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Abstract— The decentralization of energy generation and 

transmission demand for the Internet of Energy with real-time 

peer-to-peer energy exchange. The intermittent renewable 

energy provides a challenge of consumption flexibility at 

consumer side. Buildings are significant in this new context, since 

they are the biggest energy consumer worldwide and can 

contribute to local renewable energy production as well. 

Therefore, proactive building services will be required in near 

future in order to operate energy community. This paper deals 

with energy flexibility obtained through PV production forecast 

for a community. Decision tree technique is applied on historical 

hourly data of 3 years for week-ahead forecast of building 

consumption, photovoltaic production, and for fault detection 

diagnostic. Feature engineering and energy expertise used to 

obtain good forecasting performances are discussed. The 

significance of these technics for prospective energy community 

service is also discussed in the paper.  

Keywords— machine learning, energy flexibility, random 

forest, gradient boosting, auto-consumption, building 

consumption, PV forecast, energy communities.  

I. BUILDINGS AS A PILLAR OF THE INTERNET OF ENERGY 

Environmental policies and the reduction in production 
cost of renewable energy are transforming the energy 
landscape of cities and countries worldwide. The renewable 
energy is decentralized and intermittent in nature and due to its 
constraints, it modifies the role of transmission system 
operator (TSO) and distribution system operator (DSO) while 
connected to the energy grid. In this context, the role of DSO 
is becoming increasingly significant to keep the balance of 
energy flows for avoiding local congestion. In [1], the Center 
on Regulation in Europe highlights different proposals for 
DSO-TSO interactions that allow the trade of flexible services.  

With the decentralization of energy network and 
implementation of Internet of Energy (IoE), each node of the 
energy network will be able to produce, consume and store 
energy. These real-time peer-to-peer exchanges constitute IoE 
revolution, and require a real paradigm shift in technological 
solutions and energy regulation. Today, the operators of the 
electrical networks are practically blind on the scale of the 
districts and can only through demonstrators sketch the 
potential of solutions to prepare the future [2]. IoE will rely on 
net-metering to decide the dynamic electricity pricing; based 
on the available energy storage (kWh) it will also depend on 
the capacity (kW). Therefore, it accounts for strong time 

dependence. The complexity of pricing will no longer allow 
optimal human decision-making, rather a set of third-party 
players should be developed to implement advising and 
controlling services. 

IoE is not only made up of smart grids; it is also comprised 
of the actors at each node of these grids. For instance, energy 
management at a local level should aim for a multi-objective 
optimum integrating economic constraints, environmental 
issues, and citizen choices. Self-consumption is a good way to 
involve consumers in energy system and to play on levers that 
the economic aspects could not reach. It permits to reduce 
transmission loss (8% on average), reduces the infrastructure 
investments and motivates the increase in consumption, 
particularly in cities. Legislation on collective self-
consumption is already in place in some countries like France 
[3], which encourages the citizens to play an active role in IoE. 
They can thus collectively produce and consume their own 
energy. However, it is required that these solutions that are 
promoting the penetration of renewable energies must be 
complemented by the services for operators and consumers 
(i.e. the occupants of buildings). 

Residential and commercial buildings are the biggest 
energy consumer worldwide; mainly for their needs related to 
thermal comfort. They consumed more than 37% of final 
energy in OECD countries in 2017 on par with transport (37%) 
and ahead of industry (25 %) [4]. In perspective of 
decentralized production in proximity of load centre, energy 
production could be very strongly developed on these 
buildings in the coming years. The French   Environment   and   
Energy   Management   Agency (ADEME) proposed a scenario 
for a 100% renewable mix across France in 2050; where 34% 
of the capacity would be generated by photovoltaic panels on 
the rooftop of the buildings [5]. According to this report, 
buildings flexibility will help up to 18% for managing the 
network balance of 100GW peak demand, essentially from 
heating, ventilation, air conditioning (HVAC) (14GW) and hot 
water tank (4GW). 

Buildings are therefore essential in the energy transition 
[6]. However, they must be able to communicate with each 
other and offer services to network operators or at the level of 
energy communities. 
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II. MACHINE LEARNING FOR BUILDING ENERGY SERVICES 

As mentioned above, buildings must offer flexibility to 
ensure optimum energy management. Two such tools that 
might already be implemented in buildings are as follows: 

 Optimization of the energy bill: by proposing an 
adaptive contract, based on the analysis of past data and 
long-term forecasts. This helps in notifying the 
consumer to avoid upcoming over-consumption 
through load shedding and hence to avoid financial 
penalties. 

