surface coupling. Based
on Figure 4, we can infer that the mass leaking will be reinforced
as the rotational speed approaches the critical limit, i.e., the
dynamical fates of the regolith material shed from the surface will
be highly weighted to being transported farther away, which is
probably occurring with the Didymos primary considering that κ*

is close to 1.

3. Orbital Dynamics of the Lofted Particles

Section 2 demonstrated that Didymos in rapid rotation is
likely to experience surface motions. Particles are transported
into cycling orbits via collisions with the surface and a
gravitational coupling, which in turn will reshape the surface
landscape of the asteroid. Scheeres et al. (2006) pointed out that
the equatorial ridge of 1999 KW4 Alpha might be formed from
redistributed loose unconsolidated regolith. Hirabayashi et al.
(2015) analyzed the distribution of shedding particles from a
monodispersed spherical cluster in a close-pack configuration,
and found that the flow of particles is asymmetric with respect
to the rotation axis. This section studies the orbital dynamics of
the particles moving closely above the surface. In order to track
all complex aspects of the dynamics, we combine the irregular
shape model and asymmetric gravitational field in the orbital
simulation of test particles. The basic scheme of orbital motion
is explored by means of a qualitative analysis and is verified
using numerical simulations. The diffusion and accretion
dynamics of the lofted particles are discussed to interpret the
numerical results.

3.1. Scheme with the Orbits Near the Surface

With the dimensionless model developed above, the
dynamical flow around the target body is completely
determined by its shape and the parameter κ. Considering the
asymmetric shape, a great diversity is found in the dynamics of
lofted particles, contrasting with the simple orbital motion
around an ideal spherical body. This section explores the
orbital dynamics of lofted particles near the surface of the
progenitor asteroid, and we start with a theoretical survey of
the synchronous orbits, changing as functions of κ. The
synchronous orbits are isolated in the asymmetric case, rather
than continuously distributed over a certain radius. These
synchronous orbits are referred to as equilibrium points of

Figure 4. Normalized diagram of the semimajor axis a vs. dimensionless factor
κ. The solid curves show a as a function of κ, corresponding to different energy
transports. The numbers are the ratios of energy transport η. The dashed line
a=1.0 indicates the mean radius of the target body as a baseline. The dot-
dashed line indicates the radius of the synchronous orbit as a function of κ,
defined as in Equation (23).
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Equation (2) in the body-fixed frame, which satisfy

V 0. 27 = ( )

Assuming that the shape of the body is constant, we can
independently observe the qualitative changes of the equili-
brium points as a function of κ. In particular, when κ is
approaching the critical spin limit, the equilibrium points are
close to the surface of the target body and it will be relatively
easy for the lofted particles to reach up to the altitudes of these
points. As was shown in Section 2.3, this change in mechanical
environment exerts a significant effect on the secular evolution
of the lofted particles. Scheeres et al. (2006) identified that
the primary of 1999 KW4 has four equilibrium points outside
the body, one of which lies just at the surface. In comparison,
the primary of Didymos has a poor roundness at the equator,
and hence exhibits a more complex geopotential structure
around the surface. Figure 5 shows the counter lines of the
geopotential on the equatorial plane (gray solid lines), which
are plotted for κ=11 (2.43 hr in period). Eight equilibrium
points are found in total in this case, and according to
Equation (27), their positions can be determined by searching
for the self-crossing points of the countour lines. As shown in
Figure 5, all the eight equilibrium points (marked with solid
dots) are close to the equator of the asteroid (shadowed area).

It has been recognized that equilibrium points always exist
outside a uniformly rotating body of arbitrary mass distribution,
as long as the rotation is substantially slow. In theory, the
position of a given equilibrium point depends on the rotation
period, or in the normalized form, on κ. Hence as κ
continuously changes, the location of the equilibrium point
varies and its locus extends to an arc, which is hereafter named
the equilibrium branch. As illustrated in Figure 5, all the
eight exterior equilibrium points extend to corresponding
branches (dashed lines). These branches extend outward from
the surface as κ increases, except when two of them collide and

vanish. The positions where such collisions occur are called
bifurcation points, marked by circles in Figure 5. In our system,
the bifurcations of equilibrium branches essentially define the
κ values at which the topology of geopotential structure
changes, which implies a direct impact on the motion of the
lofted particles (see Section 3.2 for more details).
Jiang et al. (2015) studied both the exterior and interior

