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Abstract: Buildings play a central role in energy transition, as they were responsible for 67.8%
of the total consumption of electricity in France in 2017. Because of that, detecting anomalies
(outliers) is crucial in order to identify both potential opportunities to reduce energy consumption
and malfunctioning of the metering system. This work aims to compare the performance of several
outlier detection methods, such as classical statistical methods (as boxplots) applied to the actual
measurements and to the difference between the measurements and their predictions, in the task of
detecting outliers in the power consumption data of a tertiary building located in France. The results
show that the combination of a regression method, such as random forest, and the adjusted boxplot
outlier detection method have promising potential in detecting this type of data quality problem in
electricity consumption.

Keywords: data quality; forecast error; outlier detection; power consumption; tertiary buildings

1. Introduction

The energy consumed in buildings accounts for a significant share of global energy
consumption. In France, according to Bilan RTE 2018 [1], approximately 67.8% of electricity
is consumed in buildings, both residential and tertiary. These figures indicate that buildings
play a central role in energy transition.

The increased use of intermittent renewable energy sources, such as solar energy,
makes the use of machine learning methods combined with demand side management
more and more frequent. For example, the anomaly detection using machine-learning
techniques can help to identify unusual energy consumption of assets [2–4] and detect
equipment faults [5].

Several methods for the detection of outliers have been used in recent times. Classic
statistical methods, such as the three-sigma rule [6] and the boxplot method [7], have been
highly used. However, these techniques assume a symmetrical data distribution and the
performance of these techniques is highly dependent on this feature, which is commonly
unknown for power consumption data.

To work around the issue of unknown data distribution, researchers have used
regression-based methods to tackle this problem. The first step, called the training phase,
comprises the definition of a regression model that fits the data. After the construction of
the model, every data sample is compared with the model instances in the test phase [8]. A
data point is labeled as an outlier if a remarkable deviation occurs between the actual value
and its expected value produced by the regression model [9]. Several techniques were used
to detect outliers using regression methods. For example, in [10] the author used linear
regression to detect outliers and in [11] an auto regressive moving average (ARMA) was
used as the regression technique.
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Therefore, this work aims at the application of a hybrid method, combining regression
techniques and classical statistic outlier methods focusing on detecting outliers of a dataset
that contains measurements of electrical energy consumption of a tertiary building. The
random forest [12] method as a regression technique to construct a model was used in this
work. Afterward, all measured samples were compared with the model instances, resulting
in an error. The statistical outlier detection methods were then implemented to search high
error values in order to classify them as potential outliers. This combination is called the
forecast error method.

The construction of a predictive model of energy consumption in a building can be
of great importance for energy managers. Through these models, it is possible to plan
from the short term optimization of energy consumption costs to the allocation of assets
in case of preventive maintenance with low impact on the building’s normal activity.
In addition, the implementation of an algorithm that can detect anomalies integrated
into a building management system can facilitate the identification of potential energy
consumption reduction or even the need to perform corrective maintenance on an asset
that may present a defect in real time.

The following section exposes the statistical outlier detection methods employed in
this work. Afterward, the regression (forecast) method employed and the error metrics that
can be used to assess the performance of this method are briefly introduced. The combina-
tion of these techniques is applied in two datasets. In the first one, called “adapted data”,
twelve outliers were manually introduced in healthy synthetic electricity consumption
data. The second one consists in “real data” measurements of the electricity consumption,
with outliers generated by problems inherent to buildings’ metering systems. The results
show that the combination of a regression technique and the adjusted boxplot method [13]
presents the better performance compared with the other methods when searching outliers
in the tested datasets.

2. Methods for Outlier Detection

An outlier is an observation that deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism [14]. This type of sample
can indicate malfunctioning of the metering system or even in a load itself. In addition, if
this data quality problem is too persistent it can affect the accuracy of eventual machine-
learning algorithms using this dataset. Therefore, its identification and correction are
important steps in the data pre-processing.

Standard outlier detection consists of two main components. The first one is calculat-
ing an outlier score for every data instance. The outlier score can be the value itself or even
the difference between the value and its prediction [15], considering that the prediction
model was generated based on healthy data. Other formulations, such as the local outlier
factor [16], calculate this score by comparing the value to its k-nearest neighbors in a feature
space. The second component is thresholding the outlier scores by the application of some
statistical methods. This step decides how highest scoring points are labelled as outliers.

