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Abstract. Mathematical Morphology provides powerful tools for image
processing, analysis and understanding. In this paper, we apply these
tools to analyze scores, that are image-like representations of Music. To
do that, we consider chroma rolls, a representation of scores similar to
piano rolls that use chromas instead of pitches. Endowing this represen-
tation with a lattice structure, one can define Mathematical Morphology
operators, and setting a group structure to the Time-Frequency plane
allows us to use the notion of structuring element. We show throughout
some examples that this relates with the notion of pitch-class set and
chord progressions, and we analyze two Chopin’s Nocturnes with this
technique.

Keywords: Mathematical Morphology · Harmonic Analysis · Time-
Frequency · Pitch-class Set · Chord Progression · Chroma Roll.

1 Introduction

Mathematical Morphology is a theory for the analysis and processing of geomet-
rical structures that intersects with several domains such as Topology, Lattice
Theory or Integral Geometry [6, 9]. It has been developed in the second half
of the 20th century and it has been extensively used for analyzing images. Fol-
lowing this approach, we will show that Mathematical Morphology operators
may be useful for analyzing image-like representations of Music such as scores.
In particular, we will focus on harmonic analysis and we will take as support a
two-dimensional representation of the score closely related to the standard piano
roll: the chroma roll.

There are already a few applications of Mathematical Morphology to Mu-
sic [3, 4], and [5] on this topic that use piano rolls. This paper extends these
earlier works in terms of both representations of music and types of operators.

There are several frameworks where Mathematical Morphology may be ap-
plied; in its deterministic form, we need to have a complete lattice as algebraic
⋆ This research is supported by European Research Council ERC-ADG-883313
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structure. We will ask a bit more, intending to make it possible to work with
structuring elements: the lattice will then consist of functions with a group as
domain and a complete lattice as codomain. Moreover, since we will make ab-
straction of the dynamics of the score, we will select as codomain the lattice
({0, 1},≤), and then we will be able to identify functions with subsets of the
group through the characteristic function.

In this paper, we will start by presenting the algebraic framework of the
Time-Frequency plane based on Group Theory. Then, we will present the Math-
ematical Morphology basics that we will use in this work. Finally, we will propose
some applications of Mathematical Morphology operators to extract harmonic
information. As a particular case, we will focus on Chopin’s Nocturnes since they
are well adapted to this task.

2 Algebraic Framework

Since we want to model scores, our domain is the Cartesian product of a set
modeling time and a set modeling frequency. We require these sets to be groups in
order to have a notion of translation; this will lead to straightforward definitions
of the morphological operators.

We recall that the translation action of a group (G,+) on itself is the function

T : G×G→ G
(g, x) 7→ Tgx = x+ g

. (1)

In the following sections, we present the corresponding groups we chose for
modeling time and frequency, that lead to a time-frequency representation of a
score.

2.1 Time Group

There are several groups that may model the time: if we express it in seconds
we can choose (R,+); if we consider the time inside a MIDI file it will be useful
to use (Z,+) where each unit is a tick; if we consider an audio signal we may
also use (Z,+) where each unit is a sample.

When we measure the time inside a score, one can choose several units:
among others, we may use either the bar, the beat or the tatum3. We choose to
measure the time inside a score in bars. Letting d ∈ N be the ratio between the
duration of a bar and the duration of the tatum, we model the time inside a
score measured in bars by the group ( 1dZ,+), where 1

dZ = {n
d ∈ Q : n ∈ Z}. This

group is a subgroup of (Q,+) but is isomorphic to (Z,+) using the isomorphism
ϕ :

(
1
dZ,+

)
→ (Z,+), nd 7→ n. Nevertheless, it is interesting to use it rather than

(Z,+) because measuring the time in multiples of tatum is far less practical that
doing it in bars.
3 This name was introduced in [1] for calling the maximal note duration such that all

the note durations in the score are integer multiples of it. For a deeper discussion
about it and its relation with the notion of GCD (Greatest Common Divisor) see [7].
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2.2 Frequency Groups

For considering the frequency inside a score, we may use the notion of pitch.
Usually, pitch is measured in semitones and may be modeled by the set Z where
each number corresponds to the MIDI number of a note (for instance, the number
60 corresponds to C4).

This frequency group is interesting for analyzing melodies but, when con-
sidering harmony, it would be preferable to work with the set Z12 of chromas.
Then, we use this set with the translation action of (Z12,+). In order to make the
distinction between chromas and translations, we will use letters for the chromas
(C, C, ..., B) and numbers for the chroma shifts (0, 1, ..., 11), even if chromas
have an associated number for computations and are considered as elements of
Z12.

