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Abstract
A judgement aggregation rule takes the views of a collection of voters over a set of
interconnected issues and yields a logically consistent collective view. Themedian rule
is a judgement aggregation rule that selects the logically consistent view which mini-
mizes the average distance to the views of the voters (where the “distance” between
two views is the number of issues on which they disagree). In the special case of pref-
erence aggregation, this is called the Kemeny rule. We show that, under appropriate
regularity conditions, the median rule is the unique judgement aggregation rule which
satisfies three axioms: Ensemble Supermajority Efficiency, Reinforcement, and Conti-
nuity. Our analysis covers aggregation problems in which the consistency restrictions
on input and output judgements may differ. We also allow for issues to be weighted,
and provide numerous examples in which issue weights arise naturally.
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1 Introduction

In judgement aggregation, a group is faced with a joint decision; frequently, the mem-
bers of the group disagree about which decision the group should take and/or the
grounds for the decision. Complex decisions can often be described as an interrelated
set of judgements on a set of binary issues subject to some admissibility constraints.
Admissibility constraints may be logical, normative or physical.

Judgement aggregation theory attempts to determine normative criteria on how
to best resolve the disagreement at hand. Such “resolution of disagreement” can
be understood in two ways: compromise or consensus. By “consensus”, we mean
a well-supported inference from the position of a hypothetical impartial observer. By
“compromise” we mean the best accommodation of each member’s views from their
own perspective. In a slogan, the consensus perspective aims to maximize plausibility,
while the compromise perspective aims to maximize concordance.

Judgement aggregation pertains both to groups that act as sovereigns (“electorates”),
as in democratic elections and referenda, and to groups that act as delegate bodies
(“committees”), such as multi-member courts, corporate boards, central banks. A key
rationale for the existence of many committees is the production of decisions that
are sound from an independent third-party perspective; in those cases, the judgement
aggregation framework seems especially apt, arguably often more so than the more
common and established preference aggregation framework.

Given a profile of views by the group members (henceforth: “voters”), which view
should the group adopt? Which view enjoys the highest “support” (“plausibility” or
“concordance”)? In earlier work (Nehring et al. 2014, 2016; Nehring and Pivato 2014,
2019), we have explored a “majoritarian” approach to this question. Its hallmark is to
evaluate support issue by issue in terms of the sign and size of issue-wise majorities.
In simple cases in which the issue-wise majorities happen to produce a jointly feasible
view, on the majoritarian approach, this view enjoys the highest support, and should
thus be adopted by the group. But issue-wise majorities may well not yield a consistent
view. In the context of preference aggregation, this is the well-known Condorcet
paradox. Analogous inconsistencies are common in judgement aggregation (Guilbaud
1952; Kornhauser and Sager 1986; List and Pettit 2002), and have stimulated an
intensive investigation in economic theory, philosophy, and computer science; see e.g.
List and Puppe (2009), Mongin (2012) and Lang et al. (2017) for surveys.

A satisfactory normative account thus needs to be able to deal with the Condorcet-
inconsistent cases. In contrast to the focus on impossibility results in much of the
literature just referenced, in this paper we make a case for a particular judgement
aggregation procedure: the median rule. The median rule maximizes the total numer-
ical support (number of votes) for a view, summed over all issues. Equivalently, the
median rule minimizes the average distance to the views of the voters (where the
“distance” between two views is measured by the number of issues on which they
differ).

Our characterization of the median rule is based on three axioms. First, majoritar-
ianism over multiple issues is encoded in an axiom called “Ensemble Supermajority
Efficiency” (ESME), which itself is an extension of the normatively more basic prin-
ciple of “Supermajority Efficiency” (SME). The SME principle says that if, in the
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comparison of two admissible views x and y, x agrees with the majority on more
issues than y, then y is inferior as a group view, and thus should not be adopted by the
group. Furthermore, and more demandingly, for any fixed ‘quorum’ q, we count how
many supermajorities of size at least q agree with x or with y. If x agrees with at least
as many size-q supermajorities as y for all values of q, and x agrees with more size-q
supermajorities than y for some value of q, then again y is inferior as a group view,
and should not be adopted by the group. Thus, SME takes into account the size of the
supporting supermajorities in a manner analogous to first-order stochastic dominance
in decision theory. This is a simple and natural extension of Condorcet’s majoritarian
approach to social choice. It acquires extra force when it is applied simultaneously
to combinations of different, logically independent judgement aggregation problems.
This additional power can be harnessed in a larger framework, with the help of an
appropriate additional Combination axiom (Nehring and Pivato 2019); however, in
this paper we stick to the standard framework and obtain these implications by lever-
aging the SME axiom to a more elaborate ESME axiom. The ESME axiom extends SME
to “ensembles” of judgement aggregation problems consisting of multiple instances
of the same type of judgement aggregation problem but with different profiles.

Second, the axiom of Reinforcement says that if two subpopulations independently
choose the same view under the rule, then the combined population should also choose
this view under the rule. It is a standard, highly versatile axiom originally due to Smith
(1973) and Young (1974). Finally, Continuity asserts that the group judgement is
robust under small perturbations of the distribution of input judgements. Our first main
result, Theorem 1, characterizes the median rule as the unique judgement aggregation
rule satisfying ESME, Reinforcement and Continuity. Theorem 1 is based on a weak
minimal richness on the input space called “thickness”.

The main comparison result in the literature is the remarkable characterization
of the median rule in the aggregation of linear orderings (“rankings”) by Young and
Levenglick (1978). In this setting (mathematically equivalent to the setting of Arrovian
preference aggregation), the median rule is also known as the Kemeny (1959) rule.1

When applied to the aggregation of ordinal rankings, our axiomatic framework
is broadly similar to that of Young and Levenglick (in particular, its Condorcetian
foundation) but differs in the specifics, our axioms being on the whole stronger. We
thus do not claim that when applied to the aggregation of rankings, our Theorem 1
improves on Young and Levenglick’s result. Our aims are simply different. While
their result relies heavily on particular features of the combinatorial geometry of the
space of ordinal rankings, Theorem 1 is a general-purpose result that covers a wide
range of judgement aggregation problems. (See the end of Sect. 4 for a more detailed
comparison.)

Theorem 1 treats all issues symmetrically. This is warranted in many standard appli-
cations whose structure is sufficiently symmetric, such as the aggregation of rankings
(linear or weak orderings), of classifiers (equivalence relations) or in multi-winner
choice problems. But other applications lack these symmetries; furthermore, differ-
ent issues, whether or not formally symmetric, may be given different “importance”.

1 The Kemeny rule has perhaps more applications beyond social choice than any other concept in social
choice (databases, search engines, social rankings etc.) and has been studied more than any other voting
rule by theoretical computer scientists; see Fischer et al. (2016).
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For example, consider truth-functional aggregation, which was the focus of much
of the early literature in judgment aggregation inspired by Kornhauser and Sager’s
(1986) “doctrinal paradox”. In truth-functional aggregation, one or more “conclusion
judgments” are logically (“truth-functionally”) determined by a number of “premise
judgments”. Condorcet inconsistency takes the form of the “discursive dilemma”:
issuewise aggregation of majorities on the premises may well determine (by truth-
functional implication) judgments on the conclusions that differ from the majority
judgment on these conclusions. The discursive dilemma can be resolved via the median
rule by trading off majority overrides on the premises against majority overrides on
the conclusions. However, in view the structural and conceptual asymmetry between
premises and conclusions, they have different standing, and it would appear quite
arbitrary to give them equal weight.

In Sect. 5, we thus generalize the analysis to weighted judgment contexts in which
different issues have different weights. The definitions of SME, ESME and the median
rule generalize naturally. However, as shown by counterexample, Theorem 1 does not
carry over in full generality. The characterization for weighted judgement contexts
in Theorem 3 must invoke not just richness conditions on the space of admissible
input judgments, but also restrictions on the “combinatorial geometry” of the space
of admissible output judgments; these have no precedent in the extant literature. Most
previous work on judgment aggregation assumes the input and output spaces to be
the same.2 But we allow them to differ. This adds useful additional generality at very
modest cost in execution.

Due to the abstraction and generality of our judgment aggregation framework, it has
a broad and diverse range of applications. We thus illustrate our concepts and results in
a number of examples, including applications to approval voting on committees with
composition constraints, assignment problems, uniform treatment of heterogeneous
cases, missing information, and multiple criteria. For related contributions in various
application settings, see the references in Sects. 3 and 5. See also Nehring and Puppe
(2007), Nehring and Pivato (2011, 2019) or Nehring et al. (2014) for many more
examples.

At a formal level, the scope of potential applications of Theorems 1 and 3 is
extremely broad. But it would be rash to suppose the theorems to be normatively
compelling in all cases where they are formally applicable. Instead, the content and
appeal of ESME will depend on the particular setting and the way in which issues are
framed, and need to be judged accordingly. In some judgement contexts, it may be
possible to define a notion of the “average” opinion; for some applications, judgement
aggregation rules based on such “averages” might be more normatively compelling
than majoritarian rules. But even in such cases, majoritarian rules are likely to enjoy
significant second-best advantages, such as superior resistance to strategic manipula-
tion.3

This paper belongs to a larger project exploring multi-issue majoritarianism in
judgement aggregation. In particular, Theorems 1 and 3 rely on the main result of
Nehring and Pivato (2019), which shows that judgement aggregation rules that satisfy

2 A recent exception is Endriss (2018).
3 See, e.g. Bossert and Sprumont (2014) for the Kemeny rule in the ranking problem.
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ESME and Continuity are representable as “additive majority rules”. Additive majority
rules can be viewed as non-linear generalizations of the median rule; they evaluate
views not simply in terms of the (weighted) sum of numeric issue-wise majorities,
but in terms of the (weighted) sum of issue-wise majority gains, which are possibly
non-linear transformations of these numeric issue-wise majorities. Theorems 1 and 3
are much more focused results: augmenting the other two axioms with Reinforcement
yields an additive majority rule with a linear gain function.

While plausible on its face, the connection between Reinforcement and linear-
ity of the gain function is technically far from trivial. Difficulties arise in particular
because the underlying representation obtained in Nehring and Pivato (2019) is
hyperreal-valued rather than real-valued, and due to the need of combinatorial struc-
tural conditions in the weighted case. Moreover, conceptually, from a compromise
perspective, the step from general additive majority rules to the median rule is fun-
damental. From this perspective, Reinforcement is quite compelling, and enables an
interpretation of the optimal aggregation rule as minimizing the “aggregate burden
of compromise”, as measured by the average distance between individual and group
judgments. By contrast, from a consensus perspective, Reinforcement is somewhat
less compelling—indeed, non-linear gain-functions offer useful degrees of freedom
in distinguishing the effective strength of majority in the overall balance of argument
from its numerical strength. At the same time, it is useful also from this perspective
to be able to single out a particular gain-function as a default, avoiding recourse to ad
hoc conventions. To this purpose, we introduce an axiom of Judgement Consistency,
and show its functional equivalence to Reinforcement (Proposition 2). This makes
Theorems 1 and 3 applicable to the consensus perspective as well.

The rest of this paper is organized as follows. Section 2 sets up the formal frame-
work. Section 3 introduces the axioms of ESME and Continuity, and explains that
additive majority rules are the only rules satisfying these axioms. Section 4 intro-
duces the Reinforcement and Judgement Consistency axioms, and states the main
result. Section 5 introduces weighted judgement contexts, and Sect. 6 extends our
axiomatic characterization to such contexts. Appendix A discusses conditions under
which the equal-weights assumption of Theorem 1 is appropriate. Appendix B con-
tains the proofs of some auxiliary results. Appendix C contains the proofs of the main
results.

2 Judgement aggregation

Let K be a finite set of logical propositions or issues, each of which can be either
affirmed or denied. A view is an assignment of an assertoric (Yes-No) value to
each issue, represented by an element of {±1}K. A judgement space is a collection
of views—that is, a subset X of {±1}K—determined by certain constraints. These
constraints can arise in several ways: as a matter of logical consistency (as in truth-
functional aggregation problems), as a matter of “rational coherence” (as in transitivity
conditions on orderings) or as a matter of mere “feasibility” (as in multi-winner choice
problems).
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Example 1 (Aggregation of rankings) Let A be a finite set of alternatives. We can
represent the set of all strict ordinal rankings of A as a judgement space X rk

A ⊂ {±1}K,
where elements of K represent assertions of the form “a � b” for some a, b ∈ A,
and admissibility is given by transitivity. To be precise, let K ⊂ A × A be a subset
such that (a, a) /∈ K for any a ∈ A, and for each distinct a, b ∈ A, exactly one of
the pairs (a, b) or (b, a) is in K. Any complete, antisymmetric binary relation � on
A can be represented by a unique element x of {±1}K by setting xab = 1 if a � b,
whereas xab = −1 if a ≺ b. Let X rk

A be the set of all elements of {±1}K corresponding
to ordinal rankings of A.4 Judgement aggregation on X rk

A is formally equivalent to
classical Arrovian preference aggregation.5 ��
Example 2 (Classifier aggregation) We can represent the set of all equivalence rela-
tions on A as a judgement space X eq

A ⊂ {±1}K, where the elements of K represent
assertions of the form “a ≈ b”, for some a, b ∈ A. To be precise, let K be the set
of all two-element subsets of A. Any symmetric, reflexive binary relation ∼ on A is
represented by a unique element x of {±1}K by setting xab = 1 if and only if a ∼ b.
Let X eq

A be the set of all elements of {±1}K corresponding to equivalence relations
on A.6 Judgement aggregation on X eq

A arises when each voter has her own way of
classifying the elements of A into equivalence classes, and the group must agree on a
common classification system. ��

Other judgement spaces represent common collective decision problems such as
resource allocation, committee selection, or taxonomic classification. One particularly
well-known class of examples are the so-called truth-functional aggregation problems.
In this case, the issues inK are divided into two classes: “premises” and “conclusions”,
and the truth-values of the conclusions are logically entailed by the truth-values of the
premises. The space X is then the set of all logically consistent assignments of truth
values to the premises and conclusions. See Nehring and Puppe (2007), Nehring and
Pivato (2011) or Nehring et al. (2014) for many more examples.

Judgement aggregation rules map profiles of views to a group view or set of views.
Typically, both outputs and inputs are subject to feasibility or logical consistency con-
straints, which are encoded by two judgement spaces X and Y , respectively. In many
cases, the restrictions on inputs and outputs are the same (so that X = Y), but they
need not be. For example, one might require output views to be fully rationally coher-
ent (e.g. transitive), but allow input views that are not, for example to accommodate
bounded rationality in voters. Or output views may take into account feasibility con-
siderations, while input views do not, as in single- or multi-winner approval voting.
We thus define a judgement context to be a triple C := (K,X ,Y), where K is a
(finite) set of issues and X ⊆ Y ⊆ {±1}K, with Y being the “input space”, and X
being the “output space”. We assume that X ⊆ Y; i.e. output views are required to

4 Formally: X rk
A is the set of all x ∈ {±1}K satisfying the following transitivity constraint, for all distinct

a, b, c ∈ A: if (xab = 1 or xba = −1), and (xbc = 1 or xcb = −1), then (xac = 1 or xca = −1).
5 As in much of the literature on preference aggregation, we represent rankings as linear orderings; a
modified specification would allow to represent weak orders as a single negatively transitive relation.
6 Formally: X eq

A is the set of all x ∈ {±1}K satisfying the transitivity constraint (xab = xbc = 1) �⇒
(xac = 1), for all distinct a, b, c ∈ A.

123



The median rule in judgement aggregation

satisfy all admissibility restrictions that input views do, and maybe more.7 A profile
is a function μ : Y−→[0, 1] such that

∑
y∈Y μ(y) = 1. This represents a population

of weighted voters; for each y ∈ Y , μ(y) is the total weight of the voters who hold the
view y. If all voters have the same weight, then μ(y) is simply the proportion of the
electorate which holds the view y. But we allow the possibility that different voters
have different weights, e.g. because of different levels of expertise or different stakes
in the outcome. By summarizing the voters’ views with a function μ : Y−→[0, 1],
we abstract from the exact number of voters, and we render them anonymous, except
for their weights: voters with the same weight are indistinguishable in our model.

If Y is a judgement space, we define Δ(Y) to be the set of all profiles on Y . A
judgement problem is an ordered pair (C, μ), where C = (K,X ,Y) is a judgement
context, and μ ∈ Δ(Y). Judgement aggregation is the process of converting such
a judgement problem into a view (or set of views) in X . A judgement aggregation
rule on C is a correspondence F : Δ(Y) ⇒ X which produces a nonempty (usually
singleton) subset F(μ) ⊆ X for any profile μ ∈ Δ(Y). (Sometimes, we will write
“F(X , μ)” instead of “F(μ)”).