equilibria about the asteroid 216 Kleopatra, and found that their
total number is always odd and changes in pairs as the spin rate
varies. We focus on the exterior equilibrium points for practical
reasons, and find that the number of such points presents a
4 6 8  change for Didymos as κ decreases, which still
follows the rule “appear and vanish in pairs.” Figure 6 shows
the profiles of the eight equilibrium branches on the κ versus
J Jq diagram, in which J indicates the Jacobi integral of the
equilibrium point. The axis J Jq defines the relative bias in
Jacobi integral with respect to the result for an ideal spherical
model. The reason we adopt the scaled index J Jq instead of J
is that it enables a clear definition of all eight branches in one
single diagram, which gives a broad view of how the
equilibrium points shift as κ changes. The diagram reveals
that A–A′, B–B′, C–C′, and D–D′ are the trivial branches that
remain as κ increases (the prime notation is used to distinguish
between the starting and ending points). Furthermore, these
trivial branches converge asymptotically on the benchmark
value J J 1q = (no bias) when k  ¥. This is because when
the equilibrium point moves away from the body, the
configuration of the nearby gravitational field can be
approximated to that induced by a point of the same mass, or
an ideal sphere, which means that the Jacobi integral J is
approximately Jq. While the target body is spinning up,
equilibrium points H′ (or I′) first emerge from a bifurcation at
κ=2.44 (3.52 hr period), and split into branches H–H′ and
I–I′ as κ decreases further, bringing the number of equilibria to

Figure 5. Countour lines of the geopotential sampled at κ=1.17, together
with the affiliated equilibrium points and their extended branches as κ grows.
The countour lines are marked in gray; the equilibrium points and affiliated
branches (denoted as A, B, C, D, F, G, H, and I) are marked in black, with solid
dots and dashed lines, respectively. The shadowed area indicates the polar view
shape of Didymos (primary). The circles denote the bifurcation points where
two branches of the equilibrium points collide with each other.

Figure 6. Bifurcation and stability diagram for the exterior equilibrium points.
The profiles of equilibrium branches are shown in the κ vs. J Jq plane. A–A′,
B–B′, C–C′, D–D′, F–F′, G–G′, and H–H′, I–I′ mark the eight branches as
defined in Figure 5. Equilibrium points are stable along the solid branches and
unstable along the dotted branches. The dot-dashed line indicates the
benchmark value J J 1q = . The top-right inset is a zoomed view of the
diagram around branches F–F′ and G–G′.
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six. Likewise, the branches F–F′ and G–G′ appear at κ=1.24
(2.53 hr period), and bring the number of equilibria to eight as
κ further approaches the critical spin limit. Note that not all
these branches remain until the critical limit, i.e., some will end
up at the asteroid surface before κ reaches 1. In fact, only one
exterior equilibrium point remains on branch D–D′ when
κ=κ*, and its position is almost stuck to the surface of the
asteroid shape.

Figure 6 also shows the stabilities of the equilibrium
branches. Four subbranches are identified to be stable,
including C–C′ (1.48<κ<4.24), D–D′ (1.80<κ<4.24),
G–G′ (1.12<κ<1.24), and I–I′ (1.38<κ<2.44). The
definition of linearized stability is adopted here, i.e., the
stability of an equilibrium point is determined by the local
linearized system, which is guaranteed by the center manifold
theorem (Shilnikov et al. 1998). In the system described by
Equation (2), there are six eigenvalues of the linearized system
λi (i=1, ..., 6), which are included in one of the following
cases (Yu 2016): I. Two opposite real numbers; II. four
opposite conjugate complex numbers; and III. two opposite
purely imaginary numbers. Defining a topology index

N N N, , , 28r c i( ) ( )

where Nr, Nc, and Ni are the number of real, complex, and
purely imaginary eigenvalues, respectively, there are only six
combinations of the three types, as listed in Table 1.

The topological types described in Table 1 represent
different manifold structures at the equilibrium point that
determine the general behaviors of trajectories in its neighbor-
hood. Shilnikov et al. (1998) discussed in detail the orbital
schemes around equilibria of the above six types. We apply the
methods of qualitative theory to asteroid Didymos, and found
that only three types appear in the eight branches: the (2, 0, 4)
saddle-focus, the (0, 4, 2) center-focus, and the (0, 0, 6) center
point. Of these three types, only the center point is stable in the
sense that particles nearby tend to cycle around it following the
local central manifolds. The saddle-focus and center-focus
topologies are unstable, and the motion of particles around
them is dominated by the unstable local manifolds, i.e.,
particles depart from them in exponential/spiral ways. Table 2
presents the topological changes of the eight branches around
Didymos (primary) as a function of κ. The results essentially
reflect in geometry the evolution of the dynamical flow near the
equilibria. Within the κ range examined, the topology of
branches A–A′, B–B′, F–F′, and H–H′ sticks to the saddle-focus
type and remains unstable, while the topology of branches
C–C′, D–D′, G–G′, and I–I′ transfers from the center-focus type
to center point type; i.e., the stability accordingly switches from
“unstable” to “stable” in these branches. The latter is a rare case
in the equilibria bifurcations of Hamiltonian systems because it
requires the four imaginary eigenvalues at the bifurcation point
to be degenerate, i.e., the two pairs of imaginary eigenvalues
coincide on the imaginary axis. Before the stability transition

occurs, the equilibrium branch is in complex instability, which
exhibits low-speed divergence; after that, the branch is in
center-type stability, which is critical and non-asymptotical.
Table 2 employs a stability indicator (Shilnikov et al. 1998):