2.3 Time-Frequency Groups

Now that we have set the models for time and frequency, we can couple them
by means of the direct product and have a time-frequency representation of
scores. We then work with the group ( 1dZ × Z12,+) and the action on itself. A
score may then be conceived as a subset of the time-frequency plane; piano roll
representations are a good way of visualizing this, but they are subsets of 1

dZ×Z;
since we want to work with the time-frequency plane 1

dZ× Z12, we call chroma
roll a subset of it. The way of getting a chroma roll from a score is the following:
we take the piano roll representation of the score that we call S ⊆ 1

dZ × Z and
we say that its chroma roll representation is the set π(S) ⊆ 1

dZ × Z12, where
π : Z → Z12, n 7→ n is the canonical projection from Z to Z12. See Figure 1 for
an illustration of a chroma roll.

Now that we have an image-like representation of the music with a base group
structure, we are able to define some Mathematical Morphology operators that
allow us to extract harmonic features of the score.

(a) Score
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Time (in bars)

C
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ro

m
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(b) Chroma roll

Fig. 1. Chroma roll representation of a score
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3 Mathematical Morphology

Let us now introduce some basic but useful tools of Mathematical Morphology.
We start by the two basic operators, which are the erosion and the dilation.

3.1 Erosion and dilation

Erosion and dilation are defined in the context of complete lattices. A good intro-
duction to these operators where all the subsequent definitions and propositions
may be found is [2].

Definition 1. Let (L1,≤1) and (L2,≤2) be two complete lattices, and ∧1,∧2

(respectively ∨1,∨2) the associated infimum (respectively supremum).
An operator ε : L2 → L1 is called an erosion if

∀X2 ⊆ L2 ,
∧

1
ε(X2) = ε

(∧
2
X2

)
. (2)

An operator δ : L1 → L2 is called a dilation if

∀X1 ⊆ L1 ,
∨

2
δ(X1) = δ

(∨
1
X1

)
. (3)

An important property of these operators is that they are increasing4 and
then preserve the order.

Whereas this is the most general definition for erosion and dilation, it is
an implicit definition. In order to have an explicit type of erosion and dilation
(the one with structuring elements), we choose as lattice the power set of a
group (G,+). The next proposition provides an explicit definition these types of
operators.

Proposition 1. Let (G,+) be an additive group. Let T : G ×G → G, (x, g) 7→
Tgx = x+ g be the translation action of (G,+) on itself. We note the translation
of a set A ⊆ G by an element g ∈ G by TgA = {Tga ∈ G : a ∈ A} ⊆ G. Let
B ⊆ G and B̌ = {−b ∈ G : b ∈ B}, where −b is the inverse element of b.

We consider the complete lattice (P(G),⊆). Then, the operators

εB : P(G) → P(G)
A 7→ εB(A) = {x ∈ G : TxB ⊆ A}

(4)

and δB : P(G) → P(G)
A 7→ δB(A) = {x ∈ G : TxB̌ ∩A 6= ∅}

(5)

are respectively an erosion and a dilation.
We use the following notations: ∀A ⊆ G,

εB(A) = A	B δB(A) = A⊕B .

The set B is called structuring element. The operators εB and δB are called
respectively binary erosion and binary dilation with structuring element B.
4 ψ : L1 → L2 is said to be increasing if ∀X,Y ∈ L1, X ≤1 Y ⇒ ψ(X) ≤2 ψ(Y ).
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We notice that for each choice of B we have a different erosion and a different
dilation, so, what we actually have is a family of erosions and dilations.

The next property exposes an analogous way of defining these operators
making use of union and intersection.

Proposition 2. Using the notations from Proposition 1,

A	B =
∩
x∈B̌

TxA A⊕B =
∪
x∈B

TxA . (6)

Some interesting properties of these erosions and dilations are shown in the
next proposition.

Proposition 3. Let (G,+) be a group. We have

1. ∀A ⊆ G, ∀B1, B2 ⊆ G, B1 ⊆ B2,
(a) εB1

(A) ⊇ εB2
(A)

(b) δB1
(A) ⊆ δB2

(A).
2. ∀A ⊆ G, ∀B ⊆ G,

(A⊕B)c = Ac 	 B̌ (A	B)c = Ac ⊕ B̌ , (7)

where Ac = {x ∈ G : x /∈ A} is the complementary set of A.