The median rule is a particularly attractive judgement aggregation rule. To define
it, we need some notation. Recall that X ⊆ Y ⊆ {±1}K ⊂ R

K. Thus, each view
y ∈ Y can be regarded as a vector in R

K. For any profile μ ∈ Δ(Y), we define its
majority vector

μ̃ :=
∑

y∈Y
μ(y) y ∈ [−1, 1]K. (1)

For all k ∈ K, we have μ̃k > 0 if a (weighted) majority of voters affirm or support
the issue k, whereas μ̃k < 0 if a majority deny or oppose k. The majority ideal is the
element xμ ∈ {±1}K defined by setting xμ

k := sign(μ̃k) for all k ∈ K.8 However,
for many profiles μ ∈ Δ(Y) it turns out that xμ /∈ X . (This can happen even when
Y = X .) In other words, it is frequently impossible to agree with the μ-majority in
every issue in K, while respecting the underlying logical constraints which define the
judgement space X .

Informally, the median rule maximizes the average agreement with μ-majorities
across all the issues in K. Formally, for all μ ∈ Δ(Y), we define

Median (X , μ) := argmax
x∈X

(
∑

k∈K
xk μ̃k

)

. (2)

(This maximizer is unique for all μ in an open, dense subset of Δ(Y).) As we noted
in the introduction, in the special case of the aggregation of rankings (i.e. when X =
Y = X rk

A), the median rule is equivalent to the Kemeny rule.

7 There are also social decisions in which the output views are less constrained than input views —i.e.
where Y ⊂ X . (One example is the aggregation of transitive individual preferences into a quasitransitive
social preference.) We do not consider this case.
8 For simplicity, we assume in this paragraph that μ̃k �= 0 for all k ∈ K; this is not essential.
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There is another way to define and motivate the median rule via a natural notion
of distance due to Kemeny (1959); see Monjardet (2008) for a broad survey. For any
x, y ∈ {±1}K, we define their Hamming distance by d(x, y) := #{k ∈ K; xk �= yk}.
It is easy to see that the median rule selects the view(s) in X that minimize the average
Hammingdistance to the views of the voters; in the terminology of Miller and Osherson
(2009) and Lang et al. (2011), it is a distance-minimizing rule.9

This metric interpretation is particularly appealing when our goal is to find an
optimal compromise. The Hamming distance of the collective view from the view of
any voter is a natural measure of the “burden of compromise” imposed on that voter;
thus, the median view(s) are those that minimize the aggregate burden of compromise.

3 Additive majority rules

In this section and the next, we will focus on the special and simpler case in which all
issues are treated on par and are assigned equal weight. Such symmetric treatment of
issues is naturally motivated in applications in which the judgment context exhibits
appropriate global symmetries. For example, many spaces of binary relations (linear
or weak orders as in Example 1, partial orders or acyclic relations, interval orders,
equivalence relations as in Example 2, graphs with certain qualitative properties) are
symmetric under relabeling of alternatives/vertices.10 By consequence, only constant
weight vectors are invariant under these symmetries. Global symmetries are sufficient
but not necessary condition for the use of equal weights; see Appendix A for further
discussion. In Sects. 5 and 6, our approach will be generalized to comparisons of sets
of issues in terms of arbitrary real-valued weights.

Supermajority Efficiency.A judgement aggregation problem is Condorcet inconsistent
if there is no admissible view that agrees with the majority view on every issue. It is
then necessary to trade off majorities on some issues against majorities on others.
To motivate our approach to such trade-offs, consider a very special case in which
two feasible views x, y ∈ X are compared at some profile μ such that the majority
margin on all issues distinguishing x, y is equal in absolute amount. So, within this
comparison, one must trade off one set of issues (on which x but not y is aligned with
the majority) against another another set (on which y is aligned with the majority but
not x). Since the majority margins on these issues are equal by assumption, the choice
between x and y is naturally thought of as turning on which of these sets is “larger”
or “more important”. In this section, for simplicity we will focus on the case in which
all issues are treated equally; sets of issues are thus compared by their cardinality, i.e.
by counting. To illustrate, consider the ranking problem on four alternatives.

Example 1 continued. Let A = {a, b, c, d}, let K := {(a, b), (a, c), (a, d), (b, c),
(b, d), (c, d)}, and consider a profile μ ∈ Δ(X rk

A) with majority margins μ̃ab =

9 Miller and Osherson (2009) call itPrototype, while Lang et al. (2011) call it RdH ,Σ . Distance-minimizing
rules are themselves a subclass of scoring rules, which have been studied by Dietrich (2014).
10 In fact, all of the examples in Barthélémy and Monjardet’s (1981) classical survey belong to this category.
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μ̃ac = μ̃bc = μ̃bd = μ̃cd = ε > 0, and μ̃ad = −ε for some ε > 0.11 Note that the
linear order abcd differs from the majority ideal on a single issue only, namely the
issue (a, d); by contrast, all other orderings differ from the majority ideal by at least
two issues. Hence, based on the counting criterion of size, abcd beats any other linear
orderings in pairwise comparison. ��

Thus equipped with a notion of comparative size of sets of issues, one can derive
further normative implications for general profiles by invoking the basic majoritarian
principle that “many heads are better than few”. Here we apply this principle not just
within issues, but across issues as well. This leads to the first key normative axiom
of this paper, Supermajority Efficiency. The basic idea is to compare views at various
supermajority thresholds q ∈ [0, 1]. If x is aligned with the majority with a margin of
at least q on a (weakly, and at least once strictly) larger set of issues than y is, then x
supermajority dominates y, rendering y inadmissible. Note that both the size of a set
of issues and of the size of a majority are here employed in a strictly ordinal sense.

Formally, for any μ ∈ Δ(Y), x ∈ X and q ∈ [0, 1], we define γ
μ
x (q) := #{k ∈ K;

xk μ̃k ≥ q}; this yields a non-increasing function γ
μ
x : [0, 1]−→R. We say x ∈ X is

supermajority efficient (SME) for the judgement problem (C, μ) if there does not exist
any z ∈ X such that γ

μ
z (q) ≥ γ

μ
x (q) for all q ∈ [0, 1], with strict inequality for some

q. Let SME (C, μ) be the set of such views. If x ∈ SME (C, μ), then it is impossible to
change some coordinates of x to capture one more μ-supermajority of size q, without
either losing at least one μ-supermajority of size q ′ ≥ q, or losing at least two μ-
supermajorities of size q ′ ≤ q. In the Condorcet consistent case, i.e. if the majority
ideal xμ is in X , then SME (C, μ) = {xμ}. We will say that a judgement aggregation
rule F : Δ(Y) ⇒ X is supermajority efficient (SME) if F(μ) ⊆ SME (C, μ) for any
choice of μ ∈ Δ(Y).

In simple cases, the SME criterion is decisive by itself. To illustrate, consider
the ranking problem on three alternatives, with A = {a, b, c}. Let μ be a profile
concentrated on the three rankings abc, bca, and cab, with frequency α > β > γ ,
respectively, and α < 1

2 . A majority ranks a above b, b above c, and c above a,
a classic Condorcet cycle. Among those three comparisons, the majority ranking of
c � a is supported by the smallest majority margin, namely β + γ − α. Since the
ordering abc overrides the majority on this issue only, it is the unique supermajority
efficient view. Extending this argument, it is easily seen the SME criterion generically
selects a unique view when ranking three alternatives.12

In more complex settings, generic uniqueness is easily lost. This happens, for
instance, in order aggregation on at least four alternatives. Return to the profile in
Example 1, and modify it by allowing the majority margin μ̃ad on (a, d) to differ
from −ε.13 If μ̃ad > −ε, then the ordering abcd is still the unique SME view. By
contrast, if μ̃ad < −ε, other views such as dabc are SME as well. A tradeoff arises:

11 If ε is small enough, then such a μ exists. This follows from McGarvey’s (1953) Theorem: for any vector
v in R

K sufficiently close to 0, there is a profile μ ∈ Δ(X rk
A) with μ̃ = v (see also Nehring and Pivato,

2011). For brevity, we will not build such a profile explicitly; it is enough to know that it exists.
12 By “generically”, we mean on an open and dense set of profiles μ ∈ Δ (Y) in the Euclidean topology.
Furthermore, any non-uniqueness is due to a supermajority “tie” in an obvious sense.
13 Again, this is possible by McGarvey’s Theorem; see Footnote 11.
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while the ordering abcd overrides the issue-wise majority on only one issue (with a
large majority margin), dabc overrides the issue-wise majority on two issues, but with
a smaller majority margin.

To further illustrate the content of SME as well as the scope of judgement aggre-
gation in contexts, consider Voting on Committees.

Example 3 (Voting on Committees) Suppose a committee of L members must be cho-
sen. Let K be the set of candidates. For any x ∈ {±1}K , let #x := #{k ∈ K; xk = 1}.
Then the set of feasible committees is XK

L = {x ∈ {±1}K : #x = L}. This encoding
breaks down the selection of a committee into |K| binary issues, each of the form
“should candidate k be a member of the committee?”

There are two natural input spaces. On the one hand, with Y = X , each voter’s
input consists of a feasible committee, naturally interpreted as her own view of the
best committee. On the other hand, with Y = {±1}K , a voter’s input consists of an
independent judgement on each candidate; this could be interpreted as a judgement of
“competency” or “merit” of the candidate. In line with the literature, we will refer to
such judgements as judgements of “approval”, and the domain {±1}K as the approval
domain on K.

Consider any profile μ ∈ Δ(Y) ; to sidestep ties, assume for simplicity that all
majority margins μ̃k are different. In such cases, the SME criterion singles out a unique
committee as optimal, namely the committee composed of the L candidates with the
highest majority margins μ̃k (regardless of whether or not these margins are positive).
With the approval domain and L = 1, SME thus selects the candidate k with the
highest μ̃k; this is just the approval voting rule of Brams and Fishburn (1983). With
L > 1, SME yields “multi-winner approval voting”. Multi-winner approval voting is
rationalized here via SME which evaluates views (i.e. committees) issue by issue (i.e.
candidate by candidate). ��
Multi-winner approval voting evaluates committees by separately assessing the merit
of each member. In many situations, there is also an interest in the overall composition
of the committee, for example to ensure broad expertise or broad representation of
perspectives or stake-holders. One can incorporate such considerations through exoge-
nous composition constraints which restrict the set of admissible committees X to a
strict subset of XK

L .

Example 4 In the selection of a university-wide committee, one may want to ensure
an adequate representation of types of disciplines j ∈ J (such as humanities,
social sciences, natural sciences, engineering) by imposing a minimum size L j on
the representation of group j . With {K j } j∈J describing the partition of candidates
according to their disciplinary type, this composition constraint yields an output space
X = {x ∈ XK

L : #{k ∈ K j : xk = 1} ≥ L j for all j ∈ J }. Again, except for possible
ties, the SME criterion yields unique optimal committees: first, for each group j ∈ J ,
select the L j candidates with the highest majority support in that group; second, fill the
remaining L−∑

j∈J L j candidates with those among the not-yet selected candidates
with the highest majority support across all disciplines.

As an empirical example, for many years the German Green Party has adopted a
rule according to which two persons must be elected as a ‘leadership duo’, of which
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at least one is female. (So L = 2; L f = 1, and Lm = 0.) According to this rule, the
composition constraint is applied to both the input and the output space, i.e. X = Y .
The voting rule employed agrees with the SME criterion and is thus, in this case,
equivalent to the median rule. ��

In more complex situations, more than one type of classification may be considered
relevant, such as academic rank, gender, or ethnicity, yielding additional, overlapping
composition requirements. In those cases, SME might no longer select a uniquely opti-
mal committee; that selection might now depend on the particular rule. The median rule
in particular selects those comittees x with the highest overall approval

∑
k:xk=1 μ̃k; it

thus yields a natural formulation of multi-winner approval voting under composition
constraints.14

Example 5 Suppose a committee of size two must satisfy two composition constraints.
Modifying the Green Party example a bit, suppose that one person of each gender is
to be elected, and one person of each basic political outlook (center left vs. left). By
SME, attention can be restricted to those candidates with the largest number of votes
for each combination of characteristics. Thus, the choice reduces to two “duos”, one
with a female centrist and a male leftist, and one with male centrist and a female leftist.
Suppose that the candidates f c,ml,mc,and f l garner 45%, 10%, 25% and 25% of
the votes, respectively.15 Then both duos are supermajority efficient. The first one is
chosen by the median rule. ��
Additive Majority Rules. In contexts in which SME does not generically select unique
views, further considerations must be brought into play. First, one must ensure the
consistency of SME choices across profiles; this yields the class of additive majority
rules, via the axiomatic characterization given in Nehring and Pivato (2019) and briefly
summarized in the next two subsections. Second, one must single out the median rule
among the additive majority rules, by imposing additional axioms; this is the first main
result of the present paper.

Like the median rule, additive majority rules try to maximize the “total agreement
with majorities”, where the “total” is taken by summing over all issues inK, and where
the “agreement with majorities” is measured by applying an increasing function to the
coordinates of the majority vector μ̃. Formally, let φ be an increasing and odd function
(called the gain function) defined on the interval [−1,+1].16 The additive majority
rule (AMR) Fφ : Δ(Y) ⇒ X is defined as follows:

For all μ ∈ Δ(Y), Fφ(μ) := argmax
x∈X

(
∑

k∈K
xk φ(μ̃k)

)

. (3)

14 Optimal committees under composition constraints are studied for example in Bredereck et al. (2018);
here we axiomatically derive a particular objective function grounded in the aggregation of individual
optimality judgments.
Interpreted in the context of the allocation of scarce resources, multiple overlapping composition constraints
are akin to the reserve systems proposed by Pathak et al. (2020). In this context, the median rule constitutes
a simple procedure of how the actual allocation is determined reflecting a profile of judgments by a panel
of ethical experts or stakeholders.
15 This is possible if Y is the approval space or if Y = X and there are enough candidates.
16 A function φ is odd if φ (−r) = −φ (r) for all r ∈ [−1, 1].
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In particular, the median rule is an additive majority rule. To see this, let φ(r) := r
for all r ∈ [−1, 1]; then formula (3) reduces to the formula (2).

A non-linear gain function φ allows larger majorities (especially unanimous or
almost unanimous majorites) to carry a disproportionately greater weight than smaller
majorities. The added generality appears potentially useful especially from a consensus
perspective, from which non-linearities in the gain function can naturally be interpreted
as reflecting non-linearities in the plausibility of (evidential support for) judgements
as a function of the balance of majorities supporting them.

To illustrate, return to Example 5. Recall that the median rule selected a two-
member committee with voter support for the two members of 45% and 10% over
another committee with voter support of 25% and 25%. The superiority of the first
could be questioned on the grounds that the first contains a very weakly supported
member (not supported or even disapproved by 90% of the voters), while the second
does not (to a comparable extent). From a consensus perspective, this may lead to
disproportionate doubts about the merits of this candidate compared to any of the
two candidates in the second committee; the second committee may thus be seen to
be the safer, more defensible choice. This line of reasoning can be captured by a
non-linear gain function for which φ(r)

r increases with |r |. The axioms invoked here
(Reinforcement and Judgement Consistency) preclude this possibility.

In defining AMRs, we have so far omitted an important technical detail, namely the
codomain of the gain function. While prototypical gain functions are real-valued, not
all are. Indeed, the representation results of Nehring and Pivato (2019) do not yield a
real-valued gain function, because they allow for possibly infinite and/or infinitesimal
gains as well. This is achieved by allowing φ to take values in the hyperreal numbers
∗
R. This may sound exotic, but there is no reason for concern; for the purposes of this

paper, AMRs mainly serve as vehicle to prove the main result, with gain functions
serving as an efficient computation device. In fact, the only properties of the hyperreals
used in the proof are the standard properties of addition and a compatible ordering
relation.17

Ensemble Supermajority Efficiency. In applying the SME criterion to judgement aggre-
gation rules, not just single profiles, one can get additional leverage by considering
ensembles of judgement problems. Such ensembles consist of N instances of the same
judgement context with potentially different profiles μ1, . . . , μN . To picture such
ensembles concretely, an academic electorate may need to simultaneously appoint
committees with different tasks but the same structure (composition constraint). Or,
in a sequential version of the same idea, it may need to annually elect a committee for
a given task and structure, but with different candidates every year.18

To apply SME formally to ensembles of judgement contexts, one must represent
these ensembles themselves as judgement contexts. To do so, we enhance the issue
space to the N -fold disjoint union of (copies of)Kwritten as N ·K, and let the output and

17 In mathematical terminology, all that is needed is the fact that ∗
R is a linearly ordered abelian group.

That is, ∗
R is a commutative group (G, +) endowed with a linear order relation > compatible with the

group operation “+”, i.e. such that, for all a, b, c ∈ G, a > b iff a + c > b + c.
18 From a normative standpoint, it suffices to assume that these ensembles are meaningful as hypotheticals;
they do not need to be actual features of the judgement problem at hand. Their role is thus quite similar to
the role of counterfactual profiles in multi-profile restrictions.
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input spaces be N -fold Cartesian powersX N := X ×· · ·×X andYN := Y×· · ·×Y .
Thus, we obtain a new judgement context CN := (N · K,X N ,YN ). Given a profile
μ ∈ Δ(YN ), we define its nth marginal μn ∈ Δ(Y) to be the profile such that, for any
x ∈ Y ,

μn(x) :=
∑

(y1,...,yN )∈YN

with yn=x

μ(y1, . . . , yN ). (4)

An N -tuple of profiles {μ1, . . . , μN } can be represented by any profile μ ∈ Δ
(
YN

)

such that, for each n ∈ [1 . . . N ], μn = μn . Consider thus an “ensemble problem”
(CN , μ). Denote the output for this problem by F̃

(CN , μ
)

. It seems reasonable that
this output should be obtained by applying F factor by factor. In other words, for all
μ ∈ Δ

(
YN

)
,

F̃
(
CN , μ

)
= F

(
μ1

)
× · · · × F

(
μN

)
. (5)

Since (CN , μ) is itself a well-defined judgement aggregation problem, SME applies
to it, just as it does to ‘ordinary’ judgement aggregation problems.