max Re , 29
i

i
1 6 

lX = { ( )} ( )

which is the maximum of the real parts of the six eigenvalues.
For a Hamiltonian system defined by Equation (2), Liouville’s
theorem ensures that Ξ is always non-negative, therefore an
equilibrium point is stable only if Ξ=0, and is unstable if
Ξ>0. The magnitude of Ξ (>0) reflects the degree of
instability of the equilibrium point, i.e., a larger Ξ corresponds
to a higher degree of instability. As illustrated in the table, Ξ
shows a descending trend as κ increases, except for a few local
anomalies. In effect, this suggests that the equilibria on all the
eight branches become increasingly unstable as the asteroid is
spinning up.
We considered the implications of these topological

transitions in the realistic evolution of asteroids. The lofted
particles are allowed to gather and wander about a stable
equilibrium point, i.e., to move in groups along the
synchronous orbit with respect to the inertia frame. For an
equilibrium point with sufficient stable margin, such orbits of
particles clustered in its neighborhood may last for a relatively
long time (we confirm that the interval can last up to at least
several months in the case of Didymos; see Section 3.2).
Growth of solid debris probably proceeds via mutual collisions
across the region, depending on both the particle sizes and their
orbital concentration (particles in this case have low relative
speeds). As the debris growth essentially relies on the particle
size, these processes (if occurring) can be relatively stochastic
(Pater & de Lissauer 2015). Specific to the collisional growth
of big particles, e.g., particles >1 cm in diameter, the stable
equilibria might provide a mechanism that enables the
dispersed particles to gather and aggregate by increasing their
collisional probability. Another significant effect is caused by
the topological transition, when an equilibrium branch switches
from “stable” to “unstable.” Particles originally trapped around
the equilibrium point will experience a dramatic change of
dynamical environment, and would be removed in a short
interval (see Section 3.2 for details). This orbital transfer
follows the unstable manifolds at the equilibrium point, and
may eventually lead to an impact with the surface of the
asteroid, to an escape from the system, or to injection into a
new temporary cycling orbit. If the amount of transferred
material is sufficiently large, each of the three outcomes will be
capable of causing a sudden change in the angular momentum
of the target body.

3.2. Numerical Simulations of the Particle Flow

We consider a system including only the asteroid and the
lofted particles, which enables us to examine the influence of
the non-spherical gravity separately from other possible
external perturbations. The asteroid is assumed to be rotating
about the maximum principal axis of inertia, and its vicinal
gravity field is calculated using the polyhedral method. The
mass of lofted particles is assumed to be negligible compared to
that of the asteroid. For each simulation, tracer particles are first
sampled around the neighborhood of the asteroid and assigned
initial positions and velocities. Then individual simulations are
performed with this setup to track the month-long evolution of

Table 1
Six Topologies of the Equilibrium Point

(6, 0, 0)—Saddle Point
(4, 0, 2)—Saddle-Focus
(2, 4, 0)—Saddle-Focus
(2, 0, 4)—Saddle-Focus
(0, 4, 2)—Center-Focus
(0, 0, 6)—Center Point
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these particles. Note that this model applies primarily to
centimeter-sized or larger particles because the motion of such
particles is dominated by gravity.

For subcentimeter-sized particles from asteroids, the solar
radiation pressure can play a significant role in the orbital
motion, while for micron- and submicron-sized asteroidal
particles, the orbital motion would also be strongly influenced
by the Lorentz force if particles become charged (Liu &
Schmidt 2018). Poynting–Robertson drag and solar wind drag
are important only for the long-term dynamics of asteroidal
particles (Yu et al. 2017), so these drag forces are also
neglected over the timescales of our simulations (see below).
The orbits of tracer particles are solved by integrating
Equation (2), which defines Hamiltonian flows exterior to the
central body (Yu 2016). Collisions with the surface have to be
treated while considering the motion close to the asteroid.
Since we focus on the on-orbit behaviors of shed regolith
material, a particle is assumed to be stuck on the surface at the
impact site when a collision occurs. The Laplacian of the
polyhedral potential provides a simple criterion for fast
detection of such collisions (Werner & Scheeres 1997), which
was adopted in our numerical model.

Our first group of simulations aimed at a broad under-
standing of the dependency of the orbital behaviors on the
system parameter κ, without considering the mutual collisions
between the particles. The dynamical fates of lofted particles
essentially depend on their initial conditions. We intentionally
assigned an initial set of particles that are distributed uniformly
over an annular disk lying on the equatorial plane, and the
annular disk is originally centered on the asteroid mass center.
After removing the particles lying inside the asteroid body, the
remaining particles constitute a dense ring around the target
body, with the inner edge close to its surface. After the initial
positions of the particles are chosen, the corresponding
velocities are calculated by assuming that they are on
equivalent Keplerian circular orbits, as described in
Section 2.3. This choice is reasonable, because we focus on
the fates of the temporarily cycling orbits, rather than on those
that are briefly lofted and fall back within a short interval.
Equation (22) provides a rule to constrain the size of the ring