Combining these operators, new morphological operators arise, in particular
opening and closing.

3.2 Opening and Closing

As erosion and dilation, opening and closing have a general definition in the
context of complete lattices. A good introduction to these operators is [8].

Definition 2. Let (L,≤) be a lattice. Let ψ : L→ L an operator. We say that

1. ψ is an opening if it is increasing, anti-extensive5 and idempotent6;
2. ψ is a closing if it is increasing, extensive7 and idempotent6.

Since they are idempotent and increasing, openings and closings are mor-
phological filters. Idempotence is particularly useful since it ensures that several
applications of the same operator do not change the result (as do a lot of other
filters). This can be thought as a guarantee of filtering all that we want to filter
at once.

A particular case of openings and closings are the compositions of erosions
and dilations with respect to a structuring element, as shown in the next propo-
sition.
5 ∀X ∈ L, ψ(X) ≤ X.
6 ψ2 = ψ.
7 ∀X ∈ L, X ≤ ψ(X).
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Proposition 4. Let (G,+) be a group. Let B ⊆ G. Let εB and δB be respectively
the erosion and dilation with respect to the structuring element B. Then,
1. γB ≜ δB ◦ εB is an opening.
2. φB ≜ εB ◦ δB is a closing.

We use the following notations: ∀A ⊆ G,

γB(A) = A ◦B φB(A) = A •B .

There are many other morphological operators, but in this paper we will only
expose a last one: the hit-or-miss transform.

3.3 Hit-or-miss Transform

The hit-or-miss transform is defined as follows.

Definition 3. Let (G,+) be a group. Let C,D ⊆ G with C ∩D = ∅. Then, the
hit-or-miss transform of A ⊆ G with respect to the structuring elements C and
D is defined by

A� (C,D) = (A	 C) ∩ (Ac 	D). (8)

An interesting way of seeing the hit-or-miss transform is given in the next
remark and will be the one in which we will think when applying it to Music.

Remark 1. Using the notations from Definition 3,

A� (C,D) = {p ∈ G : TpC ⊆ A ⊆ TpD
c} . (9)

We may then think the hit-or-miss transform as a pattern matching trans-
formation with an internal condition (TpC ⊆ A) and an external condition
(A ⊆ TpD

c); we want to find structures that are bigger than C but smaller
than Dc.

4 Applications

Now that we have some Mathematical Morphology operators, let us give some
applications. We propose the two following linked steps: first, we consider the
lattice formed by the power set of the group (Z12,+) ordered by inclusion. Then,
we extend it with time information to be able to analyze a score. We show that
Z12 structuring elements correspond to pitch-class sets, and 1

dZ×Z12 structuring
elements correspond to chord progressions.

4.1 Mathematical Morphology on Z12

Musical chords may be identified with subsets of Z12. We can identify two subsets
by the fact that they are both major chords and this is modeled in mathematical
terms by the concept of equivalence relation, in this case ∀A,B ⊆ Z12, A ∼ B ⇔
∃p ∈ G such that TpA = B. Mathematical Morphology comes in handy for
analyzing this fact as shown in the following.
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Erosion as a structure detector Let us focus first in the way we can use
erosion to detect chord types; if we want to detect, for instance, major chords, we
may erode a score with the major chord structure as illustrated in the following
example.

Example 1. Let us consider the following chords:

Fmaj = {C,F,A} Fmaj7 = {C,E ,F,A} F◦ = {F,A ,B} .

We consider the structuring element maj = {0, 4, 7}. Then,

Fmaj 	 maj = {F} Fmaj7 	 maj = {F} F◦ 	 maj = ∅ .

We see that erosion may be used as a detector: it detects the presence of a major
chord with root F in Fmaj and Fmaj7 and shows that there is no major chord
in F◦. The fact that we got the chroma F after the erosion is because the zero
corresponds to the root in the structuring element; it serves as a reference.

An interesting case is when we deal with chords that have non trivial stabi-
lizer8 in Z12. An example is the diminished seventh chord: if we erode the chord
D◦7 = {D,F,A ,B} by the diminished seventh structuring element dim7 =
{0, 3, 6, 9} it remains unchanged, i.e.:

D◦7 	 dim7 = D◦7 . (10)

This points out the fact that the diminished seventh chord may be built on each
of its notes or, equivalently, that any of its notes may be considered the root. In
Messiaen’s terminology, it has a limited number of transpositions equal to the
cardinal of the quotient group

Z12⧸Stab(D◦7) = {C + dim7,C + dim7,D + dim7} , (11)

which in this case is 3.

