
HAL Id: hal-03638206
https://hal.science/hal-03638206v1

Preprint submitted on 12 Apr 2022 (v1), last revised 2 Dec 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Node Embedding by a Compact
Neighborhood Representation

Ikenna Victor Oluigbo, Hamida Seba, Mohammed Haddad

To cite this version:
Ikenna Victor Oluigbo, Hamida Seba, Mohammed Haddad. Improving Node Embedding by a Compact
Neighborhood Representation. 2022. �hal-03638206v1�

https://hal.science/hal-03638206v1
https://hal.archives-ouvertes.fr


Improving Node Embedding by a Compact
Neighborhood Representation

Ikenna OLUIGBO, Hamida SEBA, Mohammed HADDAD
Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS,

UMR5205, F-69622 Villeurbanne

{Ikenna.oluigbo,hamida.seba,mohammed.haddad}@univ-lyon1.fr

Abstract

Graph Embedding, a learning paradigm that represents graph ver-
tices, edges, and other semantic information about a graph into low
dimensional vectors, has found wide applications in different machine
learning tasks. In the past few years, we have had a plethora of meth-
ods centered on graph embedding using different techniques such as
spectral classification, matrix factorization and learning. In this con-
text, choosing the appropriate dimension of the obtained embedding
remains a fundamental issue. In this paper, we propose a compact rep-
resentation of a node’s neighborhood, including attributes and struc-
ture, that can be used as an additional dimension to enrich node
embedding, to ensure accuracy. This compact representation ensures
that both semantic and structural properties of a node’s neighboring-
hood are properly captured in a single dimension. Consequently, we
improve the learned embedding from state-of-the-art models by intro-
ducing the neighborhood compact representation for each node as an
additional layer of dimensionality. We leverage on this neighborhood
encoding technique and compare with embedding from state-of-the-art
models on two learning tasks: node classification and link prediction.
The performance evaluation show that our approach gives a better
prediction and classification accuracy in both tasks.

1 Introduction

Graph embedding has gained so much popularity over the years, and it cur-
rently lies in the center of many graph analytic problems. Graph embed-
ding is an algorithmic technique which basically transforms graph granularity

1



(nodes, edges, substructures, or whole graph) into low dimensional contin-
uous vector(s) of predefined number of dimensions. A typical graph (also
known as network) has important properties and characteristic features such
as topology, structural dependence, node-to-node correlations, neighborhood
relationships, etc., which can be harnessed for a number of learning tasks
and analytical problem solving. Therefore, the goal of a graph embedding
technique is to ensure that these very valuable graph properties are preserved
in the learned embedding. Since graph data can contain millions of vertices
and billions of links between the vertices, providing an efficient way (both in
time and space complexity) to analyze these massive data is very crucial.
Over the last few decades, several graph embedding models have been de-
signed to learn latent low dimensional vector(s) from the high dimensionality
of graph granular data. A popular way most models learn vector represen-
tations from a graph is to first compute an attribute graph (a graph which
bears the pairwise similarity feature(s) between these granular data) from
the given set of input high dimensional graph granular data. Each granular
data having similar attributes are then mapped closely together on a new
latent low dimensional embedding space, and the topological and structural
characteristics of the granular data are encoded into its corresponding em-
bedding vector [22]. To obtain low dimension vectors for graph data, several
researches have embarked on different approaches ranging from deep neu-
ral architecture and spectral processing, to matrix factorization. Many deep
architectural approaches make use of an autoencoder. First, an adjacency
matrix is computed from the input network, this matrix is then fed into an
autoencoder to derive a non-linear similarity vector representation which pre-
serves the desired information in the embedding space [30]. Instead of com-
puting an adjacency matrix to extract information from an input network
(adjacency matrix becomes complex for massive networks), DeepWalk [24]
and Node2Vec [10] use random walks to build a corpus of nodes (made up
of a fixed length of paths, analogous to sentence generation of Word2Vec).
The SkipGram model is thus applied on the corpus to learn continuous vector
representations for nodes by optimizing a neighborhood preserving likelihood
objective using Stochastic Gradient Descent.

In the matrix factorization approach, the graph structural properties are
first represented as a matrix (node adjacency matrix and Laplacian matrix
are popularly used), and then a linear or non-linear transformation manifold
learning procedure is used to factorize the computed matrix (factorization
method depends on matrix property) so as to obtain a low dimensional vector
embedding of the network [5], [25].

As much as embedding from popular state-of-the-art representation learn-
ing models have shown significant performance in machine learning tasks, it

2



is important to highlight some weaknesses they still possess:

• Complexity in Dimensionality Reduction: Many embedding models,
especially models needing to compute and factorize complex matrices
can be very computationally expensive when transforming data from a
high-dimensional space into a low-dimensional space. It becomes even
more complex when learning embedding for massive networks while
also maintaining high efficiency in preserving important features in the
learned embedding. Deep architecture and Random walk approaches
enjoy fast training time and low memory consumption but random
walks do not consider other features like edge weights and distance,
which means that whatever importance a node possesses cannot be pre-
served in the embedding. Matrix decomposition techniques on the other
hand are computationally expensive when factorizing matrix powers.

• Complexity in Information Gathering: With the explosive growth of
large networks, many existing models are faced with the challenge of
capturing and preserving semantic aspects of the network. Some deep
architectural models does not consider edge features, meaning each
node’s importance and frequency of occurrence cannot be preserved in
the embedding, and such embedding is hard to generalize to new data
that are not present when training the model.

• Estimating Embedding Dimensionality: In most existing graph embed-
ding methods, the fundamentals involved in correctly appropriating the
dimension for an embedding is not well defined. Many methods rely
on Grid hyper-parameter estimation or domain experience which can
result into issues such as high resource and time usage when training
the model, as well as poor model performance [18].

• Lack of Scalability: Many existing representation learning techniques
model the low dimension embedded output as depended wholly on the
entire input graph which can be very expensive with massive graphs.
As a result of the latency experienced with loading the entire graph
into memory, processing can be cut short resulting in intermediate and
inconclusive results. This has led to concepts such as embedding com-
pressed subgraph of a massive graph [1], [3].