composed of cycling particles. We continue to employ the
scaled shape model of the primary of Didymos, and the
observed parameter value κ*. Then assuming a large upper
limit to a (scaled) velocity change of η=0.1, the ring radius at
the exterior rim lies at 1.2566 in scaled length units, which is
∼486.90 m in terms of the real dimensions of Didymos.
Following the methodology stated above, we generated a ring
system consisting of 46,160 particles. Simulations were
performed to sweep a wide range of κ, i.e., κ*�κ�4.24.
In this study, the choice of simulated time was made through

observing the orbital distribution on the parameter plane of
semimajor axis versus eccentricity. The orbital characteristics
were calculated according to the approximated Keplerian orbits
of the particles cycling around the asteroid (the instantaneous
Keplerian orbits as ellipse, parabola, and hyperbola character-
ized by six elements). We note in all three cases that the
trajectories of the particles entered a steady state evolution after
10–15 days, i.e., most tracer particles have either impacted on
the surface of the asteroid, or have entered a period of relatively
stable motion when the shapes of the approximated Keplerian
orbits show slow variation and the instantaneous elements
reflect the distribution of the orbits of the surviving particles
(see the supplementary materials for details). On this basis, the
simulated time was taken as 30 days, which we have
determined to be sufficiently long and to enable a complete
observation of the orbital evolution of the lofted particles.
Figure 7 shows three representative cases of the evolution of

the ring system: κ=κ* (a), κ=1.70 (b), and κ=3.71 (c). In
each subplot of Figure 7, snapshots were created at early,
middle, and late time of the simulation, respectively, showing
different configurations of the ring in these stages; the
histograms at the bottom record the distributions of the orbits
of cycling particles corresponding to the sampled frames. Here
the orbits of particles were defined to be the instantaneous
Keplerian orbits at a specified moment, which gives a
measurable approximation to the trajectory of a lofted particle.
Two parameters in Figure 7 are used to measure the shape of a
particle orbit: the semimajor axis a describes the dimension of
the orbit on average, and the periapse distance rp describes the
closest radial distance from the orbit to the asteroid mass

Table 2
Some Metrics on the Topology and Stability of the Eight Equilibrium Branches about Didymos

Branch κ Topology Ξ Stability

A–A′ 1.14 4.24 (2, 0, 4) 7.93 1.28 U

B–B′ 1.11 4.24 (2, 0, 4) 3.76 2.52 2.58 0.97   U

C–C′ 1.06 1.48 (0, 4, 2) 2.70 0.00 U
1.48 4.24 (0,0,6) 0 S

D–D′ 0.98 1.80 (0, 4, 2) 2.68 0.00 U
1.80 4.24 (0,0,6) 0 S

F–F′ 1.05 1.24 (2, 0, 4) 1.40 1.80 0.44  U

G–G′ 1.00 1.12 (0, 4, 2) 1.39 0.00 U
1.12 1.24 (0,0,6) 0 S

H–H′ 1.09 2.44 (2, 0, 4) 4.55 0.46 U

I–I′ 1.03 1.38 (0, 4, 2) 2.09 0.00 U
1.38 2.44 (0, 0, 6) 0 S

Note.The topological type, stability indicator Ξ, and stability type are listed as a function of κ. An arrow is used to indicate a monotonous variation from tail to head.
“U” is short for “unstable,” and “S” for “stable.”
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Figure 7. Representative evolutions of the ring of particles. Three subplots were generated at κ=κ*, 1.70, and 3.71 as a representation of typical results. Each subplot
includes the snapshots (top) that show the configurations of the ring in early, middle, and late periods of the month-long simulation, and the histogram statistics of the
orbiting particles (bottom) related to the snapshots. The histograms show distributions of the orbits over the axis of radial distance, i.e., the bars and lines with dots
refer to the proportions of periapse distance and semimajor axis, respectively. The labeled dashed lines mark the upper limits of the periapse distances of cycling orbits
in all the demonstrated cases.

(An animation of this figure is available.)
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center. Unscaled times are shown at the top left of each
snapshot in order to facilitate comparison. Fictitious large
particles are drawn in these frames for visual enhancement, and
the green particles mark those transported back to the surface
(stuck to the impact locations as defined in our model).

Figure 7 demonstrates the diverged dynamical behaviors of
the ring corresponding to different rotation speeds. The spin–
orbit resonance is found to be a key mechanism that plays an
important role in all examined cases; i.e., when the spin period
of the asteroid and the orbital periods of the lofted particles are
commensurate, a periodic gravitational influence acts on the
orbiting particles. The result of these perturbations may
drastically modify the orbits of the particles, which will either
lead to a collision with the asteroid or transfer the particles into
more sustainable orbits.