One can formalize this line of argument by defining a judgement aggregation rule F̃
on the family of contexts {CN }N∈N, requring F̃ to be SME on each CN and to impose
the product condition (5) as an axiom. In Nehring and Pivato (2019), we refer to (5)
as the Combination axiom, and argue that it is a normatively appealing requirement
on judgement aggregation, quite independently of any majoritarian considerations.

Here, we have chosen to stick with the more conventional single-context framework,
primarily because the median rule is well-defined and well-motivated in this frame-
work already. We will capture the conjunction of two distinct axioms—Supermajority
Efficiency and Combination—by introducing a single ‘synthetic’ axiom: Ensemble
Supermajority Efficiency.

ESME. For any number of instances N ∈ N and profile μ ∈ Δ
(
YN

)
, any element

of F
(
μ1

) × · · · × F
(
μN

)
is SME in the judgement aggregation problem

(CN , μ).19

ESME strengthens SME and can be viewed as a “reduced form” axiom that melds
together the two more fundamental axioms into one single-context multi-profile axiom.
Conceptually, while SME requires the efficient alignment of views with majorities
across issues, ESME requires the efficient alignment of views with majorities across
issues and profiles.

ESME is substantially stronger than SME, because an ensemble view x ∈ X N that is
SME instance-by-instance need not be SME overall. To illustrate, return to Example 5.
Let μ be any profile in which the candidates of type f c,ml,mc,and f l garner 45%,
10%, 25% and 25% of the votes, respectively, as above. Likewise, let μ′ be a different

19 μ also contains information about the joint distribution of views over the different instances of Y . But

this extra information is immaterial to ESME: it is used in neither FN
(
X N , μ

)
nor SME

(
X N , μ

)
.
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profile in which the candidates of type f c,ml,mc,and f l garner 50%, 15%, 20%
and 20% of the votes, respectively. Thus, the candidates of the types f c,ml receive
more votes in μ′ whereas the candidates of the types f l and mc receive fewer votes;
μ′ is understood to describe voters’ views in a different (e.g. subsequent) election, in
which the candidates themselves (may) differ. SME is consistent with a choice of the
duo x = ( f c,ml) at μ, and a choice of the duo y = ( f l,mc) at μ′. However, this
is ruled out by ESME since the sequential choice [x, y] is supermajority dominated
in the ensemble problem by the sequential choice [y, x], as is checked easily. The
inferiority of [x, y] to [y, x] is intuitive as the latter is better aligned with the support
for candidates of each type than the former.

If a rule F satisfies ESME, then it is a refinement of some additive majority rule G.
If F also satisfies Continuity, then in fact F = G.

Continuity. For every profile μ ∈ Δ(Y), and every sequence {μn}∞n=1 ⊂ Δ(Y) with
limn→∞ μn = μ, if x ∈ F(μn) for all n ∈ N, then x ∈ F(μ).

This axiom says that the correspondence F is upper hemicontinuous with respect to
the usual, Euclidean topology on Δ(Y). This means that F is robust against small
perturbations or errors in the specification of μ. It also means that, if a very large
population of voters is mixed with a much smaller population, then the views of the
large population essentially determine the outcome of the rule. The following result
is an adaptation of Theorems 1 and 2 of Nehring and Pivato (2019).

Proposition 1 Let F be a judgement aggregation rule on a judgement context C =
(K,X ,Y).

(a) F satisfies ESME if and only if there is an additive majority rule G such that
F(μ) ⊆ G(μ) for all μ ∈ Δ(Y).

(b) If F satisfies ESME and Continuity on Δ(Y), then F is an additive majority rule.

We will use of the second part of Proposition 1. Note that any AMR with a real-valued,
continuous gain function satisfies Continuity. But the converse does not hold.

4 Axiomatic characterization of themedian rule in the unweighted
case

To characterize the median rule, we will need one more axiom in addition to the
two which appeared in Proposition 1: Reinforcement. Let μ1, μ2 ∈ Δ(Y) be two
profiles, describing two subpopulations of size S1 and S2. Let c1 = S1/(S1 + S2) and
c2 = S2/(S1 + S2). Then μ = c1μ1 + c2μ2 is the profile of the combined population.
If each subpopulation separately endorses some view x ∈ X , then the combined
population presumably should also endorse this view. The next axiom formalizes this
desideratum.

Reinforcement. For any profiles μ1, μ2 ∈ Δ(Y) with F(μ1) ∩ F(μ2) �= ∅, and
any c1, c2 ∈ (0, 1) with c1 + c2 = 1, if μ = c1 μ1 + c2 μ2, then
F(μ) = F(μ1) ∩ F(μ2). In other words, for any view x ∈ X , we
have x ∈ F(μ1) ∩ F(μ2) if and only if x ∈ F(μ).
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In the present setting, Reinforcement is appealing especially from a compromise
perspective. If a particular view x minimizes the aggregate “burden of compromise”
within some subpopulation μ1 and the same view x happens to minimize the aggregate
burden of compromise within a disjoint subpopulation μ2, it stands to reason that x ipso
facto minimizes the aggregate burden of compromise within the combined population
μ. This argument for Reinforcement parallels a standard argument for Reinforcement
as an Extended Pareto condition in preference aggregation (Dhillon and Mertens 1999).

Reinforcement seems less compelling prima facie from the consensus perspective
which treats the input judgements as the ‘evidential basis’ for an outside observer;
in particular, the consensus perspective bars an ‘extended Pareto’ argument for Rein-
forcement. For example, consider a situation in which there is unanimous agreement
on some issue k in one subpopulation with profile μ while there is a near tie in the other
subpopulation μ′. At both profiles, the same view x happens to be selected as ‘most
plausible’ according to F . In the combined population, say μ′′ = 1

2μ+ 1
2μ′, there is a

clear majority on k, but it is far from unanimity. So the profile μ′′ is materially distinct
as evidence from either μ or μ′, and it may very well be sensible to select a view y
different from x as ‘most plausible’ given the evidence μ′′. This may well happen,
for example, at some profiles under an additive majority rule with a non-linear gain
function φ.

While the case for a linear gain function may not be as compelling from a consensus
perspective as it is from a compromise perspective (via Reinforcement), there is still
a good case to be made on the basis of a “default principle” of sorts. The next axiom
serves as an axiomatic expression of such a default principle. In contrast to Reinforce-
ment, which is a variable-population axiom, the next axiom compares profiles within
a fixed population of voters. In a nutshell, it considers how the rule F should respond
to a change of opinion in one sub-population while the opinion of the complemen-
tary sub-population remains fixed. It says that F should always respond to a given
opinion change in the same way, independent of the opinion of the complementary
sub-population; it is conceptually analogous to the axiom of Tradeoff Consistency in
decision theory.

Judgement
Consistency.

For any c1, c2 ∈ (0, 1) with c1+c2 = 1, and any profiles μ,μ′, ν, ν′ ∈
Δ(Y), and any views x, y ∈ X , if (a) y ∈ F(c1 μ + c2 ν), and
(b) x ∈ F(c1 μ′ + c2 ν), and (c) y /∈ F(c1 μ′ + c2 ν), and (d)
x ∈ F(c1 μ + c2 ν′), then (e) y /∈ F(c1 μ′ + c2 ν′),

The idea here is that F should only select the views in X which have the greatest
‘plausibility’ in light of the input judgements. In the above axiom, μ,μ′ are profiles
describing two possible distributions of opinions for a subpopulation S1 making up a
proportion c1 of the total population, while ν, ν′ are profiles describing two possible
distributions of opinions for the complementary subpopulation S2 (making up the
proportion c2 = 1 − c1 of the total population). Hypotheses (a), (b), and (c) say that
the shift in the distribution of opinions from μ to μ′ shifts the balance of plausibility
from y to x, when the S2 subpopulation has profile ν. Thus, if we start with another
profile (c1 μ + c2 ν′) where x is already weakly more plausible than y (hypothesis
(d)), then the same shift of opinion from μ to μ′ among subpopulation S1 should again
make the x strictly more plausible than y (conclusion (e)).
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It is easy to verify that the median rule satisfies Judgement Consistency. The next
result describes the logical relationship between the last three axioms.

Proposition 2 If an aggregation rule satisfies Continuity and Judgement Consis-
tency, then it satisfies Reinforcement.20

To obtain our axiomatization of the median rule, we need a weak structural condition
on Y . Recall that Y ⊆ {±1}K ⊂ R

K. Let conv(Y) be the convex hull of Y in R
K.

We say that Y is thick if conv(Y) has dimension |K|. To interpret this, note that
conv(Y) is the set of majority vectors associated with admissible profiles μ; that is,
conv(Y) = {μ̃ : μ ∈ Δ(Y)}. Thus, thickness just says that the domain of profiles is
sufficiently “rich”.

Most interesting judgement aggregation spaces are thick. For examples, spaces of
rankings (Example 1) are thick, as are spaces of classifiers (Example 2). Evidently, the
approval spaces {±1}K involved in committee selection (Example 3) are thick. See
Nehring and Pivato (2011) for many other examples. Here is our first main result.

Theorem 1 Let C = (K,X ,Y) be a judgement context where Y is thick and X ⊆
Y . Let F : Δ(Y) ⇒ X be a judgement aggregation rule. Then F satisfies ESME,
Continuity, and Reinforcement if and only if F is the median rule.

Note that the thickness restriction applies only to the input space Y , while the
output space X is left entirely unrestricted. For example the committee spaces XK

L
from Example 3 are not thick; since it is defined by an affine feasibility restriction, it
has dimension |K|−1, not |K|. Nevertheless, Theorem 1 still applies to Multi-Winner
Approval Voting under Constraints, because the input space is Y = {±1}K. In the
traditional setting in which X = Y , the thickness assumption obviously applies to the
output space as well. In this case, Theorem 1 simplifies as follows.

Corollary 1 Let X be a thick judgement space. An aggregation rule F : Δ(X ) ⇒ X
satisfies ESME, Continuity, and Reinforcement if and only if F is the median rule.

Thickness is needed for the conclusion of these results. For instance, it fails for the
context C′ given by K = 4 and X = Y = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1)}. And
indeed, the conclusion of Theorem 1 is false for this space.21

By Proposition 2, the statements of Theorem 1 and Corollary 1 remain true if
Reinforcement is replaced by Judgement Consistency. All three axioms are needed
for the characterization:

– If φ : [−1, 1]−→R is increasing and continuous, then the AMR Fφ satisfies ESME
and Continuity. But Fφ does not satisfy Reinforcement unless it is the median
rule.

20 Proposition 2 suggests that Judgement Consistency is logically stronger than Reinforcement. But
Reinforcement depends on a variable population of voters, whereas Judgement Consistency can still be
applied when the population of voters is fixed. Since our framework assumes a variable population from
the beginning, it somewhat obscures this distinction.
21 To see this, note that the third and fourth issues are “clones”: they have the same value in every feasible
view. Thus, in the terminology of Sect. 5, C′ is equivalent to a weighted context C′′ where these two issues
are “merged” into a single issue with double weight. But C′′ belongs to a class of contexts that violate the
conclusion of Theorem 1, by Proposition 5 below. (To be precise, X = X 3

1,1 and λ = (1, 1, 2).)
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– Scoring rules (Myerson 1995; Dietrich 2014) satisfy Reinforcement and Con-
tinuity , but typically not ESME. For example, suppose X = Y , and consider
the plurality rule, which selects the element(s) of X with the most votes —i.e.
F(μ) = argmax(μ). This rule satisfies Reinforcement and Continuity, but not
SME.

– Let > be an arbitrary strict order on X . One can construct a single-valued refine-
ment of the median rule which satisfies ESME and Reinforcement and breaks any
tie by choosing the >-maximal element. But this rule does not satisfy Continuity.

Comparison to the literature. There is considerable discussion on various versions of
the median rule in the mathematically oriented literature; see, for example, Chapter 5
of the monograph of Day and McMorris (2003), Monjardet (2008) and Barthélémy and
Monjardet (1981). The latter is a broad, classical survey of the early interdisciplinary
literature until the 1970s.22 Axiomatizations appear largely confined tomedian spaces
defined in Nehring and Puppe (2007) as an adaption of “median graphs” to judgement
aggregation spaces. In particular, McMorris et al. (2000) provide a characterization
of the median rule in median graphs/spaces based on a local Condorcet condition and
Reinforcement.23

In the special case where X = Y = X rk
A, the space of linear orderings from

Example 1, Theorem 1 yields a counterpart to the seminal contribution by Young
and Levenglick (1978). As we already mentioned in the introduction, Young and Lev-
englick characterize the median rule for such spaces by three assumptions: Condorcet
Consistency, Neutrality and Reinforcement. While their Reinforcement axiom is
exactly the same as ours, the other axioms are not quite comparable. Condorcet Con-
sistency is somewhat weaker than SME (hence a fortiori weaker than ESME) but not
entirely, since it also deals with majority ties.24 Neutrality is the standard axiom of
a symmetry in alternatives. Any additive majority rule is neutral on X rk

A. So in view
of Proposition 1, Neutrality is implied here by ESME plus Continuity. It is not quite
implied by ESME alone, since non-neutral selections from AMRs would satisfy ESME
as well. Conceptually, a lot ofNeutrality is built into ESME via its symmetric treatment
of issues.

The three axioms in the Young-Levenglick (YL) theorem are meaningful for gen-
eral judgement aggregation contexts, with Neutrality understood as invariance to any
symmetries of the context (input and output spaces) under permutations of issues. It is
thus an interesting research challenge to provide YL-like axiomatizations for particular
contexts. By disentangling the majoritarian (Condorcet) and neutrality ingredients in
SME, such axiomatizations avoid the need to introduce a counting measure on issues.
However, judging from Young and Levenglick’s own work, this task seems quite

22 Barthélémy and Monjardet (1981) focus on binary relations; this can be seen as a special case of
our framework where issues correspond to ordered pairs (a, b) as in our treatment of linear orderings or
equivalence relations (Examples 1 and 2). Many of the concepts and issues introduced there have more
general application, but axiomatics are not discussed. The paper also allows input and output spaces to
differ.
23 However, in median spaces, the median rule is characterized by Condorcet consistency alone. Indeed,
as shown in Nehring and Puppe (2007), the median spaces are exactly the spaces in which this is the case.
24 Say that a view x is Condorcet dominant if, for all k ∈ K , μ̃k · xk ≥ 0. A rule F is Condorcet consistent
if F is equal to the set of all Condorcet dominant views whenever that set is non-empty.
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challenging, since highly specialized and intricate proofs may be required. Indeed, in
many context of interests, no YL-like results may be available due to lack of structure,
especially lack of symmetries.25

Mathematically, the two results and their proofs are very different. Young and
Levenglick’s proof is a tour de force that strongly exploits the special combinatorial
features of the permutation polytope conv(X rk

A). By contrast, our proof of Theorem 1
must effectively sidestep the combinatorial structure of the context. Even equipped
with Proposition 1, this requires significant work because the intended generality
precludes the use of arguments that exploit special properties of the combinatorial
structure of a particular context.

To illustrate the leverage one can gain from information about the particular context,
we provide a custom-tailored and very direct proof of our main result for the ranking
problem with rational-valued profiles, just as in the original Young and Levenglick
result.26

Proposition 3 A judgment aggregation rule on the domain of rational-valued profiles
inX rk

A is themedian rule if and only if it satisfies ESME,Reinforcement andContinuity.

Here is the proof sketch; the details are provided in the appendix. First, we explicitly
construct pairs of profiles μ and μ′ such that all AMRs yield the same output and such
that F(μ) and F(μ′) have non-empty intersection. Reinforcement thus prescribes the
output on any mixture cμ + (1 − c)μ′. This information can be used to infer that any
gain function φ such that F = Fφ must be linear on some range (−R, R) ∩ Q. Thus
F agrees with the median rule for all profiles μ with majority margins μ̃k ∈ (−R, R).