Opening as a simplification Let us consider now opening in the same case
that in Example 1; we have:

Fmaj ◦ maj = Fmaj Fmaj7 ◦ maj = Fmaj F◦ ◦ maj = ∅ .

We see that opening simplifies chords containing a major chord (removing
the seventh in the case of Fmaj7) and removes all the chords that do not contain
a major chord. This illustrates why they are called filters.

8 The stabilizer of a subset A ⊆ Z12 is defined by Stab(A) = {n ∈ Z12 : TnA = A}
and is a subgroup of Z12.
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(a) Structuring el-
ement maj

(b) Fmaj (c) Fmaj7 (d) F◦

Fig. 2. Chords and structuring element represented in Z12.

Hit-or-miss transform as a pattern detector Hit-or-miss transform is
closely related to erosion; indeed, ∀A,B ⊆ G,

A	B = A� (B, ∅) . (12)

In addition, the second structuring element plays an interesting role: if we
want to know to which major and minor scales does the Fmaj chord belong, we
may proceed as in the following example.

Example 2. Let us consider the structuring elements

majorScale = {0, 2, 4, 5, 7, 9, 11} minorScale = {0, 2, 3, 5, 7, 8, 10} .

Then, we have

Fmaj � (∅,majorScalec)) = {C,F,B } Fmaj � (∅,minorScalec) = {D,G,A} .

This shows that the F major chord is present in the C, F and B  major scales
and in the D, G and A minor scales.

It is interesting to note that the major and (natural) minor scales are equiv-
alent in the sense that one is the translation of the other. However, the reference
note is not the same and thus gives different results.

Until now, we have used the hit-or-miss transform with one of its struc-
turing elements being the empty set. Let us show an example where we use
both constraints for detecting a range of chords that hold both bigger-than and
smaller-than constraints.

To detect whether a chordX is a dominant-like chord of some major scale, i.e.
it contains the dominant third Dom3M = {7, 11} and all its notes are contained
in the major scale, the hit-or-miss transform can be used as follows:

X � (Dom3M,majorScalec) . (13)

This is illustrated in the following example with three choices of X among
the 4096 possible combinations9.
9 This number comes from the number of subsets of Z12 that is equal to 212.
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Example 3. We consider the following chords:

Emaj = {E,G ,B} Dmaj7(5) = {C,D,F } Amaj79 = {C ,E,G,A,B } .
Then, we have

– Emaj � (Dom3M,majorScalec) = {A},
– Dmaj7(5) � (Dom3M,majorScalec) = {G},
– Amaj79 � (Dom3M,majorScalec) = ∅,

which shows that Emaj is a dominant-like chord of the A major scale, Dmaj7(5)
is a dominant-like chord of the G major scale and Amaj79 is not a dominant-like
chord of any major scale.

As a last application of the hit-or-miss transform, we may use it to detect
any chord type C ⊆ Z12 by choosing the structuring elements C and Cc.

4.2 Mathematical Morphology on Chroma Rolls

We now go one step further, and illustrate how Mathematical Morphology op-
erators can be useful to analyze scores represented as chroma rolls by using the
group ( 1dZ× Z12,+) and the lattice

(
P
(
1
dZ× Z12

)
,⊆

)
.

Supremum windowing for collapsing harmony When analyzing harmoni-
cally a score, we should make decisions about which notes do we keep and which
ones do we discard. Also, we should decide how to handle notes spread in time:
usually, we consider that several notes that do not coexist at the same time but
are close enough to each other are related because they are part of the same
chord, like in the case of arpeggios. To take such configurations into account, we
propose a pre-processing step to modify the chroma rolls such that they become
more representative of the harmony of the piece.

It is clear that the composer’s own style and particularities could lead to
different rules. In this paper, as an example, we focus on Chopin’s Nocturnes
since they are a good illustration of our purpose. The proposed pre-processing
method consists in taking only the left hand, since the harmony is concentrated
there, and applying what we call a supremum windowing.

The supremum windowing is a way of collapsing several notes into the same
chord by taking the supremum. Its formula is presented in the next definition.