In this paper, we attempt to address scalability and dimensionality issues of
node embedding. We propose to use a compact encoding of a vertex neighbor-
hood that combines the structural and semantic features of the neighborhood
of the vertex. This encoding process circumvents the technicalities involved

3



with computing complex matrices and appropriating dimensions for learned
embedding. Recent studies have shown that the dimensionality reduction
techniques as well as selecting a predefined dimension length for an embed-
ding have an impact on the efficacy of the representation learning model.
Selecting a small number of dimensions for learned embedding limits the
quality of information captured in the embedding; while too large dimension
increases the possibility of noise and other unnecessary features captured in
the embedding thereby limiting its accuracy in machine learning tasks, and
the possible problem of overfitting also [18]. A number of literature have
proposed techniques for estimating the number of dimension for embedding.
In [11], the authors proposed a principled Pairwise Inner Product (PIP)
loss technique (adapted from [33]) to choose a dimension value of a generic
network embedding. This technique however is limited to capturing only
information related to the structural characteristics of nodes in the network.
The Pairwise Inner Product (PIP) metric, proposed in [33], uses a grid search
algorithm to measure the dissimilarities between word embedding. The grid
search technique becomes ineffective when the number of hyper-parameters
in the model grows exponentially. In [12], the authors proposed a genera-
tive network model using an optimal inference algorithm to embed a graph.
They achieved this by estimating the probability between pairs of nodes and
their distance in the embedding space. Their model estimated three em-
bedding dimensions to capture the learned embedding. In [16], the authors
proposed a metric for k-dimensional structure information embedding of the
graph, which is particularly concerned with the structure of the network ig-
noring its rich link structures. In [34], the authors proposed a robust graph
dimensionality reduction algorithm to map high-dimension data into lower-
dimensional intrinsic space by a transformation of matrix, which can get very
computationally expensive for massive networks. Estimating an appropriate
embedding dimension for an efficient and effective embedding in both small
and large networks is quite a daunting task for existing embedding models.

The aim of the compact neighborhood encoding technique is to represent,
with a bijective function, all the information surrounding a vertex into a sim-
ple numerical value. It can be computed without the need to load all the
graph in memory eliminating the computational complexity encountered by
many existing methods. It also contributes to resolve the challenges involved
in estimating the dimension for an embedding. To achieve this objective we
rely on specific kind of bijective functions called Cantor polynomials [26].
These polynomials have been used to index nodes’ neighborhoods for sub-
graph isomorphism search [21] but to our knowledge there is no work using
them to construct node embedding for deep leaning purposes. Our contribu-
tions are summarized as follows:

4



1. We use a compact neighborhood encoding to embed in one dimension
both structural and semantic information of a node.

2. We design a link prediction and node classification model to evaluate
the performance of our compact neighborhood representation against
selected existing network embedding models on some learning tasks us-
ing real world datasets drawn from different domains. This comparison
is done across varied dimensions.

3. We show from the results that the proposed compact neighborhood
representation technique is efficient and effective for encoding a vertex
with vital structural and semantic information around it. This is par-
ticularly important for tasks such as predicting new or missing links
from/to a vertex.

2 Definitions and notation

In this study, we will use the terms Network and Graph interchangeably to
mean the same thing. Also vertex and node are used interchangeably, as well
as edge and link. The vertices are objects in the network, defined by some
form of relationship known as links.

Definition 1 We define an attributed Graph G as a 4-tuple G = (|V |, |E|, `,Σ),
where |V | consists of the set of vertices in the graph, |E| consists of the set
of edges connecting the vertices in the graph, ` : V ∪ E −→ Σ is a labeling
function on the vertices and the edges where Σ is the set of attributes that
can appear on the vertices and/or the edges. `(u) represents the attribute of
vertex u in a graph.

Definition 2 An undirected graph is a bidirectional graph such that edges
(u, v) and (v, u) are equivalent. The neighbors of a vertex u denoted as N(u)
are all vertices adjacent to u. The degree of a vertex u, denoted as deg(u),
is the number of neighbors of u. The semantic information of a vertex u
represents the features of the vertex denoted by a vector Xu.

Definition 3 An adjacency matrix A is an n× n matrix with non-negative
weights, such that Auv = wi,j for a weighted edge or Auv = 1 for an un-
weighted graph if and only if an edge (u, v) exists; else Auv = 0 if edge (u, v)
does not exists in graph G.

5



Definition 4 Given the node features Xu, a link prediction model can output
whether two nodes are connected by an edge. In a neural link prediction
model, the features are aggregated to learn embedding for each node. The
similarity score of two node embedding will decide whether they should be
connected. Nodes are equally classified based on similarities of their features.

Definition 5 First-order proximity captures the local-pairwise relationship
between directly connected vertices in terms of the proximity between vertices
in a graph. For a weighted and directed graph having connected vertex pairs
(u, v) ∈ E in G, the first-order proximity defines the weight ωuv between
the vertex pair. The probability distribution of first-order proximity for two
vertices u and v is defined as: Pr(u, v) = 1

1+exp(XT
u Xv)

where XT
u denotes the

transpose of Xu.

The empirical distribution for Pr(u, v) is defined as ωuv

W
where W is the

total weights of all edges in the network. With first-order proximity alone
many edges in the network goes unobserved, therefore is not sufficient for
preserving the entire structure of the graph.

Definition 6 The second-order proximity defines the neighborhood similarity
between a vertex pair (u, v) of a directed or undirected network. A second-
order proximity exists if a vertex pair share a common 1-hop neighbor. By
defining a common neighbor function, one can determine if there exists an
edge between pair of vertices. The probability distribution over vertex v and

vertex u is defined as: Pr(v|u) = exp (XT
u Xv)

Σ
|v|
k=1 exp(XT

k Xv)

Our study involves a two prone process; Given an attributed graph G =
(|V |, |E|, `,Σ), we first compute the compact neighborhood representation for
every node in the graph. Our compact neighborhood representation ensures
that each node is capable of retaining multiple information from surrounding
nodes. Next, we learn embedding with varied dimensions for selected real life
datasets using existing network embedding techniques. On the one hand, we
experiment with the learned network embedding on two learning task (Link
Prediction and Node Classification). On the other hand, we add the encoded
compact neighborhood representation for each node as an additional feature
in the embedding and we repeat the same set of experiments under similar
conditions and parameters. After comparison, we focus on determining how
much improvement in accuracy and effectiveness we get with the inclusion
of the new feature, i.e., the compact neighborhood representation, which has
more information embedded in it. The results from the series of test is shown
in subsequent sections.

6



3 Related Studies

In this section, we classify some of the existing network embedding models
and briefly describe how they perform dimensionality reduction. These mod-
els have the same objective of learning embeddings for nodes in a graph, and
these embeddings can be used in machine learning tasks.
Random Walk Approach: Embedding models under this approach pre-
serve the structural characteristics of each node or the similarity in node
communities, or both [10]. Two main embedding models that leverages on
the random walk approach are Deepwalk and Node2Vec, both of which use
the SkipGram Model to learn continuous feature representations for words
by optimizing a neighborhood preserving likelihood objective (dimensional-
ity reduction). The SkipGram model is a language model (like every other
Word2Vec model) that maximizes the co-occurrence probability among the
words that appear within a window in a sentence [20]. To capture informa-
tion of every node, Deepwalk, proposed in [24], takes a graph G and samples
uniformly a random vertex u as the root of the random walk with a uniform
length. A walk samples uniformly from the neighbors of the last vertex vis-
ited until the maximum length for the walk is reached. Upon reaching this
maximum length, the walk uniformly samples another random vertex and
performs another walk. This walk learns only the first-order proximity of
a node, which is not sufficient enough to preserve the entire network struc-
ture. Deepwalk uses Hierarchical softmax to approximate the probability
distribution Pr(u, v) of first-order proximity and Stochastic Gradient De-
scent (SGD) to optimize the learning rate and other parameters for feature
representation. In contrast, Node2Vec, proposed in [10], preserves both the
first-order and second-order proximity of a node. For every source node u in
the network, Node2Vec uses a random walk approach similar to Breadth-First
Search (BFS) and Depth-First Search (DFS) algorithms to sample the neigh-
bors of u. In other words, to capture information around a node (Neighbors),
Node2Vec uses a biased second-order random walk guided by two parameters
p and q. Parameter p controls the likelihood of the walk immediately revis-
iting a node, while parameter q allows the walk differentiate between local
view (immediate connected neighbors of a node - BFS) and exploratory view
(nodes at farther distance to source node - DFS). The random walk continues
until all the nodes in the network are sampled into a large ”corpus” of node
sequences; the ”corpus” is fed into the Skipgram model to learn a mapping of
nodes to a low-dimensional space of features that maximizes the likelihood of
preserving network neighborhoods of nodes in a δ-dimensional feature space.
As with most embedding models, the value of δ is estimated, which can
have its impact on the performance of the model. In BINE model [9] for