Now consider an arbitrary profile μ. Let μ0 denote any profile with tied majority
margins on each issue (i.e. μ̃0

k = 0 for all k ∈ K). By SME, F
(
μ0

) = X rk
A . By

Reinforcement, F
(
cμ + (1 − c)μ0

) = F(μ). If c < R, by the first part of the proof,
F agrees with the median rule on cμ + (1 − c)μ0, hence, as is easy to see, on μ as
well. (Note that the proof completely sidesteps the question of whether φ is real- or
hyperreal-valued).

5 Extension to weighted judgement contexts

The formulation of judgement aggregation in Sect. 2 implicitly gave the same weight to
all issues in the aggregation of the voters’ opinions. But sometimes such equal weight-

25 Even in cases where a YL-type result is available, this need not render an (E)SME-based result ren-
dundant. First, a general result like Theorem 1 provides additional assurance because it shows that the
underlying normative logic is fairly insensitive to the particular combinatorial features of the aggregation
problem. Second, in some interesting cases, SME alone suffices to characterize the median rule (with
continuity to deal with ties), without appeal to Reinforcement, and without need to leverage it to ESME.
Examples are the ranking problem with three alternatives, and the committee selection problem with at
most one composition constraint. In such cases, the normative rationale for the median rule via SME is
simple and direct, being based on a fixed-profile, fixed-population argument.
26 A rational-valued profile corresponds to a profile of equally weighted voters. The proof of Proposition 3
on this restricted domain is no more difficult than the corresponding result on the richer domain of real-
valued profiles. In contrast, the proof of Theorem 1 makes essential use of the topological connectedness
of the real-valued domain.
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ing is not appropriate. For example, in a truth-functional aggregation problem, one
may wish to give a higher weight to the voters’ opinions about the premises than their
opinions about the conclusions. The most extreme form of this is the “premise-based”
aggregation rule, which aggregates the voters’ views on each premise by majority
vote, but completely ignores their opinions about the conclusions; instead, the collec-
tive opinion about each conclusion is logically derived from the majoritarian opinions
on the premises (Mongin 2008; Dietrich and Mongin 2010). At the opposite extreme
is the “conclusion-based” aggregation rule, which aggregates the voters’ opinions on
each conclusion by majority vote, and mostly ignores their opinions about the premises,
except when these opinions can be aggregated in a manner which is logically consis-
tent with the majority opinions about the conclusions (Pigozzi et al. 2009). Between
these extremes, there are rules which give greater or lesser weight to the voters’ views
on different premises and conclusions (Dietrich 2015).

There are other judgement aggregation problems where one might want to assign
different weight to the voters’ opinions on different issues. Indeed, only if a problem
had a sufficiently high degree of “symmetry” (e.g. aggregation of rankings) would
there be a strong a priori reason to assign the same weight to all issues. For this
reason, we now introduce a weight vector λ = (λk)k∈K, where λk > 0 is the “weight”
which we assign to the voters’ opinions on issue k. Roughly speaking, λk would be
large if we were very unwilling to overrule the majority opinion in issue k. Conversely,
λk would be small if we were quite ready to overrule this opinion, if this was necessary
to achieve a coherent collective view. A weighted judgement context is a quadruple
C := (K,λ,X ,Y), where K is a (finite) set of issues, λ ∈ R

K+ is a weight vector, and
X ⊆ Y ⊆ {±1}K, with X being the set of “admissible collective views”, and Y being
the set of “admissible individual views”. (In particular, an unweighted judgement
context of the kind considered in Sects. 2 to 4 can be represented by setting λ =
(1, 1, . . . , 1).) A judgement problem is an ordered pair (C, μ), whereC is a (weighted)
judgement context, and μ ∈ Δ(Y) is a profile. For any x ∈ X and q ∈ [0, 1], we now
define

γ λ
μ,x(q) :=

∑
{λk ; k ∈ K and xk μ̃k ≥ q}. (6)

This yields a non-increasing function γ λ
μ,x : [0, 1]−→R. If C is an unweighted judge-

ment context (i.e. λ = (1, . . . , 1)), then formula (6) reduces to the definition of γ
μ
x

from Sect. 3. We sayx ∈ X is supermajority efficient (SME) for the judgement problem
(C, μ) if there does not exist any z ∈ X such that γ λ

μ,z(q) ≥ γ λ
μ,x(q) for all q ∈ [0, 1],

with strict inequality for some q. A judgement aggregation rule F : Δ(Y) ⇒ X is
supermajority efficient on C if, for any μ ∈ Δ(Y), every element of F(μ) is superma-
jority efficient for (C, μ).

If φ : [−1, 1]−→∗
R is a gain function, then the additive majority rule on C is the

correspondence Fφ : Δ(Y) ⇒ X defined as follows:

for all μ ∈ Δ(Y), Fφ(μ) := argmax
x∈X

(
∑

k∈K
λk φ(xk μ̃k)

)

. (7)
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In particular, the median rule on C is defined by

Median (C, μ) := argmax
x∈X

(
∑

k∈K
λk xk μ̃k

)

, for all μ ∈ Δ(Y). (8)

If C is an unweighted judgement context (i.e. λ = (1, . . . , 1)), then this reduces to the
“unweighted” median rule defined by formula (2). For any x, y ∈ {±1}K, we define
their λ-weighteddistance by dλ(x, y) := ∑{λk ; k ∈ K and xk �= yk}. The median rule
(8) can be equivalently defined as selecting the view(s) in X minimizing the average
λ-weighted distance to the views of the voters. In Sect. 6, we will provide an axiomatic
characterization of the weighted median rule (8), broadly similar to Theorem 1, but
requiring additional structural conditions on the context. First, we will motivate the
theory of weighted judgement contexts in general—and the weighted median rule
in particular—with two interesting applications: assignment problems and uniform
decisions.27 But an impatient reader can skip directly to Sect. 6 without loss of logical
continuity.

5.1 Assignment problems

Consider a group of voters who need to assign different candidates to different posi-
tions, such as the positions in a cabinet. There is a setA := {1, . . . , A} of “candidates”
and a set B := {1, . . . , B} of “positions”, with A ≥ B.28 (As in the matching litera-
ture, there are many different possible interpretations; for example, “positions” could
be unique resources such as organ transplants, and “candidates” could be possible
transplant recipients. Judgment aggregation might be required when different group
members entertain different standards of fair allocation).

Assignments can be described in terms of an issue space K = A × B, with the
issue (a, b) addressing the question: “should candidate a hold position b”? Feasibility
requires that any position be filled by exactly one candidate, and that any candidate
can fill at most one position. Feasible assignments can thus be described as B−tuples
((a1, . . . , aB)) saying that candidate ab is assigned to position b. More explicitly in
issue space, the tuple ((a1, . . . , aB)) refers to the view x ∈ {±1}A×B such that xab = 1
iff a = ab, and xab = −1 iff a �= ab. The feasible output space is the set of all
such judgments X asgn

A×B. By contrast, we will allow input judgments to be unrestricted

approval judgments for each position; thus Y = {±1}A×B .

Generally, different positions will differ in their importance, so it will be natural to
assign weights λa,b of the form λa,b = λb, where λb reflects the importance of position

b. This defines a judgement context C =
(
A × B,λ,X asgn

A×B, {±1}A×B
)

. In such a

27 There are many other potential applications. In the context of the allocation of a scarce resource (which
generalizes the committee selection problem) weights are naturally defined by costs (Talmon and Faliszewski
2019) or, for tasks under a time constraint, by duration (Pascual et al. 2018).
28 This problem has been considered in particular by Emerson (2016). The median rule can be viewed as
an Approval Voting counterpart of sorts to Emerson’s “matrix vote”. See also http://www.deborda.org/faq/
voting-systems/what-is-the-matrix-vote.html.
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context, the median rule selects the assignment x = ((a1, . . . , aB)) that maximizes the
weighted sum

∑

b∈B
λb μ̃(ab,b).

To illustrate the role of the weights, consider, as a simple example, a profile of input
views μ all of which assess candidate quality as independent of position, i.e. μ̃a,b =
μ̃a,b′ for all a ∈ A, and b, b′ ∈ B. In such profiles, supermajority efficient rules
such as the weighted median rule (8) will assign the better candidates to the more
important positions. Likewise, in arbitrary profiles, if the weight for some position b∗
is much larger than that for any other position, the median rule fills that position by
the candidate a with the highest majority support μ̃(a,b∗) (up to, possibly, near ties).

5.2 Uniform decisions

The following “uniform decision” model is in fact a scheme of examples generating
more complex judgment aggregation contexts from simpler ones. We first present the
formal scheme, and then illustrate three types of applications referred to as Heteroge-
neous Cases, Missing Information, and Multiple Criteria.

Let C = (K,λ,X ,Y) be a “base” judgement context. Let S be an abstract set of
“instances”; in the three applications, the elements of S will be interpreted as “cases”,
“states” or “criteria”. Let λ := (λs)s∈S be a vector assigning a “weight” to each
instance; in the three applications, these weights will be interpreted as the frequencies
of the cases, the probabilities of the states, or the relative importance of the criteria.
(We will provide more detail below.) While input judgments are made instance-wise,
these form the basis for a single output judgment that governs all instances uniformly.
This situation can be described formally by a “uniform” judgement context Ĉ =
(K̂, λ̂, X̂ , Ŷ) defined as follows.

(i) K̂ := K × S;
(ii) X̂ := {(x, . . . , x) ; x ∈ X };

(iii) Ŷ := Y × · · · × Y;
(iv) For all k ∈ K and s ∈ S, λ̂k,s := λs λk .

Part (iii) allows input judgments to vary independently across instances, while (ii) says
that output judgments must be constant across instances. Part (iv) says that the weight
of a composite issue (k, s) rescales the base weight λk by the instance weight λs .

5.2.1 Heterogeneous cases

To flesh out the first interpretation in terms of heterogeneous instances, consider the
very simplest judgment aggregation problem given by a single yes-no issue, i.e. |K| =
1.

For example, a group needs to decide on whether to establish a rule which permits
or forbids some types of action or behaviour. Concrete examples of such rules include
traffic laws, workplace codes of conduct, or safety regulations at a public swimming
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pool. More contentious examples include restrictions on speech acts on grounds of
libel, hate speech, obscenity, or incitement.29 For this rule to be simple, unambiguous,
and enforceable in a non-arbitrary and independently verifiable way, it must be based
on a relatively coarse description of the action. At the same tim, in each particular
case, the “correct” or “just” decision may depend on some finer details of the action
and the surrounding context. But even if these details are observable in principle, it is
often not feasible to explicitly condition the actual decision on them, e.g. for reasons
of complexity or non-verifiability.

So the best the group can do in such situations is to get it right “on balance” across
comparable cases s ∈ S. Voters give their judgments about the right decision in each
case. The uniform group decision is then to be taken on the basis of the entire vector
of majorities (μ̃s)s∈S . The cases could be actual or hypothetical. For actual cases,
the weights λs would naturally reflect their frequency of occurence. For hypothetical
cases, the weights λs would naturally reflect their ‘relevance’ or ‘representativeness’.
Additive majority rules yield a positive uniform decision just in case

∑

s∈S
λs φ (μ̃s) ≥ 0.

Hence, the median rule in particular yields a positive uniform decision iff

∑

s∈S
λs μ̃s ≥ 0,

i.e. just in case the weighted average of majorities across comparable cases is non-
negative.

5.2.2 Missing information

The uniform decision model can also be applied to situations in which the group
is missing information relevant to the judgment task. For example, in foreign policy,
macroeconomic management, and environmental regulation, the right course of action
may depend on information which is unavailable at the moment the decision must be
made. For example, during its 2014 independence referendum, Scotland confronted
key uncertainties about the future petroleum prices and about its ability to join the
E.U. as an independent state. It is quite legitimate—and may lead to better decisions
—to make this missing information explicit in the collective decision procedure by
representing it as an unknown “state of nature” s ∈ S, so that each voter submits
her judgment contingent on the state. In a binary (single-issue) decision problem,
analogously to Example 5.2.1 above, the median rule would base the decision on the
probability-weighted majority margin

∑
s∈S psμ̃s .

The relevant probability weights λs = ps could be obtained in various ways. For
example, they might be obtained by some judgment aggregation rule from the voters

29 See Miller (2013) for a contribution to this theme in the judgment aggregation literature.
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themselves. Or, the group may delegate this judgment to an ‘outside authority’, for
example to betting markets.30

This can be extended beyond a single issue, for instance to the ranking of more than
two possible courses of action. The base context would then be given by the space of
rankings X rk

A from Example 1. The median rule would select the ranking(s) � with
the highest support ex ante, as measured by the sum

∑

a,b∈A
a�b

μ̂ab, (9)

where, for all a, b ∈ A, we defined

μ̂ab :=
∑

s∈S
ps μ̃ab,s . (10)

The median rule thus yields an extension of the Kemeny rule to uncertainty. Note
that the ex ante comparison depends as much on the size of the majorities as on their
sign.31

5.2.3 Multiple criteria

Applied to elections for public office, the standard ranking model can be interpreted as
trying to determine the (impartially best) candidate based on an overall comparative
evaluation of candidates in terms of their “suitability for office”. It might be argued that
this gives too much room for subjective impressions of personal appeal of candidates,
and that “suitability for office” is better construed as a combination of rather distinct,
identifiable qualities such as leadership, integrity, judgment, etc. to be evaluated and
aggregated separately, and then amalgamated into one judgement of overall suitability.
Such a multi-criterion conception of candidate merit can be captured by the uniform
decision model as follows. Let the base context again be the standard ranking context
X rk
A from Example 1, and let each s represent a different criterion. An input judgment

y consists of an S-tuple of rankings (ys)s∈S , with ys representing the ranking of
candidates in terms of criterion s. The uniform output judgment x represents the overall
group ranking to be determined. It is based on weight vector λ ∈ R

S+ describing the
relative importance of these criteria. These can be determined in different ways: they
could be determined concurrently by the group itself, by a separate committee or at
an earlier ‘constitutional’ stage at which the general requirements for the office where
determined.32

30 For a provocative and ambitious advocacy of using betting markets to “vote on values, but bet on beliefs”,
see Hanson (2013).
31 For a discussion of the Kemeny rule under uncertainty from a different angle, see Procaccia and Shah
(2016).
32 Switching the setting, a hiring committee or university department may be tasked to evaluate an applicant
for an open faculty position in terms of research, teaching and service, and the weights of these might be
predetermined by standing university policy.

123



K. Nehring, M. Pivato

In this setting, the median rule selects the ranking with highest overall majority
support (9), where again the overall majority support μ̂ab for ranking of a over b
is given the weighted average (10) . In this manner, the median rule thus yields an
extension of the Kemeny rule to multiple criteria.

The general approach to multi-criterion evaluation just outlined here is not restricted
to the particular, comparative format evaluation in terms of rankings; an alternative
format of interest is non-comparative in terms of “grades”. In this vein, Balinski and
Laraki (2011, ch. 21) introduce a multi-criteria majority grading rule33 which—setting
aside the treatment of tied grades—is equivalent to the weighted median rule in the
uniform decision model for a base context that describes grading as follows.

Let (G,>) be a finite, linearly ordered set, each element being interpreted as a grade.
Grading can be defined as a judgment context (G,XG ,XG ,λ), where the issues g ∈ G
are interpreted as whether or not the target of evaluation achieves at least grade g, and
the set of admissible grade assignments is given by XG = {x ∈ {±1}G ; xg ≥ xg′
whenever g ≤ g′}, with typical element (1, . . . 1, 0, . . . , 0).34

6 Characterization of the weightedmedian rule

To obtain a weighted generalization of Theorem 1, we must consider weighted com-
binations of weighted contexts. These are given by weighted contexts of the form
Ĉ = (N · K, λ̂,X N ,YN ), where λ̂ = (̂λ1, . . . , λ̂N ) ∈ R

N ·K is proportional to λ;
that is, for for each n ∈ [1, .., N ], λ̂n = cn λ, for some cn > 0. So, for a proportional
weight vector λ̂, the relative weightswithin the set of basic issuesK are the same (orig-
inal ones) in each instance, while different instances may be assigned different relative
weights reflected in the scaling factor cn . The potential differences in the scaling factor
may have different origins, as in the uniform decision model of Sect. 5.2. In particular,
they could reflect differences in frequency, probability or relative importance. We are
now in a position to state the axiom of Weighted Ensemble Supermajority Efficiency.

WESME. For any set of instances N , any vector of weights λ̂ proportional to λ, and
any profile μ ∈ Δ

(
YN

)
, any element of F

(
μ1

) × · · · × F
(
μN

)
is SME for

(Ĉ, μ).

Here is the extension of Proposition 1 to weighted contexts, obtained from Theorem
A.1 of Nehring and Pivato (2019).

Proposition 4 Let F be a judgement aggregation rule on aweighted judgement context
C. If F satisfies WESME and Continuity, then F is an additive majority rule like (7).