In this work, several statistical methods for thresholding were applied as the three
sigma rule [6], the median absolute deviation [17], the original boxplot [7], the skewed
boxplot [18] and finally the adjusted boxplot [13]. Each of these methods is detailed in the
following sections.

2.1. Three-Sigma Rule

The three-sigma rule is a simple and heuristic method for outlier detection [6]. In
a symmetrical distribution, the probability of a sample to be within the range between
µ ± 3σ, where µ is the mean and σ is the standard deviation (STD), is 99.7%, as shown in
Figure 1.
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Figure 1. Percentages in normal distribution between standard deviations. Based on Straker [19].

Therefore, the upper and lower bounds that defines if a value is an outlier or not,
can be calculated by applying the following equations in which UPB represents the upper
bound and LWB the lower bound. Samples that are higher than the upper bound, or lower
than the lower bound, are potential outliers.

UPB = µ + 3 ∗ σ (1)

LWB = µ− 3 ∗ σ (2)

Since the three-sigma rule is based on the mean value and the standard deviation, this
method is sensitive to the presence of extreme outliers.

2.2. Mean Absolute Deviation (MAD)

Because of its sensitivity to the presence of outliers, the mean value is not the most
suitable measure of central tendency to be used in the outlier detection. The median value,
another measure of central tendency, is more adapted to this task due to its insensitivity to
the existence of outliers in the dataset. The median is defined as the value associated with
the mean rank after sorting the data ascendingly.

The median absolute deviation [20] is then defined as the median of the absolute
deviation from the median, and can be described as follows:

MAD = b ∗med(|xi −med(X)|) (3)

In this equation, b is a constant, suggested as 1.4826, xi represents each sample and X
is the vector that contains all samples. The upper (UPBM) and lower (LWBM) bounds can
be calculated by the application of the following equations:

UPBM = med(X) + 3 ∗MAD (4)

LWBM = med(X)− 3 ∗MAD (5)

2.3. Boxplot

The modern boxplot, described in more detail by Tukey [7], is a graphical method
for detecting potential outliers through a box and whiskers plot with restrictions on the
data used [21]. In order to provide a robust measurement of the data series, the boxplot
uses some characteristic values of the series, such as the median and the values of the first
(25%) and the third (75%) quartiles. Using these quartile values, the interquartile interval is
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calculated applying Equation (6), in which IQR represents the interquartile range and Q3
and Q1 represent the values of the first and third quartiles, respectively.

IQR = Q3 −Q1 (6)

Based on the values of the quartiles (Q3 and Q1) and the interquartile range (IQR)
it is then possible to determine the upper (UPBB) and lower (LWBB) bounds for the
boxplot method by applying Equations (7) and (8). Values located beyond these limits
are considered potential outliers. In his work, Tukey [7] proposed that K = 1.5 indicates
potential mild outliers and K = 3 classifies the sample as a potential extreme outlier.

UPBB = Q3 + K ∗ IQR (7)

LWBB = Q1 − K ∗ IQR (8)

When the data distribution follows a symmetric characteristic, this method includes
99.3% of the data within its limits [21] when K = 1.5, as can be observed in Figure 2.
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Figure 2. Example of a box-and-whisker plot for a normal distribution. Based on Olano et al. [22].

Since the Boxplot method uses the positional values of the samples in the series, and
not their values directly, this method is less sensitive to the presence of extreme outliers.

2.4. Skewed Boxplot

The boxplot method, described in the previous section, is better suited for the detection
of outliers in a dataset whose distribution is symmetric. When the distribution is skewed,
some samples that exceed the upper and lower bounds defined by that method may be
misclassified as outliers [23]. For this reason, a correction is necessary in the calculation
method of the upper and lower bounds.

There are some ways to adjust the boundaries towards the asymmetrical data. In
1990, Kimber [18] proposed a method to consider the skewness of distribution in the search
for outliers. The following equations define the upper (UPBS) and lower (LWBS) bounds
used in this method. In these equations, SIQRU is the upper interquartile range, SIQRL is
the lower interquartile range and Q2 represents the median of the evaluated series (or the
second quartile).