7



bipartite network, the authors capture information around each node into
a ”corpus” using a probabilistic random walk generator; they then define
a joint optimization framework to learn vertex embedding while preserving
both explicit and implicit relations simultaneously. In [2] and [28], the stud-
ies focus on attributed random walks to build sequences of nodes, and then
define a conditional probability functions that map nodes with similar at-
tributive relationship in a vector space.
Spectral Processing Approach : There are different variants to this ap-
proach; while some architectures have leveraged on spectral heat wavelet
diffusion, some other have achieved success through eigen matrix decompo-
sition. For example, an unsupervised model GRAPHWAVE proposed in [7]
learns a network neighborhood structure into a low-dimensional embedding
by leveraging on the spectral wavelet (unit energy) property of a graph,
and the wavelets probability distribution; such that the vertex neighborhood
similarity property is preserved in the embedding space. The result from
this study was evaluated in areas of node classification, and other evaluation
metrics. A Laplacian eigenmaps spectral clustering techniques was proposed
in [4] to represent each node into vector embedding by the graph Laplacian
eigenvectors associated with its first k nontrivial eigenvalues. The Laplacian
Eigenmaps model preserves first-order proximity of nodes in the network and
thus, the model computes a larger penalty if two nodes with higher similarity
are embedded far apart in the embedding space. Laplacian objective func-
tion is symmetric to each node pairs, therefore it cannot capture important
edge features [19].
Deep Architecture Approach : Most deep architecture models achieves
the goal of embedding network properties by means of an encoder. A semi
supervised model SDNE [31] was one of the erstwhile deep learning model to
learn δ-dimensional embedding with non-linear functions while preserving the
second-order proximity and first-order proximity structure for homogeneous
networks. On the other hand, a variational graph autoencoder VGAE [14]
framework captures node neighborhood information by computing an ad-
jacency matrix A and a degree matrix d, which are entered into a graph
convolutional network (GCN) encoder and a simple inner product decoder
to learn the higher order dependencies between nodes for tasks such as link
prediction. LINE, proposed in [13] is a representation learning algorithm that
learns an embedding model for real world information networks. To capture
the structural features of a network, LINE uses both the first-order proximity
to preserve the local pairwise proximity between the nodes and second-order
proximity to preserve vertices sharing many connections to other vertices. To
learn vector embedding for nodes in the network, the LINE model is opti-
mized using negative sampling technique to preserve the first-order proximity

8



and second-order proximity separately and then concatenate the embedding
trained by the two methods for each vertex. A drawback for this model is
that not only it considers the entire network as an input (large networks
leads to higher computational complexity), but also it separately trains the
objective functions of first-order and second-order proximity resulting into
higher time and space complexity.
Matrix Factorization Approach : Non linear matrix factorization maps
vertices into low dimensional latent space by considering the eigenvectors of
the k-smallest eigenvalues, through non linear transformation manifold learn-
ing methods such as Laplacian Eigenmaps (LE), Locally Linear Embedding
(LLE), and Isomap. A linear matrix factorization such as Singular Value
Decomposition (SVD) is a complex mathematical technique that factorizes
an input adjacency matrix A into the product of three new matrices UΣV T ,
while ensuring that the three matrices possesses some characteristic proper-
ties of the original network. U and V are orthonormal m×m and n×n real
or complex unitary matrix respectively, and Σ is an m× n rectangular diag-
onal matrix with non-negative real numbers on the diagonal. These matrix
factorization approaches usually has a high time computational complexity
of Θ(|V |2), and encounters scalability issues with massive networks.

4 A Compact Neighborhood Representation

As presented in the previous section, embedding graph granularities into
low-dimensional continuous vectors can be a complex and computationally
expensive task, with high memory utilization. The idea behind compact
neighborhood representation (CNR) is to distill in a simple numerical value,
i.e., an integer, the neighborhood information surrounding a vertex.

To compute such a representation for a vertex, we use a generalized Can-
tor Polynomial [26] gk : Nk −→ N, defined as follows:
∀(x1, x2, x3, · · · , xk) ∈ Nk and k > 0

gk(x1, x2, x3, · · · , xk) =
∑

k
j=1~(j, x1 + ...+ xj) (1)

where

~(p, s) =

(
s+ p− 1

p

)
=

(s+ p− 1)!

p!(s− 1)!
(2)

This is a pairing function known to be a bijective function [17,23,29].
To use this bijection on a graph, it suffices to assign distinct integer

values to distinct vertex attributes. This assignment can be simply achieved

9



Figure 1: CNR computation on an example.

by numbering attributes parting from 1. So, the value of k is the number of
distinct labels in the graph. To compute ~(j, x1 + ...+ xj), j corresponds to
a vertex label, and xj is the number of apparition of attribute j in the direct
neighborhood of vertex u. With this definition, if two vertices in the graph
are not isomorphic at one-hop, then they can never have the same CNR even
if they have the same degree and attribute.

Example:
Figure 1 illustrates an example where we compute the CNR for the 5 vertices,
u1, u2, u3, u4, and u5, on a graph having 4 distinct attributes 1, 2, 3, and 4,
i.e., k = 4:
cnr(u1) = g4(0, 2, 0, 0) = ~(1, 0)+~(2, 0+2)+~(3, 0+2+0)+~(4, 0+2+0+0) =
0 + 3 + 4 + 5 = 12. In fact, we can see that attributes 1, 3 and 4 do not
appear in the neighborhood of of u1 and attribute 2 appears 2 times. For the
remaining vertices, we have similarly:
cnr(u2) = g4(1, 1, 0, 1) = ~(1, 1)+~(2, 1+1)+~(3, 1+1+0)+~(4, 1+1+0+1) =
23.
cnr(u3) = g4(1, 1, 1, 1) = ~(1, 1)+~(2, 1+1)+~(3, 1+1+1)+~(4, 1+1+1+1) =
49.
cnr(u4) = g4(0, 2, 0, 0) = ~(1, 0)+~(2, 0+2)+~(3, 0+2+0)+~(4, 0+2+0+0) =
0 + 3 + 4 + 5 = 12
cnr(u5) = g4(0, 1, 0, 0) = ~(1, 0)+~(2, 0+1)+~(3, 0+1+0)+~(4, 0+1+0+0) =
3.
We can see that nodes u1 and u4 which are isomorphic at 1-hop, i.e., they
have a similar neighborhood, have the same CNR value.