Note that the consideration of proportional weights is needed only to deal with
the case of irrational-valued weight vectors λ in the base context. If all weights are
rational, then it is sufficient to confine attention to weight vectors λ̂ such that λ̂n = λ

for all n ∈ [1 . . . N ]. (See Nehring and Pivato (2019) for more information.)

33 Their term is “multi-criteria majority judgment”.
34 The output of the median rule depends on the criteria weights λs , but is easily seen to be independent
of the issue weights λg . This follows from the fact that the underlying context (G,XG ,XG , λ), can be
viewed as a median space.
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In view of Proposition 4, one might expect Theorem 1 to generalize verbatim. In
fact, one can mimic rational weights by cloning issues in proportion to their weight
and apply equal weights to the cloned description of the problem. However, cloning
destroys thickness, so Theorem 1 cannot be applied. And, indeed, the following sim-
ple counterexample shows that this generalization fails; it implies that additional,
non-trivial structural conditions are necessary. To construct the counterexample, con-
sider the following class of additive majority rules. For any α > 0, we define
φα : [−1, 1]−→R by φα(r) := sign(r) · |r |α . The corresponding additive majority
rule Fφα is called a homogeneous rule. Note that the median rule is just the homoge-
neous rule with α = 1. Now let K be a finite set, and define X K

L,M := {x ∈ {±1}K;

L ≤ #x ≤ M}. If L < M , this space is thick.35 But the intended generalization of
Theorem 1 fails on this space. Its normative assumptions fail to single out the median
rule uniquely, but are satisfied by any homogeneous rule.

Proposition 5 Let K ≥ M ≥ L ≥ 0, let λ ∈ R
K+ be a weight vector, and let C :=

(K,λ,X K
L,M ,X K

L,M ). For any α > 0, the rule Fα satisfies Reinforcement, Continuity,
andWESME onC. If λ is the uniformweight vector, then Fα is equivalent to the median
rule on C. But if λ not uniform and α �= 1, then Fα is not the median rule on C.

Proposition 5 opens a rather surprising gap between a weighted and an unweighted
sum representation. Can it be fixed, and if so, how? To locate the source of the trouble,
we first state a general result applicable to a broad range of contexts. We will require the
judgement context and the aggregation rule to satisfy one of two hypotheses. Wa say
that a judgement context C = (K,λ,X ,Y) has balanced weights if for all x, y ∈ X
with only two issues i, j ∈ K such that xi �= y j and x j �= y j (so that d(x, y) = 2), we
have λi = λ j . On the other hand, we say that C is suitable for a judgement aggregation
rule F if there is some μ ∈ Δ(Y) such that F(C, μ) = {x, y} for some x, y ∈ X with
d(x, y) ≥ 3.

Theorem 2 Let C = (K,λ,X ,Y) be a weighted judgement context where Y is thick,
and let F : Δ(Y) ⇒ X be an additive majority rule. Suppose that either C has bal-
anced weights or C is suitable for F. Then F satisfies Continuity and Reinforcement
if and only if it is the median rule (8).

Note that any unweighted judgement context automatically has balanced weights.
Thus, Theorem 2 immediately entails Theorem 1 above. For the case of generic (unbal-
anced) weights, Theorem 2 is of limited value on its own, since suitability is both hard
to verify and without obvious normative significance. To obtain a satisfactory result,
we must find structural conditions on the context C which, together with the axioms
imposed on F , ensure its suitability. To these we now turn.

For any μ ∈ Δ({±1}K), let xμ be the majority ideal, as defined below formula
(1) above. A judgement space Y is McGarvey if, for all x ∈ {±1}K, there is some
μ ∈ Δ(Y) such that xμ = x.36 For example, the spaces X rk

A and X eq

A (Examples 1

35 X K
L,M is often used to represent committee selection problems, as in Example 3: K is a set of potential

“candidates”, and the committee in question must have at least L and most M members. It also arises in
certain resource allocation problems. But these interpretations are not relevant for Proposition 5.
36 Equivalently, Y is McGarvey if and only if the zero vector 0 lies in the topological interior of conv(Y).
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and 2) are McGarvey, as are many other commonly occuring judgement spaces; see
Nehring and Pivato (2011) for a systematic study and many more examples. Clearly,
any McGarvey space is thick, and any superset of a McGarvey space is also McGarvey.

Let x, y, z ∈ {±1}K. We say that y is between x and z if, for any k ∈ K such that
xk = zk , we also have yk = zk (and hence, yk = xk). Now let X ⊆ {±1}K be a
judgement space. Say that x, z ∈ {±1}K are near if there is no y ∈ X \{x, z} such that
y is between x and z. We will say that X is distal if there exist some x, z ∈ X such that
x is near z and d(x, z) ≥ 3. Heuristically, this means that the elements of X are not
packed tightly together everywhere. For any z ∈ {±1}K\X , let Xz be the set of views
in X that are near to z; heuristically, these are the “best admissible approximations”
to z. We say that X is rugged if there exists z ∈ {±1}K\X and x, y ∈ Xz such that
d(x, z) �= d(y, z).

Both distality and ruggedness are conditions on the combinatorial geometry of
X , and typically easy to verify. We illustrate them in the spaces of rankings and of
classifiers.

1. If |A| ≥ 4, the space of rankings X rk
A is rugged. To see this, let A = {a, b, c, d}

and K := {(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)} as in “Example 1 continued”.
Let z ∈ {±1}K = (1, 1,−1, 1, 1, 1); z represents an asymmetric relation with a
4-cycle. Let x be the linear order abcd, and y the linear order dabc. Evidently, both
x and y are near z. This verifies ruggedness since d (x, z) = 1 while d (y, z) = 2.

2. If |A| ≥ 4, the space of classifiers X eq
A is rugged. To see this, let z represent the

classifier by the three equivalences (edges) {ab, bc, cd}. Let x be the equivalence
relation {ab, ac, bc}, and y the total equivalence relation {ab, ac, ad, bc, bd, cd}.
Both x and y are near z. Again, this verifies ruggedness since d (x, z) = 2 while
d (y, z) = 3.

3. This also establishes the distality of X eq
A , since x is near y but d(x, y) = 3.

4. By contrast, any two linear orders near each other differ only in one comparison,
falsifying distality of X rk

A for any |A|.
Ruggedness seems to be satisfied in the great majority of cases, while distality is
somewhat more restrictive. Indeed, distality “almost” implies ruggedness. That is,
suppose that there exist some x, y ∈ X such that x is near y and d(x, y) ≥ 3, and
assume additionally that some such d(x, y) is odd. Consider any z ∈ {±1}K \{x, y}
such that z is between x and y. Since x is near y, it follows that z ∈ {±1}K \X .
Furthermore, x ∈ Xz, because any element of X between x and z would also be
between x and y, contradicting the assumed nearness x and y. Likewise y ∈ Xz. But
d(x, y) = d(x, z) + d(z, y) (because z is between x and y), and d(x, y) is odd, so
d(x, z) �= d(z, y), verifying the ruggedness of X .

We now come to the second main result of this paper.

Theorem 3 Let (K,λ,X ,Y) be aweighted judgement context, and suppose that either
(a) X is rugged and Y is McGarvey, or (b) X is distal and Y is thick. Let F :
Δ(Y) ⇒ X be a judgement aggregation rule. Then F satisfies WESME, Continuity,
and Reinforcement if and only if F is the median rule (8).

The presuppositions of Theorem 3 are satisfied in many applications of interest, but
they are more restrictive than those of Theorem 1. We illustrate their broad applicability
in a variety of examples before providing an example where they do not apply.
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1. As already shown, the spaces of rankings (Example 1) and of classifiers (Example 2)
are rugged and McGarvey. So Theorem 3 applies.

2. In the assignment problems of Sect. 5.1, the input space is trivially McGarvey as it
is an approval space. For B ≥ 3, it is rugged. To see this, consider the assignments
z := ((a1, a1, a2)), x := ((a1, a3, a2)) and y := ((a1, a2, a3)). Note that x and y are
feasible, while z is not. Evidently, x and y are adjacent to z; the triple of views
verifies ruggedness since d(z,x) = 2 while d(z, y) = 4.

3. In the uniform decision problems of Sect. 5.2, it follows from elementary linear
algebra to see that Ŷ is thick if and only if Y is thick. On the other hand, for
any x, y ∈ X , d ((x, . . . x), (y, . . . , y)) = |S| d(x, y). Thus X is distal whenever
|S| ≥ 3.

4. By contrast, the structural assumptions of Theorem 3 fail for X K
L,M . To see that

X = XK
0,M is not rugged, for example, one simply notes that, for any z /∈ X , x is

near z iff #x = M and if, for all k ∈ K, xk = 1 implies zk = 1. Thus, for any x near
z, we have d(x, z) = #z− M, contradicting ruggedness. The failure of distality is
verified easily as well.

Discussion

Themeaning of weights

Theorems 2 and 3 do not attempt to justify the use of weights; they assume weights as
given and settled by the aggregator. The meaning of the weight vector λ is given by
their use in theWESME axiom. That meaning is extensive—i.e., λ serves to compare the
“size” of sets of issues. The result endows weights with a second, “intensive”, meaning
in the context of the median rule; in that second meaning, one can meaningfully say
that the votes on one issue count twice as much (or 1.414 times as much, etc.) as
the votes on some other issue. The path from the first to the second meaning takes
two steps: the ensemble construction, which allows one to meaningfully distinguish
between any real-valued weight vectors λ, and the Reinforcement axiom resulting
in linearity of the gain-function, hence constant “exchange rates” between votes on
different issues.

The need for SME

As examplified by Young and Levenglick’s classical characterization of the Kemeny
rule, in particular settings one can replace SME by the arguably simpler conjunction
of axioms of Condorcet consistency and Neutrality. As discussed in Nehring and
Pivato (2019), this may work for other special contexts such as, for example, spaces
of classifiers, but such a result would need to rely heavily on appropriate symmetries
of the context. Dropping the Neutrality axiom, one might attempt to “derive” weights
as part of a representation result but we know of no example of such a result.

On the other hand, taking equal or unequal weights as given, it stands to reason
that SME is in fact the simplest way to relate weights to the output of a majoritation
aggregation rule. Note also that, with SME alone rather than (W)ESME, one cannot
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hope to obtain a result analogous to Theorem 2, even for special and well-behaved
context. The reason is simple: if two weight vectors λ and λ′ induce the same ordinal
size comparisons of subsets of issues, then they entail the same SME-axiom.

A sketch of the proofs

Theorems 1 and 3 both follow from Theorem 2; the bulk of the work is in proving
this underlying result. From Propositions 1 and 4, we know that any rule satisfying
Continuity and (W)ESME is an additive majority rule Fφ , for some gain function φ.
Thus, the key task in the proof of Theorem 2 is to show that the identity function (or
any linear function) on [−1, 1] is among these gain functions.

A possible strategy would be to try to show that any representing gain function
was linear. If φ was real-valued, it would then be enough to show that φ satisfies
the Cauchy functional equation, and hence deduce linearity. But this straightforward-
looking strategy fails for two reasons. First of all, Propositions 1 and 4 do not guarantee
that φ is real-valued, so one cannot appeal to the Cauchy functional equation. Second,
the conclusion of Theorem 2 does not require that all representing gain functions φ

are linear, only that some of them are. Indeed, Approval Voting on size-L committees
provides a counterexample, in which the assumptions of Theorem 1 are satisfied, but
any AMR agrees with the median rule, whatever the gain functions.37

Hence this strategy is a nonstarter. Instead, the proof of Theorem 2 shows in a couple
of steps that any representing φ has the “linearity-like” property that φ(r+ε)−φ(r) =
φ(s + ε) − φ(s) for any r and s, and any sufficiently small ε; in effect, this says that
φ has a “constant slope” property. This is enough to show that Fφ is the median rule,
because it implies that a gain (or loss) of ε in the majority support on one issue can be
exactly offset by a gain (or loss) of ε in the support on another issue.38

To show in turn that φ satisfies this “constant slope” property, we must study
“perfect tie” profiles μ ∈ Δ(Y) such that F(μ) = {x, y} for some x, y ∈ X . If the
set of such “perfect tie” profiles is not empty, then it is a relatively open subset of
an affine hyperplane (this is a consequence of Continuity and Reinforcement); we
can then demonstrate the “constant slope” property by looking at how the values of
φ(μ̃) change as μ moves around in this hyperplane. However, we also need x and y
to differ in at least three coordinates—in effect, this is because we need the freedom
to manipulate the r , s, and ε variables independently while preserving the perfect tie.
This is the reason for the hypothesis of suitability in Theorem 2.

Theorem 2 just assumes that C is suitable for F . So to derive Theorems 1 and 3
from Theorem 2, we must provide conditions on C that ensure that it is suitable for
any judgment aggregation rule F satisfying the three axioms of these theorems. This

37 For a counterexample under the structural assumptions of Theorem 3, return to Example 5 with two
dichotomous composition constraints. Here, whatever the profile, there are at most two supermajority
efficient views (ignoring trivial ties) x, y; these must differ on exactly four issues. It follows that, for any
a > 0, the AMR Fφ given by φ (r) = r + a · sign (r) coincides with the median rule for these contexts.
Note that these gain functions are affine, not linear, and, for most contexts, yield different outputs from the
median rule.
38 This assumes uniform weights. In the case of nonuniform weights, the relevant statement is that a gain
(or loss) of ε/λ j in the majority support on issue j can be exactly offset be a gain (or loss) of ε/λk in the
majority support on issue k.
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is done in Theorem C.1 in Appendix C, via a constructive condition of “frangibility”
on contexts.

If X is rugged and Y is McGarvey, then frangibility of the context follows from
Lemma C.4 in Appendix C. Meanwhile, if X is distal and Y is thick, then frangibility
of the context follows from Lemma C.5. Finally, Theorem 3 follows by combining
Theorem C.1 with Lemmas C.4 and C.5.

For unweighted judgement contexts, a second route is available. If C is suitable for
F , then we can argue as above. Otherwise, that is if d(x, y) ≤ 2 whenever F(μ) =
{x, y}, then we can use a straightforward direct argument (along with the three axioms)
to show that F is the median rule. This is why Theorem 1 does not require the auxiliary
structural conditions of Theorem 3.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A On symmetry and equal weights

We have assumed that the aggregation is to be based on some ‘given’ assignment of
weights to the importance of different issues in aligning the output judgment with
voters input judgments on the corresponding issue. The evaluation of such alignment
is the hallmark of majoritarian judgment aggregation. To be relevant, our results do
not require that majoritarian judgment aggregation encoded in the (E)SME axiom is
normatively compelling in all formally well-posed judgment aggregation problems.
Instead, we have presented a range of applications in which the axiom is arguably well-
motivated with weights arising naturally from the application. For a further discussion
of some of the issues arising from the assumption of given issues and given weights,
see Nehring and Pivato (2019).

Of special interest is the case of equal weights. As pointed out in Sect. 3, such
symmetric treatment of issues is naturally motivated when the context is globally
symmetric. But while global symmetries provide strong sufficient grounds for equal
weighting, they seem quite far from necessary for this conclusion. In particular, appro-
priate local symmetries can be sufficient as well. To illustrate, return to the application
to committee selection under a single composition constraint, as in Example 3. Asym-
metries across types of candidates arise from different minimum requirements Li

and/or different cardinalities in the number of available candidates of a given type.
Such asymmetries might but need not diminish the appeal of SME.

In particular, one can argue that asymmetries of the output space X remain imma-
terial as long as the input space Y is symmetric, for instance if Y is the approval space
2K. Indeed, the SME requirement relies on a dominance comparison among pairs
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of (feasible) views; that comparison does not depend on the structure of the entire
feasible set of views X to which the pairs belong; hence it should not matter what X
looks like, in particular: which symmetries X exhibits. In Example 3, for instance,
SME compares two feasible committees in terms of the ‘estimated’ overall merit. The
validity of that comparison is, arguably, not affected by which other committees are
also feasible.

By contrast, suppose that the input space coincides with the output space and thus
exhibits the same asymmetric composition constraints, as Example 4 above. Here, the
case for SME with equal weights is less straightforward, but a good argument can still
be given on the basis of local symmetries. To see how there might be an issue, consider
an instance of the Green leadership duo election example in which there are 7 male
and 2 female candidates. Consider a profile in which the vote on the female candidates
is fairly evenly split, and some voters give both votes to these candidates, so that the
two female candidates receive a vote tally of 65% and 45%. These will constitute the
leadership duo if and only if the top male candidate receives less than 45% of the vote
out of the remaining 90%; in other words, for a male candidate to be elected, he must
receive an absolute majority within the male pool. One might question the output of
this rule normatively and object that a vote for a male and a female candidate are not
equally strong signals of candidate merit in this case. But note that if the designers
of the voting rule had wished transparent comparability of votes for all candidates
in terms of “merit content”, they could have chosen the approval space as the input
space. Yet, in point of fact, the designers adopted an asymmetric design of the input
spaces; any asymmetry in how votes effectively count is thus reasonably viewed as a
feature of the judgment context, not a bug. So the putative objection is weak.