 Fault detection diagnosis and maintenance: it allows to 
detect a variation in the measurement compared to a 
baseline, indicating a potential malfunction.  

In this paper, we will try to go further by expressing the 
needs for the implementation of new service tools for energy 
communities. The tools presented below may rely on the same 
technics already used for optimizing the energy bill or for 
diagnosis of a consumer, yet they need to be adapted for an 
energy community.  

 Optimizing collective self-consumption: ensuring a 
balance between production and consumption at the 
community level through promoting the penetration of 
renewable energies. 

 Energy flexibility: each building offers the means of 
quantifying the potential flexibility and activating 
negotiations for flexible actions to the community. 

Predicted models must be deployed in order to make these 
services work. An approach is to develop physical models 
often resulting from specialized expertise and in-depth 
knowledge of the system to be modelled [7].  

Another way is to model physical system using artificial 
intelligence (AI). AI is now a thriving technology driven by 
the convergence of deep learning, and planetary-scale data. Its 
impact on human society is expected to be on a scale 
comparable to electricity. During 1975-1990, artificial neural 
network improved its performance by two innovations: multi-
layer perceptrons with soft decision surface and learning with 
back-propagation. However, since 2012, deep learning (DL) 
has been found effective to provide reliable solutions for 
longstanding problems [8]. Long short term memory (LSTM) 
is a recurrent neural network (RNN) dedicated to time series 
modelling which is able to catch different dynamics of the 
signal. This deep learning technique has been successfully 
applied for building hourly consumption prediction [9]. 
Support vector machine (SVM) is another machine-learning 
algorithm, which can be applied to predict building energy 
consumption [10]. Both of these technics are complex; notably 
with hyper-parameters to tune, with long time to train, and 
difficult to interpret. In this paper, we used a machine learning 
method based on decision trees, which has the advantage of 
being quick to calculate and easily interpretable. 

The three most common barriers to AI are: (1) insufficient 
labeled data for learning, (2) insufficient computing power and 
(3) prohibitive cost of encoding domain knowledge. The 
barrier (2) is not addressed in this paper, but we are going to 
discuss on data availability and the link between domain-
specific expertise which are required to build efficient AI.  

To implement the proposed building services, it is required 
to create a forecasting model. The classical horizon for model 

predictive control is a day-ahead forecast, while in order to 
provide other kind of services for energy planning including 
human decision-making, we will study in the following section 
a week forecast modelling. Therefore, sufficient and reliable 
historical data is required to make a supervised learning model 
with the characteristics as follows.  

 Data Length: it can be important to capture short term 
as well as long term dynamics, like the annual 
seasonality. 

 Sampling Frequency: the choice of sampling frequency 
is according to the model requirement and the memory 
constraint of hardware. Any fine sampling which can 
be down-sampled for annual history is helpful in this 
regard.  

 Data Quality: it is common to have missing data or 
outliers. In the case of missing data, an interpolation 
during the pre-treatment phase is helpful for a time 
series data, whereas certain technics can be used to 
detect and remove the outliers. 

 Data Quantity and Diversity: a diverse and big data 
brings more choices of feature selection according to 
the needs of the predictive model. The features can be 
sorted according to the best correlations among the 
parameters. 

To illustrate this, we are modelling consumption of the 
GreEn-ER building [6], a 22,000 m² service building, 
accommodating 2,000 occupants, and massively monitored 
and controlled for energy efficiency. It has around 1500 
connected sensors. The consumption of the building is mainly 
driven by the thermal comfort of the occupants and air quality. 
The historical consumption of a period of 3 years (from 2017 
to 2019) is used for modelling. For the purpose of training the 
model, we will use the data of 2 years, while the last year will 
be used for model validation. 

III. CONSUMPTION FORECAST AND FEATURE ENGINEERING  

The first task of a modelling is the definition and selection 
of the features from the raw data (also called feature 
engineering). Features are the inputs of the prediction model. 
There are two categories of features to be selected for making 
a predictive model of the consumption of GreEn-ER. The first 
category of features is based on the historical raw data. 
Specifically, these are Date Time Features, Lag Features and 
Windows Features. A second category of features are the 
exogenous variables, which are correlated to the variable to 
predict. We briefly discuss these features by illustrating on the 
building consumption prediction. 