SIQRU = Q3 −Q2 (9)

UPBS = Q3 + 3 ∗ SIQRU (10)
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SIQRL = Q2 −Q1 (11)

LWBS = Q1 − 3 ∗ SIQRL (12)

2.5. Adjusted Boxplot

Another method to consider the skewness of a data distribution and to adjust the
boundaries is the adjusted boxplot, proposed by Hubert and Vandervieren [13]. In this
method, the medcouple (MC), proposed by Brys et al. [23], is used as a magnitude to
measure the asymmetry of the evaluated series. This variable can be calculated by applying
the following equations.

MC = med
(
h
(

xi, xj
))

(13)

h
(
xi, xj

)
=

(
xj −med(X)

)
− (med(X)− xi)

xj − xi
(14)

xi ≤ med(X) ≤ xj (15)

In these equations, xi represents the samples of the series smaller than, or equal to, the
median and xj the samples larger than, or equal to, the median. Thus, to adjust the boxplot
method according to the asymmetry of the evaluated series, the medcouple is incorporated
in the calculation of the upper and lower bounds. For left-skewed data, with negative
medcouple, the limits are calculated as shown in the following equations.

UPBA = Q3 + 1.5 ∗ e4MC ∗ IQR (16)

LWBA = Q1 − 1.5 ∗ e−3MC ∗ IQR (17)

In which UPBA and LWBA represent the upper and the lower bounds, respectively. For
right-skewed data with positive medcouple, the following equations are used.

UPBA = Q3 + 1.5 ∗ e3MC ∗ IQR (18)

LWBA = Q1 − 1.5 ∗ e−4MC ∗ IQR (19)

2.6. Error Metrics for Classification

Labeling samples as outliers or normal samples is a classification problem. Several are
the metrics to assess the performance of the algorithms used to tackle this kind of problem.
In the present work, the concepts of precision, recall [24] and the F-score (or F1) [25] are
applied. These metrics are defined by the following equations.

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 = 2 ∗
(

Precision ∗ Recall
Precision + Recall

)
(22)

In which TP is the number of true positives classifications (actual outliers detected), FP the
number of false positives classifications (normal samples misclassified as outliers), and FN
is the number of false negatives (undetected outliers).

In the context of the outlier identification task, precision indicates the proportion of
actual outliers identified among all potential outliers flagged by the search method. On
the other hand, recall is related to the number of outliers not flagged by the algorithm.
The F-score uses the harmonic mean between both to evaluate the global accuracy of
the method.



Energies 2021, 14, 8325 6 of 15

3. Random Forest as Regression Method for Forecasting

As mentioned in the previous section, the outlier scores can be calculated by several
approaches. In this work, the value itself and the difference between the actual value and
its prediction were tested. Several regression methods can be used to forecast electricity
consumption. The models that result from the application of these methods can be used in
numerous ways, as in demand-side management [26] or as a step in non-intrusive load
monitoring evaluations. These models, when generated from healthy data can also be used
to solve some data quality problems, such as in the reconstruction of profiles when there is
a lack of data, or even in the identification of outliers and anomalies [15].

In this paper, the random forest [12] method was applied as the regression/forecasting
method. It is an ensemble machine-learning method for classification and regression,
among other tasks. For classification problems, the output is the mode of all classes
resulting from the individual trees. Meanwhile, for regression tasks, the result is the mean
prediction of the outcomes from each tree in the forest [27]. In other words, this method
creates several independent decision trees—a decision support tool that represents a set
of choices in the graphical form of a tree—during the training phase, in a random way
forming a forest. Each one of the decision trees created is used in the result. Random
decision forests correct for decision trees’ habit of overfitting to their training set [28].

After the application of a forecast method, an assessment of its performance is
needed. There are several metrics used to measure the global performance of a regression
method. In this work, the mean absolute error (MAE) [29] and the mean absolute percent-
age error (MAPE) [30] were used. These metrics can be calculated using the following
equations, respectively.