It is worthy of note that two factors play a major role in calculating the
CNR for nodes in the graph; the first is k which is bounded by the set of
attributes in the graph, with k being the number of distinct attributes in
Graph G. The second factor is the maximum degree in the input graph.
The denser the graph, the larger the maximum degree of the graph; which

also results into a big CNR integer values in relation to 4
k

k!
where 4 is the

maximum degree of graph. To tackle this, we use a simple log function

10



to scale the CNR values for each vertex. With this, we effectively handle
the ”skewness” among the CNR integer outputs without loss of inherent
properties encoded within the integer. It is also interesting to see that the
computation of CNR values does not require to load all the graph in memory.
Only the direct neighbors of each vertex are needed.

Also, we use here the pairing function so that the computed CNR cap-
tures the one-hop neighborhood of a vertex but it is interesting to see that
it possible to also capture the t-hops neighborhood, t > 1, by considering
several values by vertex.

5 Experimental Evaluation

In this comparative study, we evaluate how the learned embedding from
three state-of-the-art embedding models DeepWalk [24], Node2vec [10], and
LINE [13] perform on Link Prediction and Node Classification tasks ; first
as stand-alone embedding, and then with the introduction of CNR encoding
as an additional important feature. For each dataset used in this study, we
learned embedding in 32, 64, and 128 dimensions. The aim is to find out how
this additional feature affects the overall result of the tasks. Specifically, we
focus on the following research question: To what extent does introducing an
additional encoded feature (i.e., CNR) impacts on the overall performance
in the link prediction and node classification tasks?

5.1 Datasets

In our experiments, we used seven real life datasets (see Table 1 for a sum-
mary) from different domains [27]:

• The popular Cora dataset consists of Machine Learning papers. These
papers are classified into one of the following seven classes: Case Based,
Genetic Algorithms, Neural Networks, Probabilistic Methods, Reinforce-
ment Learning, Rule Learning, and Theory; thus dividing the cora network
into 7 labels. In the dataset corpus, every paper cites or is cited by at least
one other paper.

• The FIRSTMM DB dataset contains a set of graphs corresponding to 3D
point cloud data and categories of various household objects for semantic
and graph-based object category prediction and has 33 training graphs and
4 graphs each for validation and testing. The dataset is from the Robotics
Domain.

11



Table 1: Datasets

Dataset Nodes Edges Density Maximum Degree Num. of Classes
Cora 2708 5429 1.4 10−3 169 7
FIRSTMM 56.6k 252k 1.5 10−4 20 5
Proteins 43.5k 162.1k 1.7 10−4 50 3
NCI-1 122.3k 265.5k 3.5 10−5 8 25
Enzymes 19.5k 75k 3.9 10−4 18 3
DHFR 32k 67k 1.3 10−4 8 9
Political 18.5k 61.2k 3.5 10−4 1k 2
Retweets

• The proteins dataset is a collection of proteins that are classified as en-
zymes or non-enzymes. Nodes represent the amino acids and two nodes
are connected by an edge if they are less than 6 Angstroms apart.

• The NCI-1 dataset consists of small molecules with class labels represent-
ing toxicity or biological activity determined in drug discovery projects.
Here, the nodes take the places of atoms and edges are the chemical bonds
between each atom. Consequently, the labels encode atom and bond types,
possibly with additional chemical attributes.

• The Enzymes dataset consists of 600 protein tertiary structures obtained
from the BRENDA enzyme database. The enzymes dataset contains 6
enzymes, corresponding to its labels.

• The Dihydrofolate Reductase Inhibitors (DHFR) dataset contains values
for 325 compounds. For each compound, 228 molecular descriptors have
been calculated. Additionally, each sample is designated as ”active” or
”inactive”.

• The Soc-political-retweet networks consists of the most retweeted user in
a political debate. Nodes are the users of the twitter social network while
the edges represents the retweets between them.

5.2 Methods and Settings

As already stated, we adopted the Link Prediction and Node Classification
tasks to answer the questions posed in section 5. For the purpose of achiev-
ing the link prediction analysis, we designed a logistic regression model for
labeled indices. We consciously opted for such model because (i) It is very
efficient to train and fast at classifying unknown occurrences. (ii) Since our
features are linearly separable with no multicollinearity, this model is ideal.

12



(iii) It is effective at interpreting model coefficients based on important at-
tributes in the features. (iv) It is less inclined to overfitting. The idea behind
the link prediction task is to measure the accuracy at predicting missing links
in the network. To achieve this, we consider a network with certain fractions
of edges removed. We generated the training dataset by randomly removing
varying percentage of edges from the network while also ensuring that the
network obtained after removing the edges still remains connected. For the
node classification task however, we designed a Graph Convolutional Network
(GCN) model. The GCN hyperparameters includes 2 layers with hidden size
16, training was done using the Adam Optimizer [6] and softmax was used
for output classification, with learning rate 0.01 and weight decay 5× 10−4.

To measure the models’ performance, we use the following metrics:

• Area under the precision-recall curve: Recall measures what percentage of
positives were returned. Precision measures what percentage of the results
are true positives. These metrics are used to construct a Precision-Recall
Curve which shows how the increase in recall affects precision.

• Area under the receiver operating characteristics curve: A combination of
the True positive rate (recall) and the false positive rate which measures
how many negatives were returned as false positives, are used to construct
a Receiver Operating Characteristics (ROC).

• Precision@k: The Precision at k metric returns the percentage of true pos-
itives among only the top k ranked links. It is a metric for measuring link
equality. Mathematically, precision is expressed as True Positive(TP )

True Positive(TP )+False Positive(FP )
.

• F-score: The F-score (also known as F1-score) is a measure of a model ac-
curacy on a dataset. The F-score is a way of combining the precision and
recall of the model, and it is defined as the harmonic mean of the model pre-

cision and recall. Mathematically, it is represented as 2×
(

precision×recall
precision+recall

)
.

5.3 Results for Link Prediction Experiments

For this task, we tried to evaluate how well our model predicted missing links
using the information embedded in the learned representation. In order to
get a baseline score for link prediction, we selected five heuristics metrics:

• Common Neighbor (CN) = |Γ(x) ∩ Γ(y)|,

• Jaccard’s Coefficient = |Γ(x)∩Γ(y)
Γ(x)∪Γ(y)

| ,

13



Table 2: Link Prediction Heuristic Scores for the seven selected networks

Heuristic
Method

Cora First
MM

Protein Enzymes Political
Retweets

DHFR NCI 1

Common
Neighbor

0.6631 0.6843 0.7119 0.7481 0.7012 0.7567 0.7579

Jaccard
Neighbour

0.6580 0.6729 0.6932 0.6610 0.6521 0.6341 0.6737

Preferential
Attachment

0.6873 0.6891 0.7141 0.6783 0.7012 0.6862 0.7119

Adamic/Adar
Index

0.7063 0.7168 0.7585 0.7705 0.7164 0.7521 0.7781

Resource
Allocation

0.6831 0.7045 0.6951 0.6859 0.7067 0.6872 0.7106

• Preferential Attachment (PA) = |Γ(x)||Γ(y)|,

• Adamic/Adar Index (AI) = Σz∈Γ(x)∩Γ(y)
1

log|Γ(z)| , and

• Resource Allocation Index = Σz∈Γ(x)∩Γ(y)
1
|Γ(z)| .

where x and y denotes nodes, Γ(x) and Γ(y) denotes the neighbor set of these
nodes, while z is the common neighbor of node x and node y [8]. Scores of
heuristics for every dataset are given in Table 2.