The Roche lobe is beneath the asteroid surface at Figure 7(a)
κ=κ*, thus all the particles are initially above it and have the
opportunity to be transported to a region far away from
the surface. Numerical simulations confirm that a period of one
month is a reasonable interval to enable the ring particles to
be scattered. The histograms show that the distribution of the
semimajor axis spreads rapidly at the early stage: its upper limit
grows from 1.26 to 6.37 in 10 days. At the same time, the range
of the periapse distance does not change much, remaining in
the 1.25–1.57 range. That is, most particles gained extra energy
from orbital resonances with the asymmetric gravitational field,
and their orbits underwent mainly eccentric drifting that locked
the periapsis to the vicinity of the asteroid and transported the
apoapsis far away. These particles in scattered orbits carried
more total energy and angular momentum than in their original
orbits, and in extreme cases, theory predicts that some particles
will gain positive Keplerian energy and enter escaping orbits
through a “slingshot” effect, which, however, was never seen in
our simulations. This is because the largely round shape of the
asteroid leads to relatively weak spin–orbit resonances.

When the rotation speed slows down, Section 3.1 shows that
a stable equilibrium point first emerges on branch G–G′ at
κ=1.12, which is close to the surface of the target body (see
Figure 5). At the value examined in Figure 7(b) κ=1.70, two
stable equilibrium points in total are seen, lying on branch
C–C′ and branch I–I′. The snapshots demonstrate the
dynamical influence of the equilibrium points on the orbital
motion of shedding particles, i.e., both give rise to clustering of
the orbiting particles that prevents particles near the equilibria
from scattering. The histograms in Figure 7 show that in our
simulation, over 40% of the particles remain in the clustering
structures for at least 30 days. Figure 6 suggests that there can
be up to three such clusters when 1.80<κ<2.44. Particles
above the synchronous orbit have the same behavior as those in
Figure 7(a), i.e., the orbits experience eccentric drifting so that
the distribution of semimajor axis extends outward rapidly,
while the periapse distance remains in the 1.25–1.68 range. On
the other hand, the particles originally beneath the synchronous
orbit are theoretically bound to the surface, and according to
our model, a majority of these particles collide with the surface
before the end of the simulation.

A qualitative difference occurs when the whole ring is
initially inside the Roche lobe, as shown in Figure 7(c)
κ=3.71: except for the particles that collide on the surface,
the other particles are permanently constrained within a narrow
range defined by the altitude of the synchronous orbit. The
histograms show that no orbital diffusion occurs in this case,

i.e., both the semimajor axis and periapse distance preserve
their distributions over the 1.25–1.37 range.
The second group of simulations focuses on the motion of

the clustered particles near the equilibria, as illustrated in the
snapshots of Figure 7(b). Theoretically, the clusters should only
emerge around stable equilibrium points, as a result of the
orbital transport of shed materials. Catastrophic changes may
occur to such clustered particles if the system parameter κ
shifts and leads to a qualitative modification of the flow around
the equilibria. Section 3.1 described the bifurcations and
stability changes of all eight branches of equilibrium points.
Numerically, we can further explore the behaviors of the
clustering particles, and show when and how often the
catastrophic changes will occur in comparison with the YORP
timescale.
Examples are provided to represent the particles moving

around the equilibrium points on branch D–D′. The initial
positions and velocities of particles are randomly chosen
subject to a given upper limit, ΔJ, which is chosen to limit
the maximum deviation of the Jacobi constant of these test
particles from that of the corresponding equilibrium point. In
our simulations, we examined sample clusters consisting
of 1000 particles in two cases with different spin rates:
I. κ=2.55, which is away from the stability transition point
(for branch D–D′, the transition point is κ=1.80; see Table 2);
and II. κ=1.80, which is slightly above the transition point
and remains on the stable branch. Simulations of the
sample clusters are performed under the original spin rates
(i.e., κ values defined above) to create benchmarking results for
comparisons and to numerically demonstrate the stability of the
cluster during the simulated time (30 days, which is confirmed
to be sufficiently long to account for the stability change we try
to observe here). Assuming that the asteroid experiences a spin-
up process due to the YORP effect, we simulate the evolution
of the same clusters under the changed spin rates. We calculate
the κ change based on the YORP spin-up/spin-down timescale
for kilometer-sized asteroids, which is estimated to range from
104 to 106 year (Rubincam 2000; Ćuk 2007). As an example of
a strong YORP effect, i.e., spin-up period T dT dt »∣ ( )∣
10 years4 , we calculate that the dimensionless factor κ drops
from 2.55 to 2.44 within ∼130 years for case I; or within the
same time, drops from 1.80 to 1.74 for case II. Then controlled
simulations of the sample clusters are performed under the
accelerated spin rates for cases I and II. Figure 8 presents a
zoomed view of the position distributions of the particles that
belong to the cluster at the original and accelerated spin rates
for both cases. For each specified κ value (2.55 or 1.80), the
initial configurations of the clusters are colored in red, their
configurations after a 30-day-long simulation under the original
spin rate are colored in blue, and the configurations after a
30-day-long simulation under the accelerated spin rate are
colored in black.
Figure 8 shows how the fate of a cluster depends on the