MAE =
1
N

N

∑
t=1

∣∣∣∣∣Actualt − Forecastt

∣∣∣∣∣ (23)

MAPE =
1
N

N

∑
t=1

|Actualt − Forecastt|
Actualt

100 (24)

4. Results and Analysis

This section presents the results obtained by applying the forecast error method
in the search for outliers in power consumption data of a tertiary building. Firstly, the
regression methods results are shown, quantifying their performance through error metrics.
Afterward, using these regressions, the forecast error method was applied. For comparison,
the classic statistic methods for outlier detection were also applied so that the results from
both techniques are presented. The code used to perform these tasks was developed in
python language in a Jupyter Notebook, available in an online open repository [31].

The data used in this work were adapted from the dataset available for downloading at
the open science platform Mendeley Data [32]. That data comes in CSV (comma-separated
values) files that contain the timestamp and the cumulative electricity consumption with
10 min sampling. The dataset also has files with data of the external temperature, which
has influence in the building energy consumption because of the nature of the cooling
loads. The data were then resampled as the hourly consumption, resulting in 8760 samples.

This dataset contains power consumption data of the GreEn ER, a building located
in Grenoble, France. It houses the Grenoble-INP Ense3 engineering school, the G2Elab
laboratory, besides training and research platforms. The building has more than 22,000 m2

of surface area, which is divided over 6 floors and the roof. About 1500 students and
several hundred professors, researchers, and staff frequent it. As it is a large building, its
electricity consumption is also important. On typical days, the active power can amount to
more than 300 kW. It is also a massively monitored and controlled building with more than
1500 sensors, including about 330 electricity meters. These meters measure the consump-
tion of the different loads in the building, such as lighting, electrical outlets, air handling
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units (AHUs), chillers, pumps, etc. [33]. The measured data are used to control the internal
conditions and to monitor the energy consumption.

Two different data series were used to test the forecast error method. Firstly, some
known outliers were inserted in synthetic healthy data, without outliers or any other data
quality problem in order to establish a benchmark. This series was called adapted data. In
a second stage, the technique was employed in a data series without any pre-treatment
regarding data quality. This second dataset was called real data.

4.1. Adapted Data

The synthetic data, free of data quality problems, are illustrated in Figure 3. This
dataset was created to simulate the behavior of the GreEn-ER building, and it was based
on its own electricity consumption.
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Figure 3. Synthetic GreEn-ER global power consumption.

From the data exposed in the previous figure, it is possible to notice different con-
sumption patterns for different periods. It can be seen that the periods of higher consump-
tion match with those of higher occupation, during daytime on the weekdays. Outside
these periods, during nighttime on the weekdays, weekends, holidays and vacations, the
consumption reduces drastically. In addition, it is possible to notice a relation with the
temperature since the highest consumption occurs during summer.

In order to test the outlier detection techniques, twelve outliers, both upper and lower,
were manually introduced in the series presented in Figure 3, resulting in the dataset
presented graphically in Figure 4. The information of these samples is shown in Table 1,
and some of these outliers are highlighted in Figure 4 too. This information is then used as
ground truth and compared with the results obtained to assess the classification of each
sample in true positive, false positive and false negative.
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Table 1. Outliers inserted in the data series.

Outlier Index Timestamp Day of the Week Holiday or
Vacation Value [kWh] Type of Outlier

1 22 October 2017 09:00 Sunday No 390 Upper
2 24 October 2017 10:00 Tuesday No 430 Upper
3 26 October 2017 22:00 Thursday No 87 Lower
4 29 October 2017 10:00 Sunday No 95 Lower
5 4 November 2017 22:00 Saturday No 405 Upper
6 7 November 2017 23:00 Tuesday No 400 Upper
7 10 November 2017 13:00 Friday No 93 Lower
8 12 November 2017 03:00 Sunday No 120 Lower
9 26 December 2017 16:00 Tuesday Yes 110 Lower

10 28 December 2017 14:00 Thursday Yes 350 Upper
11 29 December 2017 05:00 Friday Yes 105 Lower
12 30 December 2017 21:00 Saturday Yes 375 Upper

4.1.1. Regression Methods Results

In order to find a model for the GreEn-ER energy consumption, the random forest
method was applied using the data exposed in the previous section as the regression
technique. For training of the algorithm, the following data features were used:

• External temperature;
• Average temperature of the day;
• Time of the day;
• Day of the year (with information of holidays and vacations).