Somewhat more formally, one can justify the application of SME with equal weights
as follows. For each j ∈ J , select a subset K j of cardinality L j of the candidates,
and consider the subdomain D of profiles in which voters unanimously vote for each
candidate in

⋃
K j . Take the election of these candidates as a given. Then, for the

resulting subdomain, the problem reduces to filling the remaining L − ∑
L j slots,

without any composition constraints. This reduced problem is completely symmetric
in issues (candidates), and thus warrants an application of SME with equal weights
over the set K− ⋃

K j . Since the subsets K j were selected arbitrarily, if the judgment
rule on the original domain Δ(Y) is supermajority efficient with respect to some
vector of weights, these weights must be equal.39

B Proof of Propositions 2, 3 and 5

The proof of Proposition 2 will require some technical preliminaries. Let (K,λ,X ,Y)

be a judgement context, and let F : Δ(Y) ⇒ X be a weighted judgement aggregation
rule. For any μ, ν ∈ Δ(Y), define μ⊕ν := 1

2μ+ 1
2ν. Consider the following, weaker

versions of Reinforcement and Judgement Consistency.

39 As it stands, the argument works only if there are at least two ‘free’ slots, i.e. if L − ∑
L j ≥ 2. With

some additional twist, it can be extended to the case L − ∑
L j = 1; the details need not concern us here,

since the main point is to illustrate the general idea of an appeal to local symmetries, rather than to nail this
particular application.
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Even
Reinforcement:

For any μ1, μ2 ∈ Δ(Y), if F(μ1) ∩ F(μ2) �= ∅, then F(μ1 ⊕
μ2) = F(μ1) ∩ F(μ2).

Even Judgement
Consistency:

For any μ,μ′, ν, ν′ ∈ Δ(Y), and any views x, y ∈ X , if (a) y ∈
F(μ ⊕ ν), and (b) x ∈ F(μ′ ⊕ ν), and (c) y /∈ F(μ′ ⊕ ν), and
(d) x ∈ F(μ ⊕ ν′), then (e) y /∈ F(μ′ ⊕ ν′).

Lemma B.1 Let C = (K,λ,X ,Y) be any judgement context, and let F : Δ(Y) ⇒ X
be any judgement aggregation rule. If F satisfies Even Judgement Consistency, then
F satisfies Even Reinforcement.

Proof Let μ1, μ2 ∈ Δ(Y).

Claim 1: Let y ∈ X . If y ∈ F(μ1) and y ∈ F(μ2), then y ∈ F(μ1 ⊕ μ2).

Proof Set μ = ν = μ1 and μ′ = ν′ = μ2. Then for any x ∈ X \{y}, Even Judgement
Consistency says: if (a) y ∈ F(μ1), and (bd) x ∈ F(μ1⊕μ2), and (c) y /∈ F(μ2⊕μ1),
then y /∈ F(μ2).

Taking the contrapositive, if y ∈ F(μ2), then one of the hypotheses (a), (bd), or (c)
must be false. In particular, if y ∈ F(μ2) and y ∈ F(μ1), then

either x /∈ F(μ1 ⊕ μ2) or y ∈ F(μ1 ⊕ μ2). (B1)

This holds for all x ∈ X \ {y}.
Now, by contradiction, suppose y ∈ F(μ2) and y ∈ F(μ1), but y /∈ F(μ1 ⊕ μ2).

Applying (B1), we obtain x /∈ F(μ1 ⊕ μ2) for all x ∈ X \ {y}, which means that
F(μ1 ⊕ μ2) = ∅. This is a contradiction. The claim follows. ♦ Claim 1

Claim 2: Let y ∈ X . If F(μ1)∩F(μ2) �= ∅, and y /∈ F(μ2), then y /∈ F(μ1 ⊕μ2).

Proof Let x ∈ F(μ1) ∩ F(μ2). If we set μ′ = ν = μ2 and μ = ν′ = μ1, then Even
Judgement Consistency says: if (a) y ∈ F(μ1 ⊕ μ2), and (b) x ∈ F(μ2), and (c)
y /∈ F(μ2), and (d) x ∈ F(μ1), then (e) y /∈ F(μ2 ⊕ μ1).

Thus, y /∈ F(μ2 ⊕ μ1), as claimed. ♦ Claim 2

Combining Claims 1 and 2, we conclude that, if F(μ1) ∩ F(μ2) �= ∅, then F(μ1 ⊕
μ2) = F(μ1) ∩ F(μ2). ��
Lemma B.2 Let C = (K,λ,X ,Y) be any judgement context, and suppose F :
Δ(Y) ⇒ X satisfies Continuity. If F satisfies Even Reinforcement, then F satis-
fies Reinforcement.

Proof Let μ1, μ2 ∈ Δ(Y), and suppose F(μ1) ∩ F(μ2) �= ∅. Let Q2 be the set of
dyadic rationals (that is, Q2 := { n

2k
; n and k integers, k > 0}).

Claim 1: F(q μ1 + (1 − q) μ2) = F(μ1) ∩ F(μ2) for all q ∈ Q2 ∩ [0, 1].

Proof Even Reinforcement implies that F(μ1 ⊕ μ2) = F(μ1) ∩ F(μ2). It follows
that F(μ1 ⊕ μ2) ∩ F(μ1) = F(μ1) ∩ F(μ2) �= ∅ and F(μ1 ⊕ μ2) ∩ F(μ2) =
F(μ1) ∩ F(μ2) �= ∅. Thus, applying Even Reinforcement again, we deduce that
F[μ1 ⊕ (μ1 ⊕ μ2)] = F(μ1) ∩ F(μ2) and F[(μ1 ⊕ μ2) ⊕ μ2] = F(μ1) ∩ F(μ2).
But μ1 ⊕ (μ1 ⊕ μ2) = 3

4μ1 + 1
4μ2, while (μ1 ⊕ μ2) ⊕ μ2 = 1

4μ1 + 3
4μ2. Iterating

this argument yields the claim, by induction. ♦ Claim 1
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Now, Q2 is dense in R. Thus, Continuity and Claim 1 imply that

F(r μ1 + (1 − r) μ2) ⊇ F(μ1) ∩ F(μ2), for all r ∈ [0, 1]. (B.2)

Claim 2: F(r μ1 + (1 − r) μ2) ⊆ F(μ1) ∩ F(μ2) for all r ∈ [0, 1].

Proof Suppose y /∈ F(μ1). We must show that y /∈ F(r μ1 + (1 − r) μ2) for all
r ∈ [0, 1].

By contradiction, let Ry := {r ∈ [0, 1]; y ∈ F(r μ1 + (1 − r) μ2)}, and suppose
Ry �= ∅. By Continuity, 1 is not a cluster point of Ry (because y /∈ F(μ1)). Thus,
if R := sup(R), then R < 1. Now let r ∈ Ry. Find some s ∈ (R, 1) such that
r/s = q ∈ Q2.

Let ν := s μ1 + (1 − s) μ2. Then y /∈ F(ν), by definition of R. But F(ν) ⊇
F(μ1)∩ F(μ2), by statement (B.2). Thus, F(ν)∩ F(μ2) �= ∅. Thus, Claim 1 implies
that F(q ν + (1 − q) μ2) = F(ν)∩ F(μ2). But q ν + (1 − q) μ2 = r μ1 + (1 − r) μ2
(because r = q s). Thus, we conclude that F(r μ1 + (1 − r) μ2) = F(ν) ∩ F(μ2).
Hence y /∈ F(r μ1 + (1 − r) μ2), which contradicts the fact that r ∈ Ry.

To avert the contradiction, we must have Ry = ∅. This argument works for any
y /∈ F(μ1), and likewise any y /∈ F(μ2). The claim follows. ♦ Claim 2

Statement (B.2) and Claim 2 imply F(r μ1 + (1 − r) μ2) = F(μ1) ∩ F(μ2) for all
r ∈ [0, 1]. Thus, F satisfies Reinforcement. ��
Proof of Proposition 2 If F satisfies Judgement Consistency, then it satisfies Even
Judgement Consistency. Then Lemma B.1 says F satisfies Even Reinforcement. If
F also satisfies Continuity then Lemma B.2 says it satisfies Reinforcement. ��
We now introduce some notation that will be used in the proofs of Proposition 3 and
Theorem 1. For any x ∈ X , let x • μ̃ :=

∑

k∈K
xk μ̃k . Then we can rewrite (2) more

simply:

Median (X , μ) := argmax
x∈X

(x • μ̃) , for all μ ∈ Δ(Y). (B.3)

If φ is a gain function and μ̃ = (μ̃k)k∈K ∈ R
K, then we define φ(μ̃) :=

(φ(μ̃k))k∈K. For any x = (xk)k∈K ∈ {±1}K, we define x • φ(μ̃) :=
∑

k∈K
xk φ(μ̃k).

Thus, formula (3) becomes:

Fφ(μ) = argmax
x∈X

(x • φ(μ̃)) , for all μ ∈ Δ(Y). (B.4)

Proof of Proposition 3 Let A be a finite set. If |A| = 2, then every AMR (including the
median rule) coincides with simple majority rule. If |A| = 3, then it is easily verified
that all AMRs (including the median rule) agree.40 So it remains to consider the case

40 If the majority tournament is transitive, then it is selected by any AMR. If the majority tournament is
intransitive—say, a � b � c � a, then any AMR selects the transitive ranking(s) obtained by reversing
whichever of the three comparisons a � b, b � c or c � a is supported by the smallest majority, as
explained in Sect. 3, just prior to Example 3.
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|A| ≥ 4. Let F be an AMR on the domain of rational-valued profiles in X rk
A. Let

φ : [−1, 1]−→∗
R be an odd, increasing function such that F = Fφ .

Claim 1: There exists Q ∈ (0, 1) ∩ Q such that φ is linear on [−Q, Q] ∩ Q.

Proof It suffices to deal with the case |A| = 4. So, suppose A = {a, b, c, d}. Let
K = {ab, ac, ad, bc, bd, cd}, where ab for example represents the proposition “a �
b”. Thus, xcdab = (1,−1,−1,−1,−1, 1) is the element of X rk

A representing the
preference order “c � d � a � b”, for example.

There exists Q ∈ (0, 1)∩Q such that [−Q, Q]K ⊂ conv(X rk
A) (Nehring and Pivato

2011, Example 3.3). This means that, for any r ∈ [−Q, Q]K, there exists a profile
μ ∈ Δ(X rk

A) such that μ̃ = r. In particular, for any nonzero q ∈ (0, Q] ∩ Q, we can
construct profiles μ,μ′ ∈ Δ(X rk

A) such that

ab ac ad bc bd cd

μ̃ = (q, 0,−q, 0, q, 0),

μ̃′ = (0, q,−q, 0, 0, q),

and thus, c μ̃ + (1 − c) μ̃′ = (c q, (1 − c) q,−q, 0, c q, (1 − c) q),

(B.5)

for all c ∈ [0, 1] ∩ Q. Formula (3) implies that Fφ[X rk
A, μ] consists of all preference

orders which agree with any two out of the three assertions “a � b”, “b � d”, and
“d � a”. Likewise, Fφ[X rk

A, μ′] consists of all preference orders which agree with any
two out of the three assertions “a � c”, “c � d”, and “d � a”. In other words,

Fφ[X rk
A, μ] = {xcabd , xacbd , xabcd , xabdc, xcbda, xbcda, xbdca, xbdac, xcdab, xdcab,

xdacb, xdabc},
Fφ[X rk

A, μ′] = {xbacd , xabcd , xacbd , xacdb, xbcda, xcbda, xcdba, xcdab, xbdac, xdbac,
xdabc, xdacb}.

Let μ′′ := cμ + (1 − c) μ′. Then Reinforcement yields

Fφ(X rk
A, μ′′) = Fφ[X rk

A, μ] ∩ Fφ[X rk
A, μ′]

= {xacbd , xabcd , xcbda, xbcda, xbdac, xcdab, xdacb, xdabc}.

In particular, {xabcd , xcdab} ⊂ Fφ(X rk
A, μ′′). Thus, φ(μ̃′′) • xabcd = φ(μ̃′′) • xcdab.

But xabcd = (1, 1, 1, 1, 1, 1) and xcdab = (1,−1,−1,−1,−1, 1); thus equation (B.5)
yields

φ(μ̃′′) • xabcd = −φ(q) + 2φ(c q) + 2φ((1 − c) q) and φ(μ̃′′) • xcdab = φ(q).

Thus, φ(q) = −φ(q) + 2φ(c q) + 2φ((1 − c) q), which means that

φ(q) = φ(c q) + φ((1 − c) q). (B.6)

Now, let N ∈ N, and let q := Q/N . Then (B.6) yields φ(2 q) = φ(q) + φ(q) =
2 φ(q). Then (B.6) yields φ(3 q) = φ(q) + φ(2 q)

(∗)
φ(q) + 2 φ(q) = 3 φ(q), where
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(∗) is by the previous sentence. By induction, we get

φ(n q) = n φ(q) for all n ∈ [0 . . . N ]. (B.7)

Thus, φ(Q) = N φ(q) (since N q = Q), so φ(q) = φ(Q)/N . Putting this into (B.7),

φ
( n

N
Q

)
= n

N
φ(Q) for all n ∈ [0 . . . N ].

This holds for all N ∈ N. Thus, φ(p Q) = p φ(Q) for all p ∈ [0, 1] ∩ Q. Since φ is
odd,

φ(p Q) = p φ(Q), for all p ∈ [−1, 1] ∩ Q. (B.8)

Now let q ∈ [−Q, Q] ∩ Q, and let p := q/Q. Then p Q = q, so (B.8) yields φ(q) =
q φ(Q)/Q. Let r := φ(Q)/Q; then we get φ(q) = r q for all q ∈ [−Q, Q] ∩ Q.
♦ Claim 1

In view of Claim 1,

Fφ(X rk
A, μ) = Median

(
X rk
A, μ

)
, for any μ ∈ Δ(X rk

A) such that μ̃ ∈ Q
K ∩ [−Q, Q]K.

(B.9)

Now, let μ0 be a “completely tied” profile, so that μ̃0 is the zero vector. Thus,
F(X rk

A, μ0) = X rk
A. Let μ ∈ Δ(X rk

A), and let μ′ := cμ + (1 − c)μ0 for some
c ∈ (0, 1). Then μ̃′ = c μ̃, so that

Median
(
X rk
A, μ′) = Median

(
X rk
A, μ

)
. (B.10)

Meanwhile, Reinforcement implies that

F(X rk
A, μ′) = F(X rk

A, μ0) ∩ F(X rk
A, μ) = F(X rk

A, μ). (B.11)

Finally, by choosing c sufficently small, we can ensure that μ̃′ ∈ Q
K ∩ [−Q, Q]K;

thus, equation (B.9) says that

F(X rk
A, μ′) = Median

(
X rk
A, μ′) . (B.12)

Combining equations (B.10) - (B.12), we obtain F(X rk
A, μ) = Median

(
X rk
A, μ

)
. ��

Proof of Proposition 5 It is easy to verify that Fα satisfies WESME and Continuity. (Or
see Lemma D.7 from Nehring and Pivato (2019).) Thus, it remains to show that Fα

satisfies Reinforcement.
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For any weight vector λ = (λk)k∈K, and any exponent α > 0, we define the
correspondence Fα

λ : Δ(X K
L,M ) ⇒ X K

L,M by setting

Fα
λ (μ) := argmax

x∈X

(
∑

k∈K
λk φα(xk μ̃k)

)

, for all μ ∈ Δ(X K
L,M ). (B.13)

We also define λα := (λα
k )k∈K.

Claim 1: Let α, β > 0, and let λ, κ ∈ R
K+ be weight vectors. If λβ = κα , then

Fα
λ (X K

L,M , μ) = Fβ
κ (X K

L,M , μ) for all μ ∈ Δ(X K
L,M ).

Proof Let μ ∈ Δ(X K
L,M ), and let J := {k ∈ K; μ̃k > 0}. There are now three cases.

Case 1. If L ≤ |J | ≤ M , then Fα
λ (X K

L,M , μ) = Fβ
κ (X K

L,M , μ) = {x}, where x ∈ X K
L,M

is the view with x j = 1 for all j ∈ J and xk = −1 for all k ∈ K \ J .
Case 2. Suppose |J | > M . Define η := λ1/α . Then we also have η = κ1/β (because
ηβ = λβ/α = (λβ)1/α = (κα)1/α = κ , because λβ = κα by hypothesis). By
reordering the elements of K = [1 . . . K ] if necessary, we can assume without loss of
generality that

η1 μ̃1 ≥ η2 μ̃2 ≥ · · · ≥ ηJ μ̃J > 0 ≥ ηJ+1 μ̃J+1 ≥ · · · ≥ ηK μ̃K .