A. Date Time Features 

The Date Time features correspond to properties linked to 
the instants of the observations. For instance, the time of day 
helps to model the daily frequency and therefore helps to 
model daily events such as the automatic start of heating at 6 
a.m., the arrival of staff at the office at 8 a.m., the lunch break 
etc. The day of week makes it possible to model working days 
and weekends. The day of year allows to take into account the 
seasons and holidays. 

The well-known objective of machine learning is to adjust 
the bias-variance compromise in order to have a model which 
generalizes well the behaviour of the data, and which therefore 
leads to a robust prediction. For this, we need a model that 



reduces the bias but without leading to over-fitting (i.e. 
decision tree), and at the same time it ensures the smallest 
possible variance in the data without leading to under-fitting. 
To solve the problem of bias-variance, we can adopt an 
ensemble approach, that cuts training data into a set of smaller 
data sets (bootstrapping), performs several learnings and 
returns the average. This technique is known as Random 
Forest (RF) [12]. RF has been compared in [13] with neural 
network for HVAC hourly consumption forecast, and the 
authors claim that for comparable performance, RF is easier to 
use. It has been used for automated measurement and 
verification before and after a retrofit (pre-retrofit and post-
retrofit data) and to predict how much energy the retrofit saved 
[14]. RF has been also used for building consumption anomaly 
detection [15].    

Comparing to conventional time series prediction methods 
such as SARIMA (Seasonal Auto-Regressive Integral Moving 
Average), learning methods based on RF show better 
performance if features are well studied [16]. 

The regression model defined with 100 estimators, takes 
only 4 seconds to be trained on a desktop computer for a 
historical data of 2 years at 1 hour sampling time, with 5 
features. This makes a total of 87,600 entries in the historical 
data. 

Fig. 1 shows the actual and predicted load curves for the 
building. The hourly mean error calculated for the whole year 
2019 is 90kWh, which renders the model appropriate. Fig. 2 
shows the features importance obtained after model training. 
The Day of Year feature explains half of the behaviour of the 
consumption, while Hour of Day is second important feature 
with 30% importance. 

 

Fig. 1. One-week prediction using Random Forest, based on Date Time 

Features 

 
Fig. 2. Date Time Features importance for consumption forecast 

                                                           
1 https://openweathermap.org  

B. Lag Features 

Lag features appear particularly for time series. They 
introduce the dependence of the current value on the past 
values. The downside of this feature is that it cannot be 
predicted, so the model prediction horizon becomes limited 
very quickly. If a 1 step lag shift is made and a model is trained 
on that feature, the model will be able to forecast 1 step ahead 
having observed current state of the series. So, during the 
initial lag selection, a balance between the optimal prediction 
quality and the length of forecasting horizon has to be found. 

It can be observed by looking at the autocorrelation of the 
consumption data (Fig. 3) that a consumption value at a certain 
hour has a strong dependence on the previous hour (h-1) or the 
previous few hours (h-n, where n is number of hours), then a 
dependence on the consumption of the previous day at the 
same time (h-24). The consumption value at a certain hour also 
has a strong dependence on consumption at the same time in 
the previous week (h-168).  

 

Fig. 3. Autocorrelation function of consumption time serie, hourly steps 

The lag feature is very significant for the training of the 
model. It explains 65% of the prediction and then considerably 
reduces the dependency on the others. It implicitly includes 
information already present such as the Hour of Day or Day of 
Week. The result of the model is over-fitting, which leads to a 
poorer generalization of the model. Nevertheless, the 
integrated result for the year 2019 is improved by 16% with an 
average error of 75kWh compared to 90kWh previously.  

C. Windows Features and Exogeneous Variables 

Windows feature is a summary of values over a fixed 
window of prior time steps. It can be for example the energy 
consumed the day before or the previous week (sum or average 
value), or the minimum and maximum values. The question 
that often arises concerns the optimal size of the sliding 
window. We can apply this technique to the series to be 
predicted directly, but for a week-ahead forecast, we must 
therefore look for statistical quantities of the week before. 