stability of the affiliated equilibrium point. In case I, the
equilibrium point is far from the unstable branch of D–D′, and
thus has a relatively wide margin in stability, i.e., the system is
structurally stable so that after the asteroid experiences a spin-
up, the particles of the cluster will stay around the shifted
equilibrium point. In case II, however, the cluster before/after
the spin-up exhibits distinct outcomes; i.e., the particles under
the original spin rate remain clustered about the equilibrium
point after one month, while the particles under the shifted spin
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rate experience catastrophic disruption within the same period,
and a majority of these particles finally collide with the surface
of the asteroid. Figure 9 illustrates the disruption process of the
simulated cluster that corresponds to case II (shifted equili-
brium point). Snapshots are shown at times 0 minute, 8 hr
39 minutes, 15 hr 51 minutes, 1 day 0 hr 30 minutes, 1 day
23 hr 34 minutes, 6 days 20 hr 19 minutes, 13 days 0 hr
48 minutes, 13 days 0 hr 48 minutes, and 30 days, showing the
representative configurations of the cluster.

Figure 9 demonstrates that the cluster starts to spread out of
the neighborhood of the equilibrium point within hours after
the initial time. The disruption begins just hours after the first

expansion, during which the cluster is stretched and distorted
rapidly. Most particles of the cluster are dispelled from the
equilibrium point in one week, and land on the close side of the
surface. This numerically confirms that when the system is
evolving into the critical spin limit, the equilibrium point is no
longer structurally stable and a slight change in the spin rate
may lead to catastrophic disruption of the equilibrium cluster.
Such a stability transition of the equilibrium point provides a
mechanism to rapidly remove the lofted particles that are
previously transported to the near-synchronous orbit. Because
of this effect, it is hard to accrete a satellite around a fast-
rotating body (close to the critical spin limit) or to capture it

Figure 8. Configurations of the cluster after the 30-day-long simulation at the original/accelerated spin rates for case I (a) and case II (b), respectively. The initial
positions of the particles that belong to the cluster are shown as red dots. The positions of the particles after the simulation under the original spin rate are shown as
blue dots. The positions of the particles after the simulation under the accelerated spin rate are shown as black dots. The dashed line indicates the branch D–D′ to
which these equilibrium clusters belong.

Figure 9. Snapshots of the disruption process of the cluster near the equilibrium point in case II (accelerated), as defined in Figure 8. The configurations of the cluster
are represented in the body-fixed frame (from a top view). As in Figure 7, we use fictitiously large particle sizes for visual enhancement, and use green particles to
mark the particles that are accreted on the surface of the asteroid.
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into an orbit close to its surface, i.e., the lofted regolith will be
transported to a large spatial region and may finally lead to
“mass leaking” from the system.

We further analyze the accretion of particles that are
clustered around an equilibrium point. It is known that the
collisional growth of the grains essentially depends on the
particle size, the mean relative speeds, and the volume number
density of particles in the cluster. The collision rate increases
with increasing volume density of particles in the cluster. The
settling speed (the relative speed that enables two particles to
agglomerate rather than bounce off after the collision) is
correlated with the particle size in a complicated way
depending on the scale of particle size, and it may be
influenced by cohesion forces. As a general discussion
regarding particles clustered around the equilibrium point, the
volume density highly depends on the topology of the
equilibrium point, because the motion of the particles, except
when there are collisions, is governed by Equation (2) (if no
extra perturbations are considered). Statistically, this means the
spatial region occupied by the cluster evolves under the control
of the dynamical flow. The geometry of the dynamical flow
near the equilibrium point was discussed in Section 3.1. Here
we consider a small volume originating near the equilibrium
point, w; the evolution of w is approximated using the
linearized system of Equation (2) (see a detailed discussion
in Yu & Baoyin 2012). The linearized neighborhood is
transported via the Jacobian matrix, which is a 6×6 matrix
defined as
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In Equation (32), ∇∇V indicates the gradient matrix of the
potential V (a detailed expression of the matrix can be found in
Yu 2016), and w̃ indicates the skew-symmetric matrix of
angular velocity w. O and I indicate the 3×3 zero matrix and
the 3×3 identity matrix, respectively. Note that in our
normalized formulation, w is a constant vector, thus
Equations (31) and (32) show that the Jacobian matrix is
totally determined by the gravitational potential of the asteroid,
which has a complex geometry due to the asymmetric mass
distribution. Furthermore, the variation of the test volume at
time t depends on a 3×3 block of the Jacobian matrix:
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Combining Equation (30), the compression/expansion rate of
the test volume w yields
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χis a function of time that provides a measurement to the
phase flow close to the equilibrium point. It also gives a
mathematical explanation to the results of the second group of
simulations. We calculated the compression/expansion rates at
the equilibrium point on branch D–D′ for cases I and II and
compared the curves of χ(t) before and after the shifts of the
spin rates (Figure 10). The curves are consistent with the
simulation results: the volume near a stable equilibrium point
(κ=2.55, 2.44 and 1.80) oscillates between 0 (fully