To evaluate performance of learning models, all nodes and edges were
taken into consideration; and we ensured that while splitting our data into
training and test data, the network remained largely connected thus avoiding
disconnected components. The dataset was split in the ratio 80:20 with 80%
of the data used for training the model and the remaining 20% for evaluation.
We first conducted a link prediction analysis using varied dimensions (32,
64, and 128) of learned embedding from the three selected state-of-the-art
models. For the second part, we merge the originally learned embedding
with the encoded CNR feature for each node and we perform the same series
of link prediction analysis a second time using the newly merged features
and under the same set of conditions and parameters. The results for link
prediction analysis is discussed in this section.

We discuss the results of the link prediction analysis from the perspective
of each of the embedding. The results in Table 3 pretty much shows the effect
of the CNR encoding as an additional feature in the learned embedding.

While we got a decent prediction accuracy using learned embedding from
state-of-the-art models, clearly the introduction of an extra encoded feature
for each vertex increased the accuracy of our link prediction model in pre-
dicting previously unseen connections considerably. This is possible due to
a number of reasons which includes:

14



1. CNR encoding is sensitive to structural features of the network, since it
encodes node based on other nodes in its neighborhood. And since the
link prediction analysis involves predicting structural connection between
nodes, it makes the introduction of CNR improve the predictive accuracy
of the model.

2. For each vertex u, the information stored in the surrounding neighbors
of u are encoded as a single integer for vertex u. Each neighbor of u
also takes and encodes information about its respective neighbors. As a
result of this, each node has the capacity of storing several metadata in a
single Integer. This property gives graphs encoded with CNR technique
the ability to preserve an entire graph property in a set of integers.

In addition, across the AUC results for all seven datasets, our model was
able to correctly predict the true positive edges out of all the edges removed
from the dataset for testing. This is reflected in the high Precision values,
which grows even higher when we factored in the CNR encoding. Another
interesting finding is that for every increment in the embedding dimensions,
we record a lower link prediction accuracy which reflects for AUCs without
CNR and with the introduction of CNR encoded integers. This could be as a
result of adding several unnecessary features which reduces the performance
of the embeddings in learning tasks.
Finally when we compare both results (link prediction analysis without CNR
and link prediction with CNR) with standard heuristics score shown in Table
2, we get a much higher differentials for the link prediction analysis with
CNR. From our findings, it seems clear that CNR encoding thrives well for
massive networks which higher maximum degree since such networks have
more surrounding nodes for each node in the network, and by extension
more surrounding information to encode. This is evident in FirstMM, NCI-1
and proteins datasets, which are the biggest of all seven datasets used in
this study, having much higher prediction accuracy of almost 90% with the
introduction of the single encoded integer as an additional feature.

5.4 Results for Node Classification Experiments

In many real life networks, the nodes in the network can have some kind of re-
lationships based on certain intrinsic characteristics of each node. For exam-
ple, we might want to classify nodes based on the number of inward/outward
edges, or classify nodes on the same structural neighborhood, or sometimes
find some unknown relationships in an unsupervised environment. In our
study, we first learn vector embedding for nodes in an labeled graph (labels
are assigned to nodes based on the class of interest they belong in), and then

15



we designed a GCN model to classify the nodes using the learned embed-
ding. The model was trained with 200 epochs, early stopping on validation
loss with 10 epochs of patience, and a categorical cross-entropy loss function.
On the other hand, we conduct the same experiment under the same envi-
ronment and parameters but this time, with CNR encoding for each node
added as an additional feature in the embedding. As a way of quality assur-
ance, we repeat both sets of experiments with a 32, 64, and 128 dimension
embedding. We evaluate the results from our experiments using the AUC
precision metric and the F1-score to measure how precise the model accuracy
was [32] [15].
The results in Figure 2 and F1-score in Table 4 shows significant degree of
improvement in the classification accuracy with the additional CNR as an
extra embedding layer for each node. The precision@k is used to measure
the confidence level of the model classification result. in simple terms, Pre-
cision is the ratio between the True Positives (correctly predicted positive
observations) and all the Positives (total predicted positive observations) in
the dataset. Therefore a high precision means a low false positive rate, and
vice versa. In the context of our study, we use precision to measure nodes
that were correctly classified into their respective class out of all the nodes
in each class. for example, if a class has 50 nodes, a precision of 0.75 means
the model correctly classified about 38 nodes as belonging to that class out
of the total 50 nodes. For each dataset, we run the classification model for
32, 64, and 128 dimension embedding for Node2Vec, DeepWalk, and LINE
embedding models as shown in Figure 2. While we achieve a decent classi-
fication accuracy with Node2Vec and Deepwalk models, the addition of the
compact neighborhood representation significantly improves the classifica-
tion accuracy as seen in the precision output. With the addition of CNR as
an extra layer of embedding the classification model accurately classified the
nodes in Protein and Enzymes dataset by over 75% and by atleast 85% in the
DHFR dataset. The F1-score takes both false positives and false negatives
into account, with a good F1-score indicative of a good Precision accuracy.
The result in Table 4 correlates with the precision accuracy in Figure 2, with
the F1-score considerably higher with CNR encoding. As with the case of
the Link prediction analysis, it is evident that as we vary the number of di-
mensions from 32 through 128, the classification accuracy reduces; the curse
of dimensionality theory quickly springs to mind. This theory follows that
as the number of dimensions increases, so does the addition of repetitive and
sometimes unnecessary features (perhaps noise) increases, which increases
the model error and thus result in a loss in accuracy. It is therefore impor-
tant to determine an optimal embedding length in a representation learning
problem, so as to get a good embedding output for machine learning tasks.