We can also introduce exogenous features, i.e. signals 
correlated to the consumption, in particular the outdoor 
temperature. We can therefore apply window feature on this 
variable to obtain the average daily temperature. The 
prediction of this variable is relatively easy to access by 
weather forecast APIs like OpenWeather 1 . Fig. 4 shows 
temperature and consumption for the 4 seasons (spring, 
summer, autumn and winter).  

h-168 Lag 

https://openweathermap.org/


 

Fig. 4. Pair plot and density distribution of consumption and temperature. 

After training a model with windows features, the new 
feature explains more than 25% of the prediction. The 
improvement compared to the reference is 12% with an 
average error of 79kWh compared to 90kWh for the reference.  

Finally, if we use the two previous features (Lag h-168 and 
outdoor mean temperature) in combination with the windows 
feature, the total improvement is 39% with an average error of 
65kWh integrated over the year 2019. The weekly energy 
calculated from this last model, is integrated over the year and 
gives a value of 2215 MWh, compared to 2071 MWh in 
reality, which is 7% error. 

In this model, the lag feature (h-168) has the highest 
importance with 60%, while with mean outdoor temperature, 
it is 16%, with Day of Year, it is 11%, with Hour of Day it is 
8%,  with Day of Week it is 3%, with Year it is 1% and with 
Holiday it is nearly 0% for the whole year. Though the last 
feature is insignificant, it is still important for some days like 
in Fig. 5 (8th May: Holiday in commemoration of 2nd world war 
armistice in 1945). 

  

Fig. 5. Week prediction where a holiday is well forecasted even with nearly 

zero importance for holidays features. 

TABLE I.  SUMMARY OF FEATURE SELECTION IMPROVEMENTS 

 Refer

ence 
Lag (h-168) 

Outdoor mean 

Temperature 
Both 

MAE (kWh) 90 75 79 65 

Improvement (%) - 16 12 39 

a. Mean Absolute Error of Energy per hour 

 

Other important features can be directly found by physical 
expertise of the system. In addition to the outdoor temperature 
forecast, it would be interesting to provide the indoor set-point 
temperature as a feature for forecasting. This may, varies 
according to the modes programmed in the BMS (Building 
Management System). Additional heat gain (through the 
occupation of the building and the radiative contributions by 
the glazing) is also very important in modern well-insulated 
buildings, so it is desirable to have a prediction.   

IV. PHOTOVOLTAIC PRODUCTION FORECAST AND HYBRID 

DATA/PHYISCAL MODELLING 

New energy services for energy management and 
flexibility in the local energy community require energy 
production forecast.  

There are many photovoltaic production prediction 
models, owing to the different prediction horizons: ultra-short-
term forecasting (a few minutes to 1 hour ahead), short-term 
forecasting (1 hour to several hours ahead), medium-term 
forecasting (several hours to 1 week ahead), and long-term 
forecasting (1 week to 1 year or more ahead), but also for 
different spatial scales (local or regional). For example, 
methods for micro-grids control using cameras will be on a 
local scale, in order to produce ultra-short-term forecasting 
[17]. A quite common time scale concerns day-ahead 
photovoltaic forecasting. A. Nespoli present in its recent paper 
[18] a comparison of most effective technics. 

For larger horizons, we often face a strong uncertainty that 
local weather models seek to resolve. In [20], we developed a 
heuristic approach based on a prediction of nebulosity to 
obtain Direct Normal Irradiance (DNI) and Global Horizontal 
Irradiance (GHI) which are necessary for PV model. We 
propose here to use two specific features to train DNI, a 
physical model providing clear sky DNI as well as nebulosity 
prediction data provided by the APIs from Météo-France 
(AROME open data [19]). Then the same can be done for GHI 
in order to obtain PV production forecast. 

We proceed as for consumption to a learning by RF with 200 
estimators, which takes 3 seconds to train. Fig. 6 is showing 
DNI for a week. RF prediction has an average error of 
83.4 W/m², compared to 88.5 W/m2 for the empirical model 
developed in [20]. Fig. 7 shows that the clear-sky model is the 
most important feature (34%), then Day of Year, Cloudiness 
and finally Hour of Day. This complementarity between data 
and physical model is one of the new challenges of cyber-
physical modeling in the coming years. 