The training dataset was defined as 80% of the data, from the beginning of the year
until mid-October. All the outliers inserted in this dataset are concentrated beyond this
period. These data quality problems make it difficult to assess the performance of the
regressor only in test time interval because of their effect in the statistical variables (mean,
median, standard deviation) used also to detect these abnormal samples. Because of that,
the regressor performance was evaluated in two conditions. The first one considers the
whole year, including the weeks with data quality problems and the training phase. The
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second one considers the period of the year complementary to the training phase. Figure 5
details, as an example, the results obtained with the application of the random forest
method, using five hundred estimators as parameter. At the same time, Table 2 quantifies
the performance of these regressions with the two conditions cited above.
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Table 2. Performance of the regression methods on the adapted data.

Error Metric
Period

Complete Complementary Period

MAE 1.98 8.36
MAPE 1% 4.27%

Observing Figure 5b, only in the complementary period that was not used in the
training phase are the results are satisfactory. Although the predictor underestimated the
power on the weekends, it was able to detect the daily and weekly patterns and even
during the holidays, resulting, on average, in less than a 5% error.

Regarding the regression, the most important features are the hour of the day, re-
producing the daily pattern of the consumption, and the day of the week, reproducing
the weekly shape of the load curve. The holiday feature also plays an important role in
the performance of the regressor. The other features would be more important if more
than a year’s worth of data were available. For instance, the external temperature would
improve the regression inserting the season component, such as the difference between the
days from summer and winter. However, with one year’s worth of data, and the choice
of taking 80% of the series as training, this component is not important. These features
were maintained in the model with the objective to improve the model in a future real
time application, when more than a year would be available. Figure 6 shows the feature
importance of the regression made for the adapted data.

4.1.2. Outlier Detection

In order to detect the outliers inserted in the data series, two strategies were applied.
Primarily, a global search employing the statistical methods on the power consumption
data was performed. Afterward, they were used to search outliers via the forecast error.
Twelve outliers were manually inserted, six of them were upper outliers and the other six,
lower, as shown in the previous section.
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In the global search strategy, the search for outliers was performed only once. In this
way, all information available is used, and the outliers are assumed to have any, or low,
influence on the average value, the standard deviation, or even on the quartile values.
Therefore, the global search was performed using the three-sigma rule, the boxplot, the
skewed boxplot and the adjusted boxplot methods. The results are shown in Table 3. In this
table, the column Potential Outliers Detected indicates the number of samples flagged out
as outliers by each method. In the True Positives column, there are the number of actual
outliers detected, while in the False Negatives column, the number of undetected outliers
are presented. Furthermore, in the False Positives column, the number of normal samples
misclassified as outliers are shown. Therefore, the sum of the true positives and the false
negatives should be equal to the number of outliers present in the dataset, in this case,
twelve. The sum of the true positives and false positives is equal to the potential outliers
detected and the sum of both false positives and negatives gives the total of samples
misclassified by each method.

Table 3. Number of outliers found in the global search by each method on adapted data.

Method
Potential
Outliers
Detected

True
Positives

False
Negatives

False
Positives

Total
Misclassifi-

cations
Precision Recall F-Score

3 Sigma 11 3 9 8 17 0.273 0.25 0.261
MAD 808 6 6 802 808 0.007 0.5 0.015

Boxplot 0 0 12 0 12 0 0 0
Skewed Boxplot 1 1 11 0 11 1 0.083 0.154

Adjusted Boxplot 82 6 6 76 82 0.073 0.5 0.128

The results indicate that the MAD and the adjusted boxplot were the most successful
methods in detecting outliers, having found half of them; however, they still misclassified
several other samples, reducing their precision. Thus, even detecting some outliers, their
poor recall, with several false positive samples classified as outliers, show that these
methods alone are not the best suitable to detect outliers, especially local ones, such as
those inserted in this dataset.

As the classical statistical methods failed to detect several outliers in the study dataset,
the forecast error method, which compares the results of previous regression models with
measurements was employed. The statistical methods for outlier detection are then applied
on the resulting error. Table 4 shows the number of outliers detected by each method
considering the deviation between the actual values and the predictions.
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Table 4. Number of outliers found by the Forecast Error method applied to the random forest forecasts on the adapted data.