16



(a) Cora (b) Protein

(c) Enzymes (d) NCI-1

(e) DHFR

Figure 2: Precision@k Results for Node Classification (DW and N2V denotes
DeepWalk and Node2Vec respectively)

17



T
ab

le
3:

E
va

lu
at

io
n

R
es

u
lt

s
:

A
cc

u
ra

cy
P

re
ci

si
o
n

R
e
ca

ll

D
a
ta

se
t

D
im

en
si

o
n

N
o
d

e2
V

ec
N

o
d

e2
v
ec

P
lu

s
C

N
R

D
ee

p
W

a
lk

D
ee

p
W

a
lk

P
lu

s
C

N
R

L
IN

E
L

IN
E

P
lu

s
C

N
R

C
o
ra

3
2

0
.8

7
0
3

0
.8

8
6
0

0
.8

7
0
3

0
.8

4
6
2

0
.8

6
4
2

0
.8

2
3
0

0
.8

5
2
6

0
.8

7
9
7

0
.8

5
2
6

0
.8

3
5
2

0
.8

5
6
7

0
.8

2
8
4

0
.7

5
1
2

0
.7

7
2
0

0
.7

5
1
2

0
.7

7
2
4

0
.7

9
6
9

0
.7

5
5
1

C
o
ra

6
4

0
.7

6
5
8

0
.7

9
0
5

0
.7

6
5
8

0
.8

3
6
4

0
.8

4
6
4

0
.8

2
7
5

0
.7

5
2
9

0
.7

9
4
1

0
.7

5
2
9

0
.8

4
7
5

0
.8

5
9
8

0
.8

3
0
8

0
.5

4
0
7

0
.5

7
5
0

0
.5

4
0
7

0
.7

6
3
0

0
.7

4
6
6

0
.7

6
3
0

C
o
ra

1
2
8

0
.7

8
9
2

0
.7

1
8
0

0
.7

8
9
2

0
.8

4
7
5

0
.8

6
9
2

0
.8

2
7
5

0
.6

5
2
5

0
.6

5
2
7

0
.6

5
2
5

0
.8

3
5
2

0
.8

6
0
2

0
.8

1
0
6

0
.5

3
9
5

0
.5

6
8
8

0
.5

3
9
5

0
.6

0
8
9

0
.6

0
9
1

0
.6

0
8
9

P
ro

te
in

s3
2

0
.8

8
9
1

0
.9

1
3
2

0
.8

9
7
9

0
.8

8
6
2

0
.9

1
9
5

0
.8

8
8
9

0
.8

9
2
3

0
.9

2
6
2

0
.8

9
2
3

0
.8

9
2
6

0
.9

3
3
4

0
.8

9
2
9

0
.7

9
2
1

0
.7

6
6
6

0
.7

9
2
1

0
.8

7
6
2

0
.9

0
9
9

0
.8

7
6
2

P
ro

te
in

s6
4

0
.7

3
7
8

0
.7

5
1
8

0
.7

3
7
8

0
.8

6
6
7

0
.9

1
6
9

0
.8

8
6
7

0
.7

7
3
6

0
.7

9
7
9

0
.7

7
3
6

0
.8

7
6
3

0
.9

1
6
0

0
.8

7
6
3

0
.7

1
0
3

0
.7

0
4
7

0
.7

1
0
3

0
.8

7
9
1

0
.9

2
9
8

0
.8

7
9
1

P
ro

te
in

s1
2
8

0
.7

3
6
4

0
.7

2
9
5

0
.7

3
6
4

0
.8

8
0
9

0
.9

2
4
1

0
.8

8
0
9

0
.7

5
0
1

0
.7

9
7
5

0
.7

5
0
1

0
.8

9
8
6

0
.9

3
3
5

0
.8

9
8
6

0
.6

7
0
8

0
.6

8
5
7

0
.6

7
0
8

0
.8

8
3
4

0
.9

3
2
1

0
.8

8
3
4

F
ir

st
M

M
3
2

0
.9

2
7
5

0
.9

3
5
3

0
.9

2
6
8

0
.9

7
7
3

0
.9

8
0
1

0
.9

7
7
3

0
.8

4
3
6

0
.8

5
8
2

0
.8

4
3
6

0
.9

8
3
6

0
.9

8
8
2

0
.9

8
3
6

0
.7

6
7
1

0
.7

9
9
3

0
.7

6
7
1

0
.9

8
7
4

0
.9

8
9
6

0
.9

8
7
4

F
ir

st
M

M
6
4

0
.8

4
1
9

0
.8

4
8
7

0
.8

3
4
1

0
.9

8
3
1

0
.9

8
4
3

0
.9

8
3
1

0
.7

4
6
4

0
.7

6
2
9

0
.7

4
6
4

0
.9

8
9
8

0
.9

9
1
2

0
.9

8
9
8

0
.7

5
3
3

0
.7

9
8
9

0
.7

5
3
3

0
.9

8
7
1

0
.9

8
9
3

0
.9

8
7
1

F
ir

st
M

M
1
2
8

0
.8

6
5
2

0
.8

6
7
8

0
.8

6
0
6

0
.9

8
6
9

0
.9

8
7
7

0
.9

8
6
9

0
.7

8
7
1

0
.8

3
6
0

0
.7

8
3
9

0
.9

7
7
9

0
.9

7
9
5

0
.9

7
7
9

0
.7

3
1
0

0
.7

7
3
2

0
.7

3
1
0

0
.9

4
7
4

0
.9

8
9
3

0
.9

4
7
4

E
n

zy
m

es
3
2

0
.7

9
0
4

0
.7

8
1
8

0
.7

8
1
5

0
.9

2
3
8

0
.9

5
7
9

0
.9

3
9
0

0
.7

6
7
6

0
.7

6
9
2

0
.7

6
8
7

0
.9

3
0
8

0
.9

3
6
2

0
.9

2
4
5

0
.7

8
4
4

0
.7

7
3
9

0
.7

5
2
7

0
.8

8
2
1

0
.8

7
5
4

0
.8

7
9
4

E
n

zy
m

es
6
4

0
.7

4
1
9

0
.7

2
3
3

0
.7

3
8
4

0
.8

6
4
8

0
.8

5
4
7

0
.8

5
4
3

0
.7

2
4
8

0
.7

1
7
6

0
.7

1
4
5

0
.8

7
4
0

0
.8

7
9
5

0
.8

6
3
4

0
.7

4
0
3

0
.7

6
0
1

0
.7

4
1
9

0
.8

1
0
1

0
.8

0
2
2

0
.8

0
2
9

E
n

zy
m

es
1
2
8

0
.7

2
5
7

0
.7

1
2
2

0
.7

2
4
1

0
.8

2
8
1

0
.8

1
2
3

0
.8

2
3
0

0
.7

1
0
4

0
.6

6
1
5

0
.6

9
7
3

0
.8

4
0
7

0
.8

3
7
7

0
.8

2
9
5

0
.7

4
8
5

0
.7

3
2
2

0
.7

4
7
7

0
.8

0
9
1

0
.8

0
7
6

0
.8

1
0
9

D
H

F
R

3
2

0
.7

6
3
1

0
.7

6
4
2

0
.7

6
8
1

0
.9

4
5
1

0
.9

5
1
8

0
.9

4
5
1

0
.7

5
6
9

0
.7

4
1
2

0
.7

5
1
0

0
.8

7
4
2

0
.8

8
0
6

0
.8

7
2
6

0
.7

4
2
2

0
.7

4
4
8

0
.7

3
6
9

0
.7

9
8
9

0
.7

8
1
5

0
.7

9
2
1

D
H

F
R

6
4

0
.7

7
3
0

0
.7

7
9
3

0
.7

7
5
0

0
.9

0
1
1

0
.9

1
2
8

0
.9

0
1
1

0
.7

4
8
7

0
.7

4
5
3

0
.7

4
9
0

0
.8

5
0
1

0
.8

4
9
4

0
.8

4
8
3

0
.7

1
2
4

0
.7

0
2
2

0
.7

1
2
4

0
.7

4
4
6

0
.7

5
0
1

0
.7

4
4
6

D
H

F
R

1
2
8

0
.7

3
1
1

0
.7

3
2
8

0
.7

2
3
9

0
.8

8
5
4

0
.8

9
0
2

0
.8

8
5
4

0
.7

1
7
8

0
.7

1
0
6

0
.7

1
3
1

0
.8

2
4
6

0
.8

2
9
7

0
.8

2
4
6

0
.6

8
8
9

0
.6

9
1
9

0
.6

9
1
0

0
.7

5
5