(B.14)

(Thus, J = [1 . . . J ].) Now, for any k ∈ K, observe that λk φα(xk μ̃k) =
sign(xk) λk |μ̃k |α = sign(xk) |ηk μ̃k |α . Thus,

∑

k∈K
λk φα(xk μ̃k) =

∑

k∈K
sign(xk) |ηk μ̃k |α. (B.15)

Suppose ηM μ̃M > ηM+1 μ̃M+1. Then the unique maximizer in X K
L,M of the sum

(B.15) is the element x ∈ X K
L,M such that xm = 1 for allm ∈ [1 . . . M], while xk = −1

for all k ∈ [M + 1 . . . K ]. Thus, definition (B.13) yields Fα
λ (X K

L,M , μ) = {x}. But by

an identical argument, κk φβ(xk μ̃k) = sign(xk) |ηk μ̃k |β , so that

∑

k∈K
κk φβ(xk μ̃k) =

∑

k∈K
sign(xk) |ηk μ̃k |β, (B.16)

so this sum is also uniquely maximized by x, so Fβ
κ (X K

L,M , μ) = {x} also. Thus,

Fα
λ (X K

L,M , μ) = Fβ
κ (X K

L,M , μ), as claimed.
On the other hand, suppose ηN−1 μ̃N−1 > ηN μ̃N = ηN+1 μ̃N+1 = · · · =

ηP μ̃P > ηP+1 μ̃P+1 for some N , P with N ≤ M ≤ P . In this case, the sums
(B.15) and (B.16) have more than one maximizer.41 Even in this case, however,

41 To be precise, they have
( P−N+1
M−N+1

)
maximizers.
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it is easy to see that they have exactly the same set of maximizers, so once again
Fα

λ (X K
L,M , μ) = Fβ

κ (X K
L,M , μ).

Case 3. Suppose |J | < L . The argument is similar to Case 2. Again, assume without
loss of generality that (B.14) holds. If ηL μ̃L > ηL+1 μ̃L+1, then by invoking equations
(B.15) and (B.16), we see that Fα

λ (X K
L,M , μ) = Fβ

κ (X K
L,M , μ) = {x}, where x ∈ X K

L,M
is defined by x := 1 for all  ∈ [1 . . . L], while xk := −1 for all k ∈ [L + 1 . . . K ]. If
ηL μ̃L = ηL+1 μ̃L+1, then the sums (B.15) and (B.16) have more than one maximizer,
but they have the same maximizers, so that Fα

λ (X K
L,M , μ) = Fβ

κ (X K
L,M , μ).

♦ Claim 1

Now, fix λ ∈ R
K+ , and consider the judgement context C := (K,λ,X K

L,M ,X K
L,M ). Let

κ := λ1/α . Then

Fα(C, μ)
(∗)

Fα
λ (X K

L,M , μ)
(†)

F1
κ (X K

L,M , μ), for all μ ∈ Δ(X K
L,M ).

(B.17)

Here, (∗) is obtained by comparing equations (7) and (B.13), while (†) follows from
Claim 1. Now, F1

κ is just the (κ-weighted) median rule; thus, F1
κ satisfies Reinforce-

ment on X K
L,M . Thus, Fα

λ also satisfies Reinforcement on X K
L,M . This proves the first

assertion of Proposition 5.
If λ = (1, 1, . . . , 1), then κ = λ. Thus F1

κ = F1
λ . Thus, statement (B.17) implies

that Fα(C, μ) = F1(C, μ) for all μ ∈ Δ(X K
L,M )—in other words, Fα itself is the

median rule on C. This proves the second assertion of Proposition 5.
On the other hand, if λ �= (1, 1, . . . , 1), then κ �= λ. Thus, F1

λ and F1
κ will not

always agree on X K
L,M . (Discrepancies between these two rules can be constructed

using reasoning similar to the proof of Claim 1.) Thus, statement (B.17) implies that
Fα is not the median rule on C. This proves the third assertion of Proposition 5. ��

We end this appendix with the following result, which we will need later.

Lemma B.3 Any additive majority rule is SME on any judgement context.

Proof See Lemma D.7 from Nehring and Pivato (2019). ��

C Proofs of themain results

Before proving Theorem 2, we introduce some notation. Let F : Δ(Y) ⇒ X be
any additive majority rule, and let C := conv(Y). For any c ∈ C, there exists some
μ ∈ Δ(Y) such that μ̃ = c. We then define F(c) := F(μ). By inspection of defining
formulae (3) and (7), it is clear that this definition is independent of the choice of
μ. Thus, we can define a correspondence F : C ⇒ X . We will make use of this
convention frequently in what follows. For any x ∈ X , define

CF
x := {c ∈ C ; x ∈ F(c)} and ∗CF

x := {c ∈ C ; F(c) = {x}}. (C1)
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Let ◦C be the topological interior of C as a subset of R
K. (Note that ◦C �= ∅ because

Y is thick.) For any x, y ∈ X , we define

BF
x,y := CF

x ∩ CF
y = {c ∈ C ; x, y ∈ F(c)}, (C2)

and ∗BF
x,y := {

c ∈ ◦C ; F(c) = {x, y}}. (C3)

For any weight vector λ = (λk)k∈K, view x ∈ {±1}K, and profile μ ∈ Δ(Y), we
define

x •
λ

μ̃ :=
∑

k∈K
λk xk μ̃k .

Thus, for any judgement context C := (K,λ,X ,Y) and μ ∈ Δ(Y), formula (8)
becomes:

Median (C, μ) = argmax
x∈X

(x •
λ

μ̃), for all μ ∈ Δ(Y).

This generalizes formula (B.3). For any gain function φ : [−1, 1]−→∗
R, formula (7)

becomes

Fφ(μ) = argmax
x∈X

(
x •

λ
φ (μ̃)

)
,

where φ(μ̃) := (φ(μ̃k))k∈K. This generalizes (B.4). LetK(x, y) := {k ∈ K; xk �= yk}.
Thus,

for any μ ∈ Δ(Y), (x − y) •
λ

φ(μ̃) =
∑

k∈K(x,y)

λk (xk − yk) φ(μ̃k), (C4)

because (xk − yk) = 0 for all k ∈ K \ K(x, y). In particular, if μ̃ ∈BF
x,y—that is, if

{x, y} ⊆ F(X , μ) —then the sum (C4) must be zero.

Proof of Theorem 2 It is easy to verify that the median rule satisfies the Reinforcement
andContinuity. It remains to verify the converse. So, let F : Δ(Y) ⇒ X be an additive
majority rule with gain function φ : [−1, 1]−→∗

R.

Claim 1: Let x, y ∈ X , and let z := 1
2 (x + y). Then z ∈BF

x,y.

Proof Observe that zk = xk = yk for all k ∈ K \ K(x, y), while zk = 0 for all
k ∈ K(x, y). Let ε > 0 and let zε := ε x + (1 − ε) z. Then sign(zεk) = xk for
all k ∈ K; thus, F(zε) = {x} by supermajority efficiency (because of Lemma B.3).
Likewise, if z−ε := ε y + (1 − ε) z, then sign(z−ε

k ) = yk for all k ∈ K; thus,
F(z−ε) = {y} by supermajority efficiency. However, clearly lim

ε→0
zε = z = lim

ε→0
z−ε .

Thus, z is a cluster point of both CF
x and CF

y , so z ∈ BF
x,y because F is satisfies

Continuity.
♦ Claim 1
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Claim 2: Let x, y ∈ X , and let b ∈BF
x,y. For all s ∈ [0, 1), we have s b+(1−s)x ∈

∗CF
x and s b + (1 − s)y ∈ ∗CF

y .

Proof Lemma B.3 says that F is supermajority efficient (SME); thus, F(x) = {x}.
By hypothesis, {x, y} ⊆ F(b). Thus, for all s ∈ [0, 1) we have F(s b + (1 − s)x) =
F(x) ∩ F(b) = {x}, by Reinforcement. Thus, s b + (1 − s)x ∈ ∗CF

x . By the same
argument, s b + (1 − s)y ∈ ∗CF

y . ♦ Claim 2

Claim 3: For all x, y ∈ X , if there exists μ ∈ Δ(Y) with F(C, μ) = {x, y}, then
∗BF

x,y is nonempty, and it is a relatively open subset of some affine hyperplane in R
K.

Proof Let K := |K|. For all x ∈ X , Reinforcement implies that CF
x is a convex subset

of C. Continuity implies that CF
x is closed. Thus,BF

x,y is closed and convex, because

BF
x,y = CF

x ∩ CF
y . But Claim 2 implies thatBF

x,y has empty interior; thus, it is a convex

subset of R
K with dimension at most K − 1.

SME implies that F(x) = {x}. Thus, Continuity implies that F(c) = {x} for all
c ∈ C in some open ball around x. Thus, CF

x contains an open ball around x. Thus, CF
x

itself has nonempty interior, so it is a closed, convex set of dimension K .
Now, let b := μ̃. Then F(b) = {x, y}. Thus, Continuity yields some ε > 0 such

that, if D is the ball of radius ε around b in C, then F(d) ⊆ {x, y} for all d ∈ D. Define
the convex sets:

Dx := D \ CF
y , Dy := D \ CF

x , and D0 := D ∩BF
x,y.

Thus, Dx ⊂ ∗CF
x , and Dy ⊂ ∗CF

y , and D = Dx � D0 � Dy. Also, Dx and Dy are
nonempty, because Claim 2 implies that the line segment from b to x lies in Dx, while
the line segment from b to y lies in Dy.

Claim 3A: The set D \ D0 is path-disconnected.

Proof Note that D\D0 = Dx�Dy. Let dx ∈ Dx and dy ∈ Dy. Let P ⊂ D be any path
from dx to dy. Then F(p) ⊆ {x, y} for all p ∈ P . Continuity implies that F(p) = {x}
for all points p ∈ P close to dx and F(p) = {y} for all points p ∈ P close to dy. Thus,
Continuity yields some p0 ∈ P such that F(p0) = {x, y}; thus p0 ∈ D0. Thus, dx and
dy lie in different path components of D \ D0. � Claim 3A

Claim 3A implies that D0 meets the interior of D, which means it meets ◦C (because
int(D) ⊆ ◦C). But clearly D0 ∩ ◦C ⊆ ∗BF

x,y; thus, we deduce that ∗BF
x,y �= ∅, as

claimed.
Furthermore, D0 is a convex subset of D of dimension at most K − 1, which cuts

the ball D into at least two disconnected pieces (by Claim 3A). The only way this can
happen is if D0 = D ∩ H for some affine hyperplane H ⊂ R

K. Now,BF
x,y is a convex

subset of R
K, and we have just found an open ball D ⊂ R

K such thatBF
x,y ∩ D ⊂ H;

thus,BF
x,y ⊂ H. Thus, ∗BF

x,y ⊂ H.

Finally, for any point b ∈ ∗BF
x,y, we can repeat the above construction to obtain

an H-relatively open neighbourhood D0 around b in ∗BF
x,y; thus, ∗BF

x,y is a relatively
open subset of H. ♦ Claim 3
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Claim 4: (a) For any x ∈ X , CF
x is a closed, convex polyhedron in R

K, and

(∂CF
x ) ∩ C =

⋃

y∈X \{x}
BF
x,y.

(b) For all y ∈ X , if ∗BF
x,y �= ∅, then it is contained a codimension-1 face of

(∂CF
x ) ∩ C.

(c) Conversely, for each each codimension-1 face F of (∂CF
x ) ∩ C, there is some

y ∈ X such that ∅ �= ∗BF
x,y ⊆ F .

Proof (a) CF
x is closed by Continuity, and convex by Reinforcement. For any y ∈ X ,

BF
x,y ⊂ ∂CF

x by Claim 2. This proves that (∂CF
x ) ∩ C ⊇ ⋃

y∈X \{x}BF
x,y. To see the

opposite inclusion, let b ∈ (∂CF
x ) ∩ C. Then b is a cluster point of CF

x , but b is also
a cluster point of CF

y for some y �= x. Thus, b ∈ CF
x and b ∈ CF

y by Continuity, so

b ∈BF
x,y. Thus, (∂CF

x ) ∩ C ⊆
⋃

y∈X \{x}
BF
x,y.

(b) If ∗BF
x,y �= ∅, then Claim 3 says it is a nonempty open subset of some hyperplane,

hence of codimension 1, hence contained in some codimension-1 face of ∂CF
x .

(c) Let F be a codimension-1 face of (∂CF
x ) ∩ C; we claim that ∗BF

x,y ⊆ F for some

y ∈ X . To see this, first note that F ⊆ ⋃
y∈X \{x}BF

x,y, by part (a). Since this is a finite

collection of sets, there must be some y ∈ X such thatBF
x,y ∩ F is a subset of F with

nonempty relative interior. Call this relative interior set B0.
We claim that B0 ⊂ ∗BF

x,y. To see this, consider the set Dy := {sb + (1 − s)y;

b ∈ B0 and s ∈ (0, 1)}. This is an open cone in R
K with base B0, and Reinforcement

says that Dy ⊂ ∗CF
y . Likewise, if we define Dx := {sb + (1 − s)x; b ∈ B0 and

s ∈ (0, 1)}, then Dx is an open cone with base B0, and Reinforcement says that
Dx ⊂ ∗CF

x . Note that Dy and Dx are disjoint. Since both have B0 as their base, it
follows that the set O := Dy � B0 � Dx is an open subset of R

K, containing B0.
Now letb ∈ B0, and suppose by contradiction thatb /∈ ∗BF

x,y. Then F(b) ⊇ {x, y, z}
for some distinct z ∈ X \ {x, y}. Thus, if we define L := {sb+ (1 − s)z; s ∈ (0, 1]},
then L is a line-segment with one end at b, and Reinforcement says that L ⊂ ∗CF

z .
But O is an open neighbourhood of b, so L must pass through O to reach b. Thus,
∗CF

z ∩O is nonempty. But since it is an intersection of two open sets, ∗CF
z ∩O itself is

open; thus, it must contain points in either Dx or Dy. But this is impossible, because
these are subsets of ∗CF

x and ∗CF
y , which are disjoint from ∗CF

z by definition. To avoid

contradiction, we must have b ∈ ∗BF
x,y.

From this, it follows that F ∩ ∗BF
x,y �= ∅ (because it contains B0). However, part

(b) tells us that ∗BF
x,y is entirely contained in some codimension-1 face of C; thus, we

must have ∗BF
x,y ⊆ F . ♦ Claim 4

The strategy of the proof is now as follows. Claim 4(a) tells us that the sets {CF
x }x∈X

partition C into closed, convex polyhedra, which overlap only on their boundaries. By
a similar argument, the median rule also partitions C into closed, convex polyhedra
{Cmed

x }x∈X , which overlap only on their boundaries. We will show that these two
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partitions are identical. To do this, it suffices to show that the codimension-1 faces of
CF
x and Cmed

x are the same, for each x ∈ X . Claim 4(b,c) tells us that the codimension-1
faces of CF

x can be identified with the “boundary” sets ∗BF
x,y for y ∈ X ; thus, it suffices

to show that these boundary sets coincide with those of the median rule.
The boundary face oBmed

x,y lies in the hyperplane Hx,y = {r ∈ R
K; r •

λ
(x−y) = 0}.

We will show that ∗BF
x,y also lies in this hyperplane (see Claim 10 below). To do this,

we will show that, if we start with a point in ∗BF
x,y and perturb it slightly by a vector

parallel to Hx,y, then it remains in ∗BF
x,y. But to perform such a perturbation analysis

on points in ∗BF
x,y, we must perform a corresponding perturbation analysis on the

gain function φ. To do this, we need some control over “φ-increments” of the form
φ(r + δ) − φ(r), where r ∈ [−1, 1] and δ is a “small” perturbation. To acheive this,
Claims 5 to 9 establish more and more precise control over these φ-increments. For all
i ∈ K, let ei := (0, 0, . . . , 0, 1, 0, . . . , 0), where the 1 appears in the i th coordinate.

Claim 5: Let x, y ∈ X , with d(x, y) ≥ 2 and let b ∈ ∗BF
x,y. Let i, j ∈ K(x, y) with

i �= j .

(a) For any δi , δ j ∈ R,

(x − y) •
λ

φ(b + δi ei + δ j e j ) = λi (xi − yi )
(
φ(bi + δi ) − φ(bi )

)

+λ j (x j − y j )
(
φ(b j + δ j ) − φ(b j )

)
.

(b) Let r := bi and s = b j . There exists εrs > 0 and a unique constant crs > 0 (which
is determined by x, y, i , and j) such that, for any ε ∈ (−εrs, εrs), we have

φ(r + ε) − φ(r) = λ j

λi

(
φ(s + crs ε) − φ(s)

)
.