Figure 10. Variation in compression/expansion rate of a small volume near the equilibrium point, which corresponds to the four κ values numerically explored in the
second group of simulations. (a) Curves of χ under the original and accelerated spin rates in case I; and (b) curves of χ under the original and accelerated spin rates in
case II.
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compressed) and the maximum value (fully expanded), and the
maximum value shows a positive correlation with the stability
indicator Ξ; i.e., the amplitude of χ decreases as the stability of
the equilibrium point increases. After κ drops below the
transition point (κ=1.74 in case II), the amplitude of the
oscillation becomes divergent, and the divergence rate
increases rapidly with time.

The quasi-periodic oscillation of the volume occupied by the
cluster hints at the fact that particles moving around a stable
equilibrium point experience frequent extrusion, which accord-
ingly increases the collision probability among the particles
when the volume is compressed. It therefore leads to an effect
that the collision growth of grains near such points may be
efficient. If the shed regolith occasionally contributes to a high
volume number density of particles orbiting near the stable
equilibrium point, we conjecture that the nearby dynamical
environment favors the formation of temporary satellites. This
is a qualitative understanding based on our analysis and
simulations using our “tracer” model. A study of the growth of
satellites due to mass shedding would rely on understanding the
collision physics, which is crucial for the quantitative under-
standing of satellite formation. Future work will be performed
to explore the role of collisions and its influence on the
characteristics of a debris cloud.

4. Discussion

The above results indicate that the surface mass shedding
and the orbital evolution of shed material are both influenced
significantly by the asymmetries in the mass distribution of the
asteroid. Since we used a constant shape model described by
the spherical harmonic expansion, we must clarify that the
topographic dependency examined in this paper is valid for
the case when the total shed mass is very low compared to the
body, and the timescale considered here is relatively short
(from months to years) so the shape modification need not be
included as an influencial factor. Under these limitations, we
still found a common trend in both cases of surface shedding as
defined in Section 2: when the spin rate of the asteroid is
approaching the critical limit, loose regolith always seems
easier to be shed from the bulged areas than from the depressed
areas. This may produce a cumulative effect over time, that the
bulged area will be eroded earlier and faster, which may, to
some extent, help the equator of a top-shaped asteroid to
maintain a largely round shape. We note, however, that when
there is global shape modification, the roundness of the equator
might be broken rapidly. For instance, Tardivel et al. (2017)
investigated the equatorial cavities on asteroids 2008 EV5 and
2000 DP107 Alpha, and proposed that these cavities might be
formed from a fission process of the hypothetical past shapes.

The “dead zones” found around the polar sites may bear
implications in the shape formation of Didymos. These areas
occupy the sunk basins at the North Pole and the South Pole,
and their sizes show little correlation with the spin rate of the
asteroid. An infinitely high downslope speed is required for the
regolith in the dead zones to separate from the surface. This
implies that the polar cavities are very unlikely to result from
gradual mass shedding, which supports the hypothesis of
global structural failure, i.e., the structure yields when the
asteroid is spun up and reaches the failure condition: the poles
of the asteroid push inward toward the center, leading to higher

oblateness of the body (Hirabayashi et al. 2017; Zhang
et al. 2017).
The motion of the shedding material is found to be

inherently sensitive to the dynamical environment. Since a
slowly rotating asteroid is more capable of trapping the lofted
particles in its vicinity, we find that this case may in statistics
favor the accretion of lofted particles by increasing the
probability of collisions. A large fraction of the lofted particles
may eventually reaccrete on the surface of the asteroid. Some
of the particles may survive for a relatively long time (at least
several months), and their orbits lie between the surface and the
Roche lobe. This case involves frequent collisions between the
orbiting particles and probably creates large debris via
accumulation, which may produce blocks that constitute the
initial component of the satellite. Moreover, the stable
equilibrium point of a top-shaped asteroid also supports the
idea of accumulation of shed material in orbit. In the example
of Didymos, we find that a stable equilibrium point can emerge
for a nearly critical spin rate (e.g., a 2.38 hr period) and in a
position very close to the surface (see Section 3.1). Particles
shed from this area will be trapped in the neighborhood of the
equilibrium point, and the quasi-periodic compression flows
around this point may lead to an efficient collisional growth of
debris. This accumulation theory is favored by our qualitative
analysis, and future work will be organized to confirm it
numerically using a detailed modeling of collisions.
We also found that when the spin rate of the asteroid shifts to

a slow range (Figure 7(c)), the lofted particles initially inside
the Roche lobe will be permanently locked between the lobe
and the asteroid surface. In this case, we noted that a small
fraction of particles (except for those that collide with the
surface) maintain a surprisingly stable cycling motion, which
resembles an irregular ring close above the asteroid. Our
simulation shows that under the regime of considering only
gravity from the asteroid, the ring system may survive as long
as some months at least. A further study based on this result
may lead to an explanation for the formation of the asteroidal
ring systems reported in recent years, e.g., the Centaurs 10199
Chariklo and 2060 Chiron (Braga-Ribas et al. 2014; Ortiz
et al. 2015).
An important problem is what will happen to these particles/