9

0
.7

5
0
5

0
.7

4
9
8

P
o
li
ti

cs
3
2

0
.8

8
5
2

0
.8

7
4
3

0
.8

8
0
9

0
.9

7
1
7

0
.9

7
9
4

0
.9

7
1
7

0
.8

6
9
8

0
.8

7
0
3

0
.8

6
9
8

0
.9

6
8
3

0
.9

5
1
5

0
.9

6
8
3

0
.7

9
5
1

0
.7

9
0
3

0
.7

9
4
7

0
.9

6
4
3

0
.9

5
3
6

0
.9

6
4
3

P
o
li
ti

cs
6
4

0
.8

3
6
5

0
.8

4
2
0

0
.8

3
6
5

0
.9

1
9
5

0
.9

2
5
5

0
.9

2
0
1

0
.8

6
6
5

0
.8

6
1
2

0
.8

6
6
5

0
.9

2
1
3

0
.9

2
2
8

0
.9

2
1
3

0
.7

5
3
8

0
.7

4
9
1

0
.7

5
5
7

0
.7

9
5
7

0
.8

0
0
9

0
.7

9
5
7

P
o
li
ti

cs
1
2
8

0
.7

9
7
6

0
.7

9
3
3

0
.7

9
0
5

0
.8

8
2
3

0
.8

9
1
1

0
.8

8
2
3

0
.7

7
4
3

0
.7

7
1
8

0
.7

7
4
3

0
.8

8
4
1

0
.8

9
2
0

0
.8

8
4
1

0
.7

3
8
5

0
.7

4
8
5

0
.7

3
9
3

0
.8

1
6
4

0
.8

2
7
3

0
.8

1
6
4

N
C

I3
2

0
.8

8
5
2

0
.8

7
3
6

0
.8

8
3
5

0
.9

5
4
8

0
.9

6
3
0

0
.9

5
4
8

0
.8

7
3
3

0
.8

6
0
9

0
.8

7
3
9

0
.9

4
4
1

0
.9

5
0
1

0
.9

4
4
1

0
.7

7
5
2

0
.7

6
4
0

0
.7

7
2
1

0
.8

8
4
3

0
.8

8
6
1

0
.8

8
4
3

N
C

I6
4

0
.8

3
0
5

0
.8

3
6
5

0
.8

3
0
5

0
.8

8
9
4

0
.8

8
5
9

0
.8

8
9
0

0
.8

1
1
5

0
.8

2
9
6

0
.8

1
1
5

0
.8

3
5
5

0
.8

2
9
7

0
.8

3
5
5

0
.7

6
6
5

0
.7

5
1
3

0
.7

6
6
8

0
.8

3
8
8

0
.8

5
9
4

0
.8

4
1
2

N
C

I1
2
8

0
.7

6
2
2

0
.7

7
0
6

0
.7

6
2
2

0
.8

4
8
1

0
.8

3
2
9

0
.8

4
9
0

0
.7

7
3
3

0
.7

6
1
9

0
.7

7
3
3

0
.8

1
4
4

0
.8

1
8
9

0
.8

1
4
4

0
.7

3
6
1

0
.7

4
6
0

0
.7

3
6
1

0
.8

0
7
7

0
.8

1
2
5

0
.8

1
7
3

18



Table 4: F1-Score

Dataset
Dimension

Node2Vec Node2vec
Plus CNR

DeepWalk DeepWalk
Plus CNR

LINE LINE
Plus CNR

Cora32 0.65 0.70 0.66 0.68 0.62 0.68
Cora64 0.64 0.62 0.60 0.60 0.52 0.55
Cora128 0.60 0.60 0.58 0.60 0.50 0.53
Proteins32 0.68 0.74 0.69 0.73 0.66 0.66
Proteins64 0.66 0.72 0.64 0.71 0.61 0.60
Proteins128 0.58 0.64 0.60 0.64 0.60 0.62
FirstMM32 0.67 0.72 0.65 0.70 0.63 0.68
FirstMM64 0.65 0.71 0.62 0.70 0.64 0.66
FirstMM128 0.68 0.67 0.62 0.68 0.62 0.62
Enzymes32 0.72 0.83 0.69 0.83 0.69 0.79
Enzymes64 0.70 0.82 0.70 0.80 0.68 0.77
Enzymes128 0.65 0.80 0.66 0.80 0.68 0.78
DHFR32 0.78 0.85 0.76 0.85 0.73 0.79
DHFR64 0.77 0.81 0.71 0.80 0.71 0.75
DHFR128 0.66 0.78 0.64 0.77 0.64 0.70
Politics32 0.79 0.83 0.77 0.83 0.73 0.80
Politics64 0.75 0.82 0.76 0.81 0.69 0.77
Politics128 0.78 0.80 0.74 0.81 0.70 0.78
NCI32 0.75 0.78 0.77 0.80 0.71 0.75
NCI64 0.73 0.73 0.73 0.75 0.70 0.72
NCI128 0.72 0.74 0.72 0.71 0.71 0.70

*Dim. denotes 32/64/128 Dimensions varied for each dataset.

(a) Without CNR (b) With CNR

Figure 3: Visual display for Cora Dataset with 7 Labels

19



Compact Neighborhood Representation can be an interesting solution to
this problem since we are able to encode every information and characteristic
feature surrounding a node in just a single integer.
In Figure 3, we try to visualize the hidden layer representations of our model
in 2-dimensions. Each point on the plane represents each node in the network,
while each color represents each class to which a node belongs in. Figure 3
shows the hidden layer activation for cora dataset which consists of machine
learning papers grouped in the following seven label; Case Based, Genetic
Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learn-
ing, Rule Learning, and Theory. Compared to the visualization in Figure
3a without the encoded neighborhood index integer, Figure 3b shows some
degree of class distinction for the seven classes of papers in the dataset. We
still see some papers in other clusters, this can be attributed to the fact that
in the document corpus, some papers were cited more than once. However,
we can still get a clear picture of the different classes of papers in Figure 3b
compared to Figure 3a. Overall, the node classification analysis with CNR
encoding out performs the classification without CNR by up to 15%, which is
a significant improvement in accuracy. As described in Section 4, since each
vertex in a network is capable of effectively holding higher-order information
about other vertices (described in the node attributes), the neighborhood
compact representation technique is quite effective for node classification.