Method
Potential
Outliers
Detected

True
Positives

False
Negatives

False
Positives

Total
Misclassifi-

cations
Precision Recall F-Score

3 Sigma 23 11 1 12 13 0.478 0.917 0.628
MAD 2136 12 0 2124 2124 0.005 1 0.011

Boxplot 1214 12 0 1202 1202 0.01 1 0.02
Skewed boxplot 1301 12 0 1289 1289 0.009 1 0.018

Adjusted boxplot 20 11 1 9 10 0.55 0.917 0.688

The results presented in Table 4 indicate that the all the methods were able to detect
most of the outliers inserted in the dataset, using the forecast error. However, the poor
precision of the MAD, the boxplot, and the skewed boxplot misclassifying several samples
indicates that they are not well suitable for this task in this dataset. The other two, three-
sigma rule and adjusted boxplot, perform better and similarly, with a small advantage for
the adjusted boxplot.

4.2. Real Data

The forecast error method was also tested in a dataset, available for downloading
at the open science platform Mendeley Data [32], with no pre-treatment regarding data
quality. This dataset was extracted directly from the GreEn-ER Building Management
System and contains several problems of data quality, inherent to this type of monitoring.
Figure 7 illustrates the power consumption data of the GreEn-ER building in which it is
possible to visualize, for example, some outliers, values that extrapolate the scale of the
graph, at the end of the year. In that period, both upper and lower outliers can be seen.
A human agent looked through all samples and classified them into normal samples and
upper (values higher than the normal instances) and lower (values lower than the normal
instances) outliers, establishing the ground truth to which the results are compared to
determine the true positives, false positives, and false negatives. Table 5 shows the type
and the number of outliers found by the human agent.
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4.2.1. Regression Methods Results

The procedure already shown in the previous section was also applied to the real
data series. The random forest method was employed as the regression technique, with
unmodified parameters and the results obtained are presented in Figure 8. The performance
of the regression is quantified in Table 6.
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Table 6. Performance of the regression methods on the Real Data.

Error Metric
Period

Complete Complementary Period 1

MAE 12.08 19.63
MAPE 6.82% 8.95%

1 Excluding last week.

Considering the complementary period, in Figure 8b, it can be seen that the predictor
was able to reconstruct the daily and weekly patterns of the building consumption. The
results are satisfactory, with less than 8% error on average, excluding the last week which
contains numerous severe data quality problems. These anomalies are the ones that need
to be pointed out, so the imperfection of the predictor is expected.

Regarding the importance of the features of the regression, similar results to the
adapted data were obtained. Figure 9 shows the importance of each feature in the regression
of the real data series.

Energies 2021, 14, x FOR PEER REVIEW 12 of 16 
 

 

  
(a) (b) 

Figure 8. Regression results using the random forest algorithm on real data. (a) Regression results and actual data during 

the whole year and (b) regression results and actual data during the period complementary to the training phase. 

Table 6. Performance of the regression methods on the Real Data. 

Error Metric 
Period 

Complete Complementary Period 1 

MAE 12.08 19.63 

MAPE 6.82% 8.95% 
1 Excluding last week. 

Considering the complementary period, in Figure 8b, it can be seen that the predictor 

was able to reconstruct the daily and weekly patterns of the building consumption. The 

results are satisfactory, with less than 8% error on average, excluding the last week which 

contains numerous severe data quality problems. These anomalies are the ones that need 

to be pointed out, so the imperfection of the predictor is expected. 

Regarding the importance of the features of the regression, similar results to the 

adapted data were obtained. Figure 9 shows the importance of each feature in the regres-

sion of the real data series. 

 

Figure 9. Data features importance in the random forest regression of the real data series. Figure 9. Data features importance in the random forest regression of the real data series.



Energies 2021, 14, 8325 13 of 15

4.2.2. Outlier Detection

As previously shown in Table 5, the outliers present in the series were manually
classified to establish a benchmark for comparing the performance of the outlier detection
algorithms. Two hundred and twelve outliers were found, eight of which are upper outliers
and the other two hundred and four, lower.

The global search was performed using the three-sigma rule, the boxplot, the skewed
boxplot and the adjusted boxplot methods. The results are shown in Table 7.