accumulated debris in the long term as the YORP spin-up
continues. Harris et al. (2009) studied the coupled effect via the
tidal force between the secondary and the loose regolith
material on the equator of the primary, which delivers angular
momentum to the satellite orbit. Jacobson & Scheeres (2011)
studied the dynamics of rotationally fissioned asteroids, and
pointed out that after a satellite is formed from the fission of the
parent body, the chaotic binary system will be stabilized to a
synchronous binary through processes such as mass exchange,
solar gravitational perturbations, and mutual tides. Likewise,
similar orbital evolution may occur for the materials shedding
from the surface, and some of these materials will contribute to
the formation of a long-lived moonlet, which is a possible
explanation of the origin of Didymoon (the secondary of the
Didymos system). This is obviously an open question and is
expected to stimulate further studies.

5. Conclusions

This study explored the shedding processes of regolith
material from the surface of a fast-rotating asteroid. Special
attention was paid to the influence of the uneven topography of
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the surface, and to the asymmetric geopotential induced by the
uneven mass distribution. These asymmetries prove to play a
significant role in determining the shedding condition as well
as in the subsequent orbital motion of lofted regolith. We took
the primary of the binary asteroid Didymos as an example, and
found that the current reference model of Didymos (primary)
implies that a narrow band on its surface near the equator is
mostly unstable, which is either because the surface centrifugal
force exceeds the local gravity, or because the local slope
exceeds the maximum estimate of the angle of repose.
According to our calculation, loose cohesionless regolith grains
should be rapidly cleared from the mid-to-low latitudes on the
surface of the primary, and unweathered subsurface material
should be exposed in this zone. In addition, as the body spins
faster, we found that the mass shedding tends to occur first in
the bulged areas near the equator and later in those depressed
areas, which favors the maintenance of the top-like shape.
Specifically, analysis of the shedding condition and separating
speed shows consistently that before the spin rate reaches an
unrealistically high level, the cohesionless grains are likely to
escape from the bulged areas and be deposited in the depressed
areas, which provides a secular mechanism to force the
equatorial ridge to evolve into a good roundness.

Using the polyhedral gravitational model of the primary, we
investigated the dynamical behaviors of particles moving on/
close to the asteroid surface, which exhibit a dramatic change
when the spin rate approaches the critical limit. Comparison
simulations show that a more slowly rotating asteroid can trap
the lofted particles in its vicinity. The “mass leaking” effect is
reinforced as the spin rate approaches the critical limit, not only
because more massive surface failures will occur, but also
because the shed regolith will be in a more unstable dynamical
environment, especially when all the relative equilibrium points
become unstable.

The equilibrium points, as a common feature in the dynamics
near a rotating asymmetric object, play an important role in the
accretion of solid debris. Analysis shows that a stable
equilibrium point defines a quasi-periodic compressing flow,
which favors the collisional growth of particles clustered
around the point. This result has been verified by numerical
simulations. These simulations effectively show that the stable
equilibria enable the dispersed particles to cluster, which
largely increases the probability of mutual collisions. The
simulation also reveals that the topological transition of an
equilibrium point (from stable to unstable) can lead to a rapid
clearance of particles previously clustered around it, which
provides a mechanism for a fast-rotating body to transport the
shed material to far distances away from its surface.

The on-going Asteroid Impact and Deflection Assessment
mission project may provide a unique opportunity to under-
stand the mechanisms explored in this study. This project
includes a large-scale artificial impact on the potentially
hazardous binary asteroid Didymos, which can produce a
measurable deflection effect in the orbit of the secondary and
create tons of ejecta material in the binary system (Cheng
et al. 2016; Michel et al. 2018). Observations of the effects of
this mission will shed light on mysteries such as how the
regolith material will be rearranged on the surface of a fast-
rotating top-shaped asteroid, which will greatly improve our
understanding of the impact outcome in such a context and
guide our future studies.
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Appendix
Differential Geometry of the Shape Model

In this appendix, we present the first and second derivatives
of the vector-valued function S, which holds the form rS · ˆ
according to Section 2.1. Equation (5) defines the complex
form of the spherical harmonic expansion, i.e., with complex-
value coefficients cl

m and bases Yl
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Combining Equations (36)–(38), the first and second
derivatives of the spherical harmonic shape with respect to
the geographic coordinates (θ, f) yield
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The subscripts θ, f indicate the partial derivatives with
respect to the geographic coordinates. Then substituting
Equations (39)–(43) back into the corresponding derivatives
of the vector-valued function S, we determine the fundamental
differential forms of the arbitrary spherical harmonic shape as
presented in Section 2.2.2.
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