 

Fig. 6. Random Forest DNI forecast based on nebulosity forecast and clear 

sky physical model. 

Consumption increase for 

low and high temperatures 

May 8th is a day off 



 

Fig. 7. Significance of Random Forest for Direct Normal Irradiance model  

To conclude this part, powerful predictive models are 
easily achievable. The challenges are therefore now the 
development of services such as self-consumption at the scale 
of an energy community by exploiting these production and 
consumption forecasts. 

V. INTERVAL PREDICTION FOR FLEXIBILITY CAPACITY 

Beside auto-consumption, flexibiliy is another challenge 
for the energy communities. One of them can be the real time 
evaluation of flexible capacity. It corresponds to the power that 
can be shedded or over-consumed when the grid requires it to 
improve the auto-consumption ratio. The capacity of 
evaluation of flexibility is difficult, as it strongly depends on 
variation of normal comfort level among the occupants. In 
[21], [22] we have used physical based models in order to 
evaluate flexibility potential of district buildings that are 
heated and cooled by heat pumps. Here we are questioning 
machine learning technics in order to provide the same kind of 
information. 

In addition, Fault Detection Diagnosis (FDD) allows real-
time detection of inconsistent behaviour by identifying 
measures that would go beyond a standard range of variation. 
For instance, FDD has been already developed by [23] using 
Gaussian process regression. 

We are applying on GreEn-ER consumption another 
regression technique, which is close to Random Forest (RF). 
Where RF manages the variance problem thanks to 
bootstrapping, it does not manage at best the bias introduced 
by the depth of the regression trees. A variant of RF called 
Gradient Boosting (GB) helps to better manage the bias. While 
RF generates random and independent trees in parallel, GB 
works sequentially to create new trees depending on the 
performance of the previous ones. In addition, optimization 
uses the gradient to accelerate convergence. 

In order to create the prediction boundaries, two models are 
built. The first one uses 10% of the smallest data, and the 
second one 10% of the largest data (90% quantile). To train 
these models, we are using the same features as part III, with 
the outdoor temperature, but without the historical values (h-
168). The models use 200 estimators and a maximum tree 
depth of 10. The 2 models are trained in 46 seconds. 

To illustrate the FDD, Fig. 8 presents a measured 
consumption (black) that goes out of limits (min: blue, max: 
yellow) during the first week. Maintenance on the system is 
then carried out and the data returns to a normal state for the 
2nd week. An important remark can then be raised here, if the 
model takes too much account of the last measured values, like 
with Lag features, this kind of deviation is more difficult to 
identify. Indeed, the model will consider the anomalies as 
normal values with time. 

 

Fig. 8. Fault Detection Diagnosis (FDD) using Gradient Boosting. 

Does these intervals can help to evaluate the flexibility 
capacity by giving possible variations of consumption while 
keeping the building in a “normal” state ? To go further it will 
be required to study indoor comfort such as temperature 
modeling, but also put enough information on the data in order 
to be able to simulate with machine learning model, the heating 
or ventilation switch off consequences on the comfort. 

CONCLUSIONS 

In this work, we implemented different machine learning 
technics for predicting the consumption of a building, 
predicting photovoltaic production or even detecting faults. 

We exploited the Random Forest (RF) and Gradient 
Boosting (GB) technics that are based on a set of decision trees 
offering good prediction performance in a short time and 
compatible with a hardware implementation. In addition, they 
offer good interpretability of results due to the possibility of 
exploring the decision tree, and due to information regarding 
the importance of feature. The feature engineering work was 
more particularly highlighted, and shown the need to introduce 
more exogenous features to implement richer correlations. An 
expertise in the functioning of the system is then necessary, as 
well as the provision of the richest possible data history with 
allowing to make the best choices according to the needs. 

We have also shown on photovoltaic production, that it can 
be interesting to provide data from physical models (clear sky 
model), and therefore that the approach by data is not 
contradictory with a physical approach. Again, physical 
expertise is needed to define the features. These consumption 
and production prediction services must be the basis of future 
services developed for the energy community in order, for 
instance, to optimize the rate of self-consumption. 

Finally, the prediction of intervals that can be used in FDD 
is rich information on potential deviations in consumption and 
gives a first approximation of the buildings flexibility 
capacities. 
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