6 Conclusion

This study involves a performance evaluation of state-of-the-art embedding
models (Node2Vec [10], DeepWalk [24], and LINE [13]) against a compact
neighborhood representation technique that captures in a single dimension
both structural and semantic information around vertices. We conducted
two machine learning tasks on seven real life networks, with learned vector
representations from those models on one hand, and then we introduced the
CNR encoding as an additional feature for an improved accuracy on the other
hand. Results from the both experiments show that we were able to improve
our link prediction and node classification accuracy significantly with the ad-
dition of the CNR feature as an additional layer of embedding. This confirms
that this vertex representation carries important information about nodes.
As part of ongoing work, we will like to explore how much role CNR encoding
will play in massive temporal and streaming networks in areas of detecting
anomalies and pattern matching. Another interesting area is to represent
each distinct characteristic feature in a network with a CNR, thus being able
to effectively distinguish a feature from another and perform certain tasks on

20



them separately. Is is also interesting to see that CNR can be easily extended
to encode edge attributes and k-hop neighboring-hood. This may enhance
the accuracy of the computed embedding in certain applications.

Acknowledgements

For the research leading to these results, Hamida Seba and Mohammed
Haddad received funding from the Agence National de la Recherche under
Grant Agreement No ANR-20-CE23-0002, Ikenna Oluigbo was supported
by Petroleum Technology Development Fund, Nigeria with grant number
PTDF/GFC/035 The source code of the algorithms is available at: https:

//gitlab.liris.cnrs.fr/hseba/cnr.

References

[1] B. Adhikari, Y. Zhang, N. Ramakrishnan, and B. A. Prakash. Sub2vec:
Feature learning for subgraphs. In PAKDD, 2018.

[2] N. K. Ahmed, R. Rossi, J. B. Lee, T. L. Willke, R. Zhou, X. Kong, and
H. Eldardiry. Learning role-based graph embedding. pages 1–8, 2018.

[3] O. Balalau and S. Goyal. Subrank: Subgraph embeddings via a subgraph
proximity measure. Advances in Knowledge Discovery and Data Mining,
12084:487 – 498, 2020.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. In NIPS, 2002.

[5] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations
with global structural information. In Proceedings of the 24th ACM In-
ternational on Conference on Information and Knowledge Management
CIKM ’15, pages 891–900. ACM, 2015.

[6] K. Diederik and B. Jimmy. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2015.

[7] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec. Learning structural
node embeddings via diffusion wavelets. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1320–1329. ACM, 2018.

21



[8] F. Gao, K. Musial, C. Cooper, and S. Tsoka. Link prediction methods
and their accuracy for different social networks and network metrics.
Sci. Program., 2015:172879:1–172879:13, 2015.

[9] M. Gao, L. Chen, X. He, and A. Zhou. Bine: Bipartite network embed-
ding. In Proceedings of the 41st International ACM SIGIR Conference
on Research and Development in Information Retrieval SIGIR ’18, pages
715–724. ACM, 2018.

[10] A. Grover and J. Leskovec. node2vec: Scalable feature learning for net-
works. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 855–864. ACM,
2016.

[11] W. Gu, A. Tandon, Y.-Y. Ahn, and F. Radicchi. Principled approach
to the selection of the embedding dimension of networks. Nature Com-
munications, 12(3772), 2021.

[12] P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches
to social network analysis. Journal of the American Statistical Associa-
tion, 97:1090 – 1098, 2002.

[13] T. Jian, Q. Meng, W. Mingzhe, Z. Ming, Y. Jun, and M. Qiaozhu.
Line: Large-scale information network embedding. Proceedings of the
24th International Conference on World Wide Web, pages 1067 – 1077,
2015.

[14] T. Kipf and M. Welling. Variational graph auto-encoders. NIPS Work-
shop on Bayesian Deep Learning, ArXiv/1611.07308, 2016.

[15] L. Lan, P. Wang, X. Du, K. Song, J. Tao, and X. Guan. Node classifica-
tion on graphs with few-shot novel labels via meta transformed network
embedding. ArXiv, abs/2007.02914, 2020.

[16] A. Li and Y. Pan. Structural information and dynamical complexity
of networks. IEEE Transactions on Information Theory, 62:3290–3339,
2016.

[17] M. Lisi. Some remarks on the cantor pairing function. LE MATEM-
ATICHE, LXII-Fasc. I:55–65, 2007.

[18] G.-X. Luo, J. Li, H. Peng, C. Yang, L. Sun, P. S. Yu, and L. He. Graph
entropy guided node embedding dimension selection for graph neural
networks. In IJCAI, 2021.

22



[19] I. Makarov, D. Kiselev, N. Nikitinsky, and L. Subelj. Survey on graph
embeddings and their applications to machine learning problems on
graphs. PeerJ Computer Science, 7, 2021.

[20] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean. Efficient estimation
of word representations in vector space. Computing Research Repository
(CoRR), abs/1301.3781, 2013.

[21] C. Nabti and H. Seba. Compact neighborhood index for subgraph
queries in massive graphs. arXiv: Databases, 2017.

[22] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. P. Liu,
and S. Jaiswal. graph2vec: Learning distributed representations of
graphs. ArXiv, abs/1707.05005, 2017.

[23] M. Nathanson. Cantor polynomials and the fueter-pólya theorem. The
American Mathematical Monthly, 123:1001 – 1012, 2015.

[24] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages
701–710. ACM, 2014.

[25] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena. Don’t walk, skip!:
Online learning of multi-scale network embeddings. In Proceedings of
the 2017 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining ASONAM ’17, pages 258–265. ACM,
2017.

[26] G. P. Rudolf Fueter. Rationale abzählung der gitterpunkte, vierteljschr.
Naturforsch. Ges, Zürich, 58:280–386, 1923.

[27] R. Ryan and A. Nesreen. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015.

[28] N. Sheikh, Z. T. Kefato, and A. Montresor. gat2vec: representation
learning for attributed graphs. Journal of Computing, 101(3):187–209,
2018.

[29] S. K. Stein. Mathematics: The Man-Made Universe. New York:
McGraw-Hill, 1999. Dover Publications; 3rd Revised ed., March 21
2013.

[30] K. Tu, P. Cui, X. Wang, F. Wang, and W. Zhu. Structural deep em-
bedding for hyper-networks. arXiv preprint arXiv:1711.10146, 2017.

23



[31] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding.
In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining KDD ’16, pages 1225–1234.
ACM, 2016.

[32] R. Yacouby and D. Axman. Probabilistic extension of precision, recall,
and f1 score for more thorough evaluation of classification models. In
EVAL4NLP, 2020.

[33] Z. Yin and Y. Shen. On the dimensionality of word embedding. In
NeurIPS, 2018.

[34] X. Zhu, C. Lei, H. Yu, Y. Li, J. Gan, and S. Zhang. Robust graph dimen-
sionality reduction. In Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, pages 3257–3263. AAAI Press, 2018.

24