Definition 4. Let S ⊆ 1
dZ × Z12. Let χS ∈ {0, 1} 1

dZ×Z12 be the characteristic
function of S. The supremum windowing of S with window length L ∈ Q and
hop size H ∈ Q is the subset of H

d Z× Z12 with characteristic function

W
(L,H)
∞ [S] : H

d Z× Z12 → {0, 1}
(t, c) 7→ sup{χS(t+ x, c) : x ∈ [0, L)}

. (14)

Figure 3 shows the supremum windowing of the left hand of Chopin’s Noc-
turne Op. 9 No. 2.
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(a) Original score
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(b) Resulting chroma roll
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(c) Windowed chroma roll

Fig. 3. Score, chroma roll and its supremum windowed version of the first 8 bars of the
left hand of Chopin’s Nocturne Op. 9 No. 2 (dynamics, expressions and other features
are not considered).

Chord type detection Let us now describe some applications of Mathematical
Morphology operators for the detection of chord types in scores. We can extend
all that we have done in the one-dimensional case to the two dimensional case;
for instance, if we want to detect major chords, we may use an erosion with
structuring element {0}×maj. This is done for the (supremum windowed) chroma
roll of the Nocturne Op. 9 No. 2 of Chopin in Figure 4.
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(a) Chroma roll
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♭
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(b) Erosion of the chroma roll

Fig. 4. Chroma roll of the Nocturne Op. 9 No. 2 of Chopin and its erosion by the
structuring element {0} × maj.

We may also apply a process analogous to the one in Example 2 to detect
tonality and modulations throughout the score. This is illustrated in Figure 5
in the case of the first 24 bars of the Chopin’s Nocturne Op. 48 No. 1 after
supremum windowing with length and hop size equal to 1

2 of the bar. We apply
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a hit-or-miss transform with C = ∅ and D = ({0} × minorHarmScale)c, where
minorHarmScale = {0, 2, 3, 5, 7, 8, 11} is the structuring element corresponding
to the harmonic minor scale. We notice several parts that are clearly in C minor
and a part around bars 6 to 8 that is in G minor.
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(a) Chroma roll
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Time (in bars)
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F♯
♭

C♯
ro

m
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(b) Hit-or-miss transform with struc-
turing elements C = ∅ and D =
({0} × minorHarmScale)c

Fig. 5. Hit-or-miss transform of the chroma roll of the first 24 bars of the Chopin’s
Nocturne Op. 48 No. 1 for detecting potential harmonic minor scales.

Chord progression detection Extending structuring elements with a time
component allows us to detect chord progressions. For instance, we may detect
authentic cadences using the structuring element V-I =

(
{− 1

h} × {2, 7, 11}
)
∪(

{0} × {0, 7}
)
, where 1

h models the harmonic rhythm. Here, the interval {0, 7}
guarantees that we recover both the major and minor I degree, and we set the
timestamp of the dominant chord {2, 7, 11} to − 1

h because we want it to precede
the tonic (and thus the minus sign). This way, the result of the erosion provides
the time and the chroma corresponding to the I chord. Figure 6 illustrates this
for the 24 first bars of the Nocturne Op. 9 No. 2 with h = 4.
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(a) Structuring element of V-I
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(b) Erosion of the chroma roll with structur-
ing element V-I

Fig. 6. Erosion of the chroma roll of Chopin’s Nocturne Op. 9 No. 2 by the V-I struc-
turing element.



12 G. Romero-García et al.

5 Conclusions

Throughout this paper, we have seen that Mathematical Morphology, based
on Group Theory, may be very useful for analyzing Music scores. This frame-
work provides efficient tools for harmonic analysis that are lightweight and well
adapted to harmonic considerations. The use of chroma rolls ensures that we
do not have disposition problems in the chords. While simple, the proposed
examples illustrate the power of the proposed approach.

It is interesting to notice that we have only used erosion-like operators (ero-
sion, opening and hit-or-miss); this is because we focused on the analysis part.
Other operators such as dilations and closing could be used for composition; for
instance, a dilation reproduces a particular structure from a reference note.

Several paths can be followed for extending these operators to more complex
lattices; for instance, if we consider the amplitude range in a score by using
dynamics, morphological operators acting on functions can be leveraged. Also,
we can change the base groups; for example if we want to analyze MIDI files,
we may use (Z,+), and we may even apply these tools on signal operators such
as the Short-Time Fourier Transform. In future works, we will also go deeper
in the creation of an automatic analyzer that implements morphological tools
based on the equivalence between chord structure and structuring element. We
intend to provide a deterministic framework for the study of harmony at large
scale.
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