Proof (a) (x − y) •
λ

φ(b + δi ei + δ j e j )

(�)

∑

k∈K(x,y)\{i, j}
λk (xk − yk)φ(bk) + λi (xi − yi )φ(bi + δi ) + λ j (x j − y j )φ(b j + δ j )

=
∑

k∈K(x,y)

λk (xk − yk)φ(bk) + λi (xi − yi )
(
φ(bi + δi ) − φ(bi )

)

+ λ j (x j − y j )
(
φ(b j + δ j ) − φ(b j )

)

(�)
(x − y) •

λ
φ(b) + λi (xi − yi )

(
φ(bi + δi ) − φ(bi )

)

+λ j (x j − y j )
(
φ(b j + δ j ) − φ(b j )

)

(†)
λi (xi − yi )

(
φ(bi + δi ) − φ(bi )

) + λ j (x j − y j )
(
φ(b j + δ j ) − φ(b j )

)
.

Here, both (�) are because (x − y)k = (xk − yk) = 0 for all k ∈ K \K(x, y), and (†)

is because b ∈BF
x,y, so that (x − y) •

λ
φ(b) = 0.

(b) By negating the i coordinate and/or j coordinate of X and Y if necessary, we can
assume without loss of generality that xi = y j = 1 and x j = yi = −1. Claim 3 yields
some vector v ∈ R

K and some constant a ∈ R such that ∗BF
x,y is a relatively open
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subset of the affine hyperplane H := {r ∈ R
K; v • r = a}. Let crs := −vi/v j . For

any ε ∈ R, let bε := b + ε ei + crs ε e j . Then

bε • v = b • v + ε ei • v − vi

v j
ε e j • v = a + ε vi − vi

v j
ε v j = a.

(C5)

Thus, bε ∈ H. Thus, if |ε| is small enough, then bε ∈ ∗BF
x,y. Thus,

0 = (x − y) •
λ

φ(bε) (∗)
2

[
λi

(
φ(r + ε) − φ(r)

) − λ j
(
φ(s + crs ε) − φ(s)

)]
,

where (∗) is by setting δi := ε and δ j := crs ε in part (a), and noting that
(xi − yi ) = 2 while (x j − y j ) = −2. Thus, we conclude that φ(r + ε) − φ(r) =
λ j
λi

(
φ(s + crs ε) − φ(s)

)
, as desired. Finally, observe that crs > 0 and is unique,

because φ is strictly increasing. ♦ Claim 5

Claim 6: Let x, y ∈ X be such that d(x, y) ≥ 3 and ∗BF
x,y �= ∅. Let b ∈ ∗BF

x,y. Let
i, j ∈ K(x, y) with i �= j . Let r := bi and s = b j .

(a) There is an open interval Tr ⊆ [−1, 1] containing r such that, for all t ∈ Tr , we
have cts = crs , where crs and cts are as in Claim 5(b).

(b) For all t ∈ Tr , there is an open interval Etr containing 0 such that, for all ε ∈ Etr ,
we have φ(r + ε) − φ(r) = φ(t + ε) − φ(t).

Proof (a) Since d(x, y) ≥ 3, there is a third coordinate k ∈ K(x, y) \ {i, j}.
Claim 3 yields some vector v ∈ R

K and some constant a ∈ R such that ∗BF
x,y is

a relatively open subset of the affine hyperplane H := {r ∈ R
K; v •

λ
r = a}. For any

η ∈ R, let bη := b + η ei − (vi/vk) η ek . Then bη ∈ H, by an argument identical to
equation (C5). Thus, there is some η > 0 such that bη ∈ ∗BF

x,y for all η ∈ (−η, η).

Let Tr := (r − η, r + η). Let t ∈ Tr , and let η := t − r . Then bη ∈ ∗BF
x,y, and by

construction we have bη
i = bi + η = r + η = t , while bη

j = b j = s. Then, repeating
the construction in Claim 5(b) using bη in place of b, we get φ(t + ε) − φ(t) =
λ j
λi

(
φ(s + ctsε) − φ(s)

)
, for all sufficiently small ε, where cts = −vi/v j . This works

for all t ∈ Tr . But r ∈ Tr ; thus, in particular crs = −vi/v j . Thus, cts = crs for all
t ∈ Tr , as claimed.
(b) Let t ∈ Tr , and let εt := min{εrs, εts}, where these are defined as in Claim 5(b).
Then εt > 0, and for all ε ∈ (−εt , εt ), we have

φ(r + ε) − φ(r)
(∗)

λ j

λi

(
φ(s + cr ,s ε) − φ(s)

)
(†)

φ(t + ε) − φ(t),

where (∗) is by Claim 5(b), and (†) is by Claim 5(b) and part (a). ♦ Claim 6

Let R := sup{bi ; b ∈ ∗BF
x,y and i ∈ K(x, y) for some x, y ∈ X with d(x, y) ≥ 3}.

Note that R > 0 if and only if C is suitable for F . Thus, Claims 7, 8 and 9 (below) are
non-vacuous if C is suitable for F .
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Claim 7: (Assuming compatibility) For all r ∈ (
0, R

)
, there is an open interval Tr

containing r , and for all t ∈ Tr , there is an open interval Etr containing 0, such that,
for any ε ∈ Etr , we have φ(t + ε) − φ(t) = φ(r + ε) − φ(r).

Proof Since r ≤ R, there exist x, y ∈ X with d(x, y) ≥ 3 and some b ∈ ∗BF
x,y and

i ∈ K(x, y) such that r ≤ bi ≤ R. Let s = r/bi ; thus, s ∈ [0, 1] and r = s bi . Let
z := 1

2 (x+y), and then let bs := s b+ (1−s)z. Then F(bs) = F(b)∩ F(z) = {x, y},
because F satisfies Reinforcement and F(z) ⊇ {x, y} by Claim 1. Thus, bs ∈ ∗BF

x,y.
Note that bsi = s bi = r . Thus, Claim 6 yields some neighbourhood Tr around r , and
for all t ∈ Tr , an open interval Etr containing 0, such that, for all t ∈ Tr and ε ∈ Etr
we have φ(t + ε) − φ(t) = φ(r + ε) − φ(r). ♦ Claim 7

Claim 8: (Assuming compatibility) For all r , s ∈ (
0, R

)
, there exists ε = ε(r , s) > 0

containing 0, such that, for any ε ∈ (−ε, ε), we have φ(s+ε)−φ(s) = φ(r+ε)−φ(r).

Proof Without loss of generality, suppose r < s. For all q ∈ [r , s], let Tq be as in
Claim 7. The family {Tq}q∈[r ,s] is an open cover of the compact set [r , s], so it has
a finite subcover, say {Tq0 , . . . , TqN }, where r = q0 ≤ q1 < q2 < · · · < qN ≤ s =
qN . By dropping to a subsequence of {q0, q1, . . . , qN } if necessary, we can ensure
that qn ∈ Tqn−1 for all n ∈ [1 . . . N ] (because these intervals cover [r , s]). For all
n ∈ [1 . . . N ], let Eqn ,qn−1 be the open interval around 0 defined in Claim 7. Let
E := Eq1,q0 ∩ Eq2,q1 ∩ · · · ∩ EqN ,qN−1 ; then E is an open interval containing 0, so there
is some ε > 0 such that (−ε, ε) ⊆ E . For all ε ∈ (−ε, ε), we have

φ(qN + ε) − φ(qN ) = φ(qN−1 + ε) − φ(qN−1) = · · · = φ(q1 + ε) − φ(q1)

= φ(q0 + ε) − φ(q0),

where each equality is an invocation of Claim 7. In other words, φ(s + ε) − φ(s) =
φ(r + ε) − φ(r), as claimed. ♦ Claim 8

Claim 9: (Assuming compatibility) For all r ∈ (
0, R

)
, there is some δ = δ(r) > 0

such that for any q ∈ Q∩[−1, 1], we have φ(r +q δ)−φ(r) = q · [φ(r + δ) − φ(s)].

Proof Find δ > 0 such that 0 < r − δ < r + δ < R. Thus, if we define S := [r −
δ, r + δ], then S ⊂ (0, R). Thus, for all s ∈ S, Claim 8 yields some εs := ε(r , s) > 0
such that φ(s + ε)−φ(s) = φ(r + ε)−φ(r) for all ε ∈ (−εs, εs). It is easily verified
that the function S � s �→ εs ∈ R+ is continuous. The interval S is compact. Thus,
there exists some ε′ > 0 such that εs ≥ ε′ for all s ∈ S.

Now, let M0 ∈ N be large enough that δ/M0 < ε′. For any rational number
q ∈ [−1, 1], we can write q = N/M for some N ∈ [−M . . . M] and some M ∈ N

with M ≥ M0. Thus, if we define ε := δ/M , then ε < ε′, and q δ = N ε, and we
have

φ(r + q δ) − φ(r) = φ(r + N ε) − φ(r) =
N∑

n=1

(
φ(r + n ε) − φ(r + (n − 1) ε)

)

(∗)

N∑

n=1

(
φ(r + ε) − φ(r)

) = N · (
φ(r + ε) − φ(r)

)
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= N ·
(

φ

(

r + 1

M
δ

)

− φ(r)

)

, (C6)

where (∗) is by N applications of Claim 8 (which applies because for all n ∈ [1 . . . N ],
we have s := r + (n − 1) ε ∈ S and ε < ε′ ≤ εs). In particular, if q = 1 (so that
N = M), then (C6) yields

φ(r + δ) − φ(r) = M ·
(

φ

(

r + δ

M

)

− φ(r)

)

,

which means that

φ

(

r + 1

M
δ

)

− φ(r) = 1

M

(
φ(r + δ) − φ(r)

)
. (C7)

For any q = N/M ∈ [−1, 1], if we substitute (C7) into (C6), we get

φ(r + q δ) − φ(r) = N

M
· (

φ (r + δ) − φ(r)
) = q · (

φ (r + δ) − φ(r)
)
,

as desired. ♦ Claim 9

Claim 10: Let x, y ∈ X be distinct, and let Hx,y := {r ∈ R
K; (x − y) •

λ
r = 0}. If

∗BF
x,y �= ∅, then ∗BF

x,y ⊂ Hx,y.

Proof First suppose d(x, y) = 1, and let K(x, y) = {i}. Then Hx,y = {r ∈ R
K;

ri = 0}. By negating the i th coordinate of X and Y if necessary, we can assume
without loss of generality that xi = 1 and yi = −1. Then for any μ ∈ Δ(Y), if
μ̃i > 0 then y /∈ SME (C, μ) (because γx,μ(q) ≥ γy,μ(q) for all q ∈ [0, 1], and
γx,μ(q) ≥ γy,μ(q)+λi for all q ∈ [0, μ̃i ].) Likewise, if μ̃i < 0 then x /∈ SME (C, μ).
Thus, if {x, y} ⊆ SME (C, μ), then we must have μ̃i = 0. Since F is SME, it follows
thatBF

x,y ⊂ Hx,y.
Now suppose d(x, y) ≥ 2. There are now two cases: Either C is suitable for F , or

it is not suitable for F , but has balanced weights.

Case A. Suppose C is not suitable for F , but has balanced weights. If x, y ∈ X , and
∗BF

x,y �= ∅, then we must have d(x, y) ≤ 2 (because C is not suitable for F). We have
already dealt with the case d(x, y) = 1, so suppose d(x, y) = 2. Let K(x, y) = {i, j}.
By balanced weights, we must have λi = λ j . For simplicity, suppose λi = λ j = 1. By
negating the i th and j th coordinate of X and Y if necessary, we can assume without
loss of generality that xi = y j = 1 and yi = x j = −1. Thus, Hx,y = {r ∈ R

K;
ri = r j }. Now, for any μ ∈ Δ(Y), if μ̃i > μ̃ j then y /∈ SME (C, μ) (because
γx,μ(q) ≥ γy,μ(q) for all q ∈ [0, 1], and γx,μ(q) ≥ γy,μ(q) + 1 for all q ∈ (μ̃ j , μ̃i ].)
Likewise, if μ̃i < μ̃ j then x /∈ SME (C, μ). Thus, if {x, y} ⊆ SME (C, μ), then we
must have μ̃i = μ̃ j . Since F is SME, it follows thatBF

x,y ⊂ Hx,y.

Case B. Suppose C is suitable for F . Then R > 0. Let x, y ∈ X , and suppose
d(x, y) ≥ 2. Let J := K(x, y) and let L := K \ J . By negating the i and/or j
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coordinates of X and Y if necessary, we can assume without loss of generality that
x j = 1 and y j = −1 for all j ∈ J . Let z := 1

2 (x + y). Let b ∈ ∗BF
x,y. For all

u ∈ [0, 1], let bu := u b+ (1−u)z. Then bu ∈ ∗BF
x,y by Claim 1 and Reinforcement,

as explained above. If u is small enough, then we have bui ∈ (0, R) for all i ∈ K(x, y).

Claim 10A: For any distinct i, j ∈ K(x, y), there exists ε > 0 such that

bu + ε (λ j ei − λi e j ) ∈ ∗BF
x,y.

Proof Without loss of generality, suppose λi ≥ λ j . For any δ > 0 and θ ∈ [0, 1], let
bθ

δ := bu + θδ ei − δ e j . Since F(bu) = {x, y} and F satisfies Continuity, there exists
some ε > 0 such that, for all ε1, ε2 ∈ (−ε, ε), we have F(bu +ε1 ei +ε2 e j ) ⊆ {x, y}.
In particular, for any δ ∈ (0, ε), and θ ∈ [0, 1], we have F(bθ

δ ) ⊆ {x, y}. Without
loss of generality, suppose ε ≤ ε(bui , b

u
j ), where ε(bui , b

u
j ) is as in Claim 8. Let δ(bui )

be defined as in Claim 9, and find some small enough q ∈ Q ∩ [0, 1] such that, if
δ := q δ(bui ), then δ ∈ (0, ε).

Let θ := λ j
λi

. Then θ ∈ [0, 1]. We will show that bθ
δ ∈ ∗BF

x,y. If we knew that φ was

linear, then we could deduce that that φ(bui +θδ)−φ(bui ) = θ · [φ(bui + δ) − φ(bui )
]
,

and from here, use Claims 8 and 5(a) to obtain (x − y) •
λ

φ(bθ
δ ) = 0 and hence

F(bθ
δ ) = {x, y}. But we don’t know that φ is linear; instead, Claim 9 only tells us that

φ is “locally Q-linear”. Thus, we must approximate θ with rational numbers.
Let {qn}∞n=1 be a decreasing sequence in Q ∩ [0, 1] with limn→∞ qn = θ . For all

n ∈ N, we have

φ(bui + qnδ) − φ(bui ) (∗)
qn

[
φ(bui + δ) − φ(bui )

]
(†)

qn
[
φ(buj ) − φ(buj − δ)

]

>
(�)

λ j

λi

[
φ(buj ) − φ(buj − δ)

]
, and thus,

λi
[
φ(bui + qnδ) − φ(bui )

]
> λ j

[
φ(buj ) − φ(buj − δ)

]
, (C8)

where (∗) is by setting r := bui in Claim 9, (†) is by setting r := bui , s := buj − δ, and

ε := δ in Claim 8, and (�) is because qn > θ = λ j
λi

.
Since (xi − yi ) = (x j − y j ) = 2, the inequality (C8) yields

λi (xi − yi )
[
φ(bui + qnδ) − φ(bui )

] + λ j (x j − y j )
[
φ(buj − δ) − φ(buj )

]
> 0.

(C9)

Thus, Claim 5(a) yields (x − y) •
λ

φ(bqnδ ) > 0. Thus, y /∈ F(bqnδ ). But we have
already noted that ∅ �= F(bqnδ ) ⊆ {x, y}. Thus, we must have F(bqnδ ) = {x}. But
limn→∞ qn = θ , so limn→∞ bqnδ = bθ

δ . Thus, Continuity implies that x ∈ F(bθ
δ )

also.
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Now let {qn}∞n=1 be an increasing sequence in Q ∩ [0, 1] with limn→∞ qn =
θ . For all n ∈ N, we obtain λi (xi − yi )

[
φ(bui + qnδ) − φ(bui )

] + λ j (x j −
y j )

[
φ(buj − δ) − φ(buj )

]
< 0, by an argument similar to inequality (C9). Thus,

Claim 5(a) yields (x − y) •
λ

φ(bqnδ ) < 0. Thus, by an argument similar to the pre-
vious paragraph, we get F(bqnδ ) = {y}, for all n ∈ N. But limn→∞ qn = θ , so
limn→∞ bqnδ = bθ

δ . Thus, Continuity implies that y ∈ F(bθ
δ ) also.

Combining these observations, we deduce that {x, y} ⊆ F(bθ
δ ). But we have already

noted that F(bθ
δ ) ⊆ {x, y}. Thus, F(bθ

δ ) ⊆ {x, y} —that is, bθ
δ ∈ ∗BF

x,y. Now define

ε := δ/λi ; then bθ
δ = bu + ε (λ j ei − λi e j ), which proves the claim. � Claim 10A

Claim 10B: Let  ∈ L. