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= Leaf Mass per Area (LMA) definition
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= Leaf Mass per Area hyperspectral monitoring applications

v" Precision Agricultu re (Fertilizer management, Early detection of plant diseases, etc)
v Global environmental watching
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= Open question:

How much can we reduce the number of hyperspectral bands
while keeping a good accuracy for LMA prediction ?

= Literature answers:

v" Physics-based PROSPECT model: ~100 hyperspectral bands [1]
Currently offering the best accuracy for LMA prediction, Relative RMSE ~18%

v" Vegetation indices: 2 to 6 hyperspectral bands [2,3]
Poor LMA prediction accuracy, Relative RMSE ~28%

v Partial Least Square Regression (PLSR): ~15 hyperspectral bands [2]

Very poor LMA prediction accuracy, Relative RMSE ~38%

Relative Root Mean Square Error ( SE) [1] J.-B. Féret et al., Remote Sensing of Environment, 231, pp. 110959, 2019.
= Root Mean Square Error (RMSE) [2] Y. Chen et al., Remote Sensing, 13, pp. 3761, 2021.
LMA mean value over the tested database [3]1 G. le Maire et al., Remote Sensing of Environment, 112, pp. 3846-3864, 2008
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= Open question:

How much can we reduce the number of hyperspectral bands
while keeping a good accuracy for LMA prediction ?

= Literature answers:

v" Physics-based PROSPECT model: ~100 hyperspectral bands [1]
Currently offering the best accuracy for LMA prediction, Relative RMSE ~18%

v" Vegetation indices: 2 to 6 hyperspectral bands [2,3]
Poor LMA prediction accuracy, Relative RMSE ~28%

v Partial Least Square Regression (PLSR): ~15 hyperspectral bands [2]

Very poor LMA prediction accuracy, Relative RMSE ~38%

= Study goal:|To improve the accuracy of LMA prediction with
a small number of bands (<15)
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1. Introduction

2. Material

3. Band selection by means of neural networks
4. Results

5. Conclusions and perspectives
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Material

Publicly Available Angers dataset

v’ 274 samples
v' 2050 hyperspectral bands

Hyperspectral reflectivity
measurements
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Why use neural networks for band selection ? ISEN
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= Limitations of Al state-of-the-art band selection methods

v

Unsupervised methods

- Main methods : Principal Component Analysis, Distance-based methods, Similarity-based
methods, Bands Mutual Information-based methods

- Principle : Inter-bands relationships investigation ignoring the relashionships
between the bands and the output

- Proven efficiency in numerous classification problems

- Poor accuracy in regression problems

Supervised methods

- Main method : Band-Output Mutual Information-based method

- Principle : Investigation of the relationships between bands and output
- Proven efficiency in classification problems (where the output is the class)

- No straightforward adaptation to regression problems (Binning, Kraskov’s method,... )

o

yncréa

w g g0 o o g F A F



Band selection algorithm ISEN ©

8
ALL IS DIGITAL mers

Step 1: Band weight computation [vacoub et Bennani, ns, 2000]
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0 [Yacoub et Bennani, IJNS, 2000] M. Yacoub, Y. Bennani, “Features selection and
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architecture optimization in connectionist systems”, International Journal of

Wavelength (nm) Neural Systems, 10, pp. 379-95, 2000.
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Step 1: Band weight computation [vacoub et Bennani, ns, 2000]
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Step 1: Band WEight Computation [Yacoub et Bennani, IJNS, 2000]

Step 2: P peaks selection
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Step 1: Band Weight Computation [Yacoub et Bennani, JNS, 2000]

Step 2: P peaks selection
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Step 1: Band WEight Computation [Yacoub et Bennani, IJNS, 2000]

Step 2: P peaks selection
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Step 1: Band Weight Computation [Yacoub et Bennani, IJNS, 2000]
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Step 1: Band Weight Computation [Yacoub et Bennani, IJNS, 2000]
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= Testing protocol:
- 20 random drawings in training, validation and test subsets (50%, 25%, 25%)

- Band selection using uniquely the training and validation subsets (and not the test subset)

- 20 different ultimate band subsets (1 per drawing)
- Result : Mean RMSE over the 20 drawings

20 different band sets
A1) A

50% 25% 25% -
20x | NN e UsE o Asyo}

Training  Validation  Test

Mean RMSE over
the 20 drawings
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= Testing protocol:
- 20 random drawings in training, validation and test subsets (50%, 25%, 25%)

- Band selection using uniquely the training and validation subsets (and not the test subset)

- 20 different ultimate band subsets (1 per drawing)
- Result : Mean RMSE over the 20 drawings

= A posteriori single band set finding
- A posteriori unique band set determination (band frequency-based forward selection loop)

- A posteriori mean RMSE computation over the 20 drawings (obtained with the unique band set)

20 different band sets

{7\1’ - 7\51} 20 sets unification in a single set
50% 25% 25% — by forward selection loop
20x (D I {7\1, y }\520} [criterion : band frequency]

v

A posteriori mean RMSE
computation over
the 20 drawings

Training  Validation  Test

Mean RMSE over
the 20 drawings
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Results: Prediction Accuracy

Mean performances

Graphical comparison

over the 20 drawings

for a specific drawing

Best vegetation index
ND=[R365-Ry72,l/[Ry365T Ry 7221
and R,

Number of bands: 3
Mean Calibration RMSE: 18.6%
Mean Test RMSE: 22%
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Results: Prediction Accuracy

Mean performances

Graphical comparison

over the 20 drawings

for a specific drawing

Best vegetation index
ND=[R365-Ry72,l/[Ry365T Ry 7221
and R,

Number of bands: 3
Mean Calibration RMSE: 18.6%
Mean Test RMSE: 22%

Number of bands: 3-9
Mean Calibration RMSE: 14.8%
Mean Test RMSE: 17.5%
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Results: Prediction Accuracy

Best vegetation index Neural networks
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Results: Selected Band Analysis

Reflectivity lignin,
Water starch,

0.4 7Chlorophyll,
caroteneoid,
_|anthocyanin

protein, cellulose,
nitrogen sugar,
starch
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*Depiction of, only :

- the main water peaks

- The leaf constituent absorption peaks adjacent to the selected bands

**Band extracted from [S. Jacquemoud and S. Ustin, Leaf Optical Properties, Cambridge University Press, Cambridge, 2019].
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= Conclusions
Tested on the publicly available Angers database, the neural network band selection scheme:

- allows to reduce the relative RMSE of LMA prediction by 4.5 points as compared to vegetation indices

- while requiring a low number of bands (3 to 9)

- and leads to the a posteriori selection of 4 bands for LMA prediction [400nm, 1300nm, 1400nm, 1720nm]

= Prospects
- Further improvement of LMA prediction accuracy (via the creation of a new experimental database)

- Improvement of the prediction accuracy of other leaf parameters
(Chlorophyll, Carotenoid, Anthocyanin, ...)

- Analytical formulae proposal for replacing neural networks

- Application to the detection of Tomato Plant Water Stress

A,
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Thank you for your attention !
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