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ABSTRACT 

 
Accurate prediction of Leaf Mass per Area (LMA) from 
leaf-level hyperspectral reflectance measurements is 
fundamental for plant health watching. 

Limiting the number of required bands to a very low 
number while maintaining a good accuracy of LMA 
prediction is of very high interest for cost-effective 
implementations. For such purpose, the best current model 
consists in a combination of vegetation indices and have 
been obtained by performing computationally intensive 
brute force approach. Further accuracy improvements are, at 
present, limited by current computational capacity limit. 

We propose to use a neural network-based methodology 
for selecting a very low number of hyperspectral bands for 
further improving the LMA prediction accuracy. Testing on 
the publicly available Angers dataset, we diminished the 
Root Mean Square Error of prediction by 26% and 19% as 
compared to the best literature vegetation index and 
combination of vegetation indices, respectively. 

Index Terms— Leaf Mass per Area, hyperspectral data, 
band selection, neural-networks, vegetation index 
 

1. INTRODUCTION 
 
Leaf Mass per Area (LMA) is a functional trait whose 
precise knowledge is fundamental for numerous plant health 
monitoring activities such as, for example, growth plant 
analysis, drought detection or nutrient stress detection [1]. 

Despite the possibility of using destructive bio-chemical 
methods for accurate LMA determination, the only route for 
cost-effective and intensive LMA watching consists in non-
destructive methods, such as hyperspectral remote sensing.  

Numerous current hyperspectral remote sensing methods 
are employing more than 100 entry bands for LMA 
prediction, such as the PROSPECT physical model [2] or 
Machine Learning models [2]. Reducing the number of 
required bands is of very high interest for cost reduction. 
For such purpose, vegetation indices are the simplest 
approach but suffers from a lack of precision [3,4].  

Current most precise vegetation indices have been 
developed by a brute force approach, consisting in extensive 
one by one try/catch explorations of numerous band 
combinations [3,4]. At present, the further improvements of 
vegetation indices are, therefore, limited by current 
 

 

 
 

Figure 1: (a) Statistical repartition of LMA of the Angers 
dataset. (b) Table of characteristics of the Angers dataset. 

(c) Indicative reflectance spectrum of one leaf. 
 
computational capacity limit. 

Other approaches for LMA prediction from only a few 
bands, founded on numerical methods, such as Partial Least 
Square Regression (PLSR), have been tested but have 
shown to be of poorest accuracy as compared to current 
vegetation indices [4].  

We propose a new neural network-based methodology 
for selecting a very few bands in the purpose of LMA 
prediction and demonstrate that using the selected bands as 
entries of a neural network allows to reach better precision 
than current literature vegetations indices.  
 

2. MATERIAL 
 

We consider the Angers publicly available database 
acquired in Angers (France) in 2003 [5,6]. This database 
contains N=276 leaves of 49 different dicotyledon species. 
One specie: Sycamore Maple, with 181 samples, is 
representing 65% of the total leaves number.  

The LMA was measured by extracting small disks of 
fresh leaves, immediately weighting them, then drying them 
in an oven and immediately weighting them at the withdraw 
out of the oven [2]. LMA covers a large range of values 
from 1.66 mg/cm2 to 33.10 mg/cm2 (cf. figure 1.(a-b)).  

The available leaf reflectance measurements span over 
the wavelength range [400nm, 2450nm], cf. figure 1.(b-c). 

 
3. EVALUATION PROTOCOL AND METRICS 

 
We divided the dataset into two non-overlapping subsets: 
the calibration and the test subset with, respectively 207  
 



 

Figure 2: (a) LMA Si,0 spectrum for an indicative random subsets drawing. (b) Tuning RMSE as a function of 
different sampling steps. (c) Summary of our band selection algorithm. 

 
samples and 69 samples (75% and 25% of the dataset). The 
calibration subset was used to construct the models, while 
the test subset was used to evaluate the models.  

We assessed the accuracy of the fit and the prediction 
on respectively the calibration and test subset through the 
Root Mean Square Error (RMSE) [3].    

We performed 20 evaluations randomly drawings the 
calibration and test subsets. We determined, for each of the 
constructed model, the mean RMSE obtained over all the 
drawings on the calibration and test subsets.  

 
4. NEURAL NETWORK BAND SELECTION 

 
4.1 Choices for the neural network  
The hyperspectral bands were set to be the multiple inputs 
of a neural network, with one unique output: the LMA value 
of the sample under consideration.  

We used feed-forward neural networks with a number 
of hidden layers comprised in between 2 and 4. We used, 
respectively, the “tanh” and the “sigmoid” function as 
transfer function for, respectively, the hidden layers and the 
output layer. The trainings were performed using the back-
propagation procedure [7]. 
 