Table 7. Outliers found in the global search by each method on real data.

Method
Potential
Outliers
Detected

True
Positives

False
Negatives

False
Positives

Total
Misclassifi-

cations
Precision Recall F-Score

3 Sigma 6 6 206 0 206 1 0.028 0.055
MAD 931 11 201 920 1121 0.012 0.052 0.019

Boxplot 6 6 206 0 206 1 0.028 0.055
Skewed boxplot 152 151 61 1 62 0.993 0.712 0.83

Adjusted boxplot 271 172 40 99 139 0.635 0.811 0.712

The presented results indicate that none of the tested methods were able to detect all
the outliers. Furthermore, although the adjusted boxplot has initially pointed out more
outliers than actually exist, it failed to detect forty outliers, and misclassified ninety-nine
normal samples as abnormal data instances. Therefore, the results corroborate that those
classical statistical methods applied to the value itself are not suitable to detect outliers,
especially for local ones, such as the lower outliers present in this dataset.

As shown in the previous section, the forecast error method was also employed in the
real data.

Although they found all outliers of the dataset, the results presented in Table 8 cor-
roborate the notion that the MAD, the boxplot, and the skewed boxplot are not the most
adapted methods to detect outliers using the forecast error in this dataset, as they mis-
classified several samples as outliers. Furthermore, the three-sigma rule failed to detect
most of the outliers, flagging only the obvious upper outliers. Finally, the adjusted box-
plot performed better, but still misclassified some samples. This method was able to
detect 192 out of 212 outliers and misclassified another 13 samples as outliers, resulting in
33 misclassifications. This better performance of the adjusted boxplot can be seen by ob-
serving the F-score. While the MAD, the boxplot, and the skewed boxplot all have 1 recall,
meaning that they found all the outliers (zero false negatives), their misclassification is
costly as shown in their poor precision. This affects the F-score, decreasing its value. On
the other hand, the adjusted boxplot presented the best compromise between the precision
and the recall, resulting in both metrics to be higher than 0.90.

Table 8. Number of outliers found by the forecast error method applied to the random forest forecasts on the real data.

Method
Potential
Outliers
Detected

True
Positives

False
Negatives

False
Positives

Total
Misclassifi-

cations
Precision Recall F-Score

3 Sigma 6 6 206 0 206 1 0.028 0.055
MAD 1458 212 0 1246 1246 0.145 1 0.254

Boxplot 860 212 0 648 648 0.247 1 0.396
Skewed boxplot 1056 212 0 844 844 0.201 1 0.334

Adjusted boxplot 205 192 20 13 33 0.937 0.906 0.921
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5. Conclusions

This work aimed to employ a hybrid method, called forecast error, to detect outliers in
the power consumption of a tertiary building. This method combines regression methods
with statistical outlier detection techniques. The random forest algorithm was used as the
regression method and the three-sigma rule, the median absolute deviation, the boxplot,
the skewed boxplot, and the adjusted boxplot were chosen as outlier detection techniques.
In a global search, using only the statistical methods to the data instances themselves,
none of them presented the expected performance. On the other hand, when the adjusted
boxplot was applied to the forecast error (difference between the actual measurement
and the forecast) better performance was obtained. Considering both datasets tested, this
combination has presented the best F-score (higher than 0.90 in the real data dataset), but
it was not perfect. Hence, a human-in-the-loop approach [34] is still needed, with the
forecast error outlier detection method pointing out potential outliers and a human agent
validating them. Thus, the effort would be less costly with the application of the method
presented in this work.

In addition, this approach relies on high quality predictions, which may be improved.
One way to improve the forecasts is using more features in the training phase. The
consumption of one week earlier, in the case of the datasets pattern presented in this
paper, is a common feature used. However, in the present dataset, with several subsequent
samples with data quality problems, the use of the past consumption could degrade the
model. On the other hand, in a real-time application, this feature could be of great help
in the definition of a good predictor and would significantly improve the outlier and
anomaly detection.

Supplementary Materials: The following are available online at https://gricad-gitlab.univ-grenoble-
alpes.fr/martgust/power-consumption-data-quality, accessed on 17 November 2021, the source
code and notebooks linked to this article.
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