4.2 Overfitting management  
To avoid the over-fitting phenomenon, we further divided 
the calibration subset into training and validation subset 
with 138 samples and 69 samples, respectively [7].  

The parameters of the neural network (namely the 
weight and bias of each neuron) were assessed by 
minimizing the RMSE on the training subset. The hyper-
parameters (number of hidden layers, number of neurons on 
each layer, number of epochs, batch and learning rate) were 
chosen by minimizing the mean value between the RMSE  
on the training subset and the RMSE on the validation 
subset (tuning RMSE). In particular, we choose the number 
of epochs with the early-stopping procedure [7].   

  
4.3 Band selection scheme 
4.3.1 Input weights definition 
We firstly trained the network by using all the available 
hyperspectral bands. We assessed the relative weight Si,0 of 

each band i on the output of the neural network following 
 

the methodology proposed in [8]. 

The figure 2.(a) presents an indicative Si,0 spectrum 
obtained, for one of the 20 subsets drawings. We observe 
several bands at which Si,0 exhibits a peak of relatively high 
value in a background where Si,0 is almost constant and very 
small. We called P peaks the set constituted by these bands.   

 
4.3.2 Band selection algorithm 
We followed the protocol described in [8], which consists in 
the following backward elimination loop: 

1. Train the network and stop the training by early 
stopping.  

2. Compute Si,0 for all the input bands. 
3. Remove the band with the lowest coefficient Si,0. 
4. Iterate to step 1 until reaching one band only. 

 
4.3.3  Si,0 spectrum peaks and sampled bands congregation 
Following the above-detailed algorithm, we should suppress  
one by one the bands starting by the whole reflectance 
spectrum (2050 bands). To save computing time, we 
decreased the number of starting bands by first seleting the 
P peaks (step 1 of our algorithm, cf. figure 2.(c)).  

We, then, as second step, performed a sampling of the 
remaining bands with various sampling steps. After 
congregating the sampled bands and the P peaks, we 
evaluated the tuning RMSE for the different sampling steps 
and selected the sampling step which exhibits the minimum 
tuning RMSE (cf. figure 2.(b)). It is worth noting that, due 
to the “curse of dimensionality” [7], a too small sampling 
step leads to a relatively high value for the tuning RMSE. 

 

 
 

Figure 3: Details of the step 3 for an indicative  
random subsets drawing.



 
 

Figure 4: (a-b) Predicted to measured LMA values comparison (for the samples of the test subset) of an indicative random 
subsets drawing for the best literature vegetation index (a) and our neural network-based scheme (b).  

(c) Bands used by the different models. 
 

 We, thirdly, started, with the congregation of the P 
peaks and the S sampled bands, the band selection scheme 
described at the section 4.3.2 (step 3, cf. figure 2.(c)). When 
removing one by one the bands at the step 3, the tuning 
RMSE is keeping approximately the same value until 
reaching a given number of bands below which it increases 
dramatically (cf. figure 3).  

We defined a stopping test for the step 3: does the 
suppression of one band implies an increase of the tuning 
RMSE greater than 5% as regard to its minimum value? In 
case of a positive answer the step 3 is stopped, and the 
remaining bands are selected.  

 
4.3.4 Ultimate sets of bands 

After performing the step 3, in the remaining set of 
bands, redundant bands may still be present [9]. To remove 
potential redundant bands, we applied a fourth step which 
consists in, first, testing the impact on the tuning RMSE of 
the removing of each of the remaining bands and then 
remove the band which produces the lower increase in 
RMSE. This step is ended with the same stopping criterion 
as those of the step 3.  

At the end of the step 4, we obtain the ultimate set of 
bands which is specific to each of the 20 subsets drawings 
and contains from 3 to 9 bands.  

For each ultimate set, the optimum neural network 
architectures were exhibiting 2 hidden layers with 6 to 10 
neurons in the first hidden layer and 7 to 9 neurons in the 
second hidden layer. 

We evaluated the mean RMSE over all the drawings on 
the training, validation and test subset (mean training, 
validation and test RMSE) using the ultimate sets and the 
optimum neural network architectures.   

.  
4.4 Unifying the set of selected bands 
We constructed an unified set of bands by taking the four 
most frequent bands: 1720 nm, 1300 nm, 1400 nm and 
400nm with an occurrence number of respectively 18, 16, 
14 and 11 among the 20 subsets drawings.  
 

5. VEGETATION INDICES REFERENCE 
A vegetation index (VI) which predicts the LMA is a 
combination of the reflectance of the leaf at few different 

bands, chosen in such a way that the LMA can be 
approximated by a simple function (fitting function) of this  
combination [3,4,10]. 

We tested 24 VI dedicated to LMA extracted from 
references [3,4,10], which consist either in a single index 
(single VI) either in a combination of two or three indices 
(2-VI or 3-VI combination). 

For the fitting function, we used a polynomial function 
of second degree in one dimension when fitting a single 
index and in two (or three) dimensions when fitting a 
combination of two (or three) indices. We do not observe 
any improvement when increasing the degree of the 
polynomial function.     

For each of the 20 subsets drawings, we determined the 
polynomial function coefficients of each VI by fitting the 
calibration subset.    

We selected the VI which leads to the lower mean test 
RMSE over the 20 drawings. Among, respectively, the 
single vegetation indices, the 2-VI combinations and the 3-
VI combinations, we found out, respectively, MND ([R2285 – 
R1335]/[R2285 + R1335 – 2.R2400]), ND-R2300 (combination of 
ND=[R1368-R1722]/[R1368+R1722] and R2300) and MSR-ND-
R2300 (combination of MSR=[R2265-R2400]/[R1620-R2400], 
ND=[R1368-R1722]/[R1368+R1722] and R2300). 
 

6. RESULTS 
 

The mean calibration and test RMSE obtained, over the 20 
drawings, with the best vegetation indices and our neural 
network-based scheme are depicted in table 1. The  
figure 4.(a-b) presents the predicted to measured LMA 
values comparison for the samples of the test subset of an 
indicative random subsets drawing.  

It is worth noting that the best literature VI is the 2-VI 
 

Model Calibration Test Nb. of bands 
Single VI 1.15 1.25 3 
2 VI-combination 0.97 1.14 3 
3 VI-combination 0.94 1.16 6 
Neur. Net. (ultimate sets) 0.77 0.92 3-9 
Neur. Net. (unified set) 0.79 0.94 4 

 

Table 1: RMSE in mg/cm2 obtained with the best literature  
vegetation indices and neural networks. 



combination ND-R2300 and requires only 3 bands. 
The neural networks tested with the ultimate sets of 

bands allow to diminish the RMSE on prediction (mean test 
RMSE) by 26%, 19% and 21% as compared to single VI, to 
2-VI combination and to 3-VI combination, respectively.  

 
7. DISCUSSION 

 
7.1 Neural network superiority analysis 
It is worth noting that our neural networks achieved better 
accuracy in LMA prediction than literature vegetation 
indices when PLSR failed [4]. We explain this property by 
the fact that PLSR is restricted to the investigation of linear 
relationships between band reflectances and LMA, while 
neural networks include non-linear relationships in their 
exploration.  

Moreover, we explain the superiority of our neural 
network-based scheme on literature vegetation indices by 
the fact that current literature vegetation indices have been 
built by investigating a very little number of relationship 
types between band reflectance and LMA [3,4], while the 
neural networks explore a dramatically wider space of 
possible functions linking band reflectances and LMA [7].  
 
7.2 Subset of predictive bands 
The bands used by each model are detailed in figure 4.(c). 
All the bands of best literature LMA-VI (whatever the 
number of indices they are combining) are belonging to 
Short Wave InfraRed (SWIR) domain. Moreover, one band 
close to the 1450 nm water peak absorption is systematically 
present in the best literature LMA-VI (1335nm, 1368nm and 
1368nm for the best single VI, 2-VI combination and 3-VI 
combination, respectively).  

Neural network selected band set and best literature VI 
(ND-R2300) band set share one band in common: 1720 nm. 
This band is close to an absorption peak of the lignin, the 
starch and the nitrogen [11]. As compared to the band set 
used in the best literature VI (ND-2300), the neural network 
selected band set presents two specific characteristics: 
firstly, the presence of two bands (1300 nm and 1400 nm) 
and not only one band near the 1450 nm water absorption 
peak; secondly the presence of a band in the visible domain 
(400 nm) at which the absorption of pigments is high and 
the absorption of water and dry matter is low.  
 

8. CONCLUSION 
 

We propose to use a neural-network based methodology for 
selecting an over-restrained number of leaf-level 
hyperspectral reflectance bands for the prediction of LMA. 
This methodology takes accounts of the nonlinear 
relationship between the band reflectances and the LMA.  

By performing tests in cross-prediction configuration 
on the Angers dataset, we found out that the neural-network 
based methodology allows to improve the RMSE of 
prediction by 26%, 19% and 21% as compared to current 

literature single VI, 2-VI combination and 3-VI combination  
 

vegetation indices. Very simple neural networks 
architectures with only two hidden layers are enough for 
achieving such result.  

The eventually selected bands by our neural network 
scheme are: 1720nm, 1300nm, 1400nm and 400nm. Current 
works targeting to build our own measurements database are 
ongoing to further investigate the involvement of those 
bands in LMA modelling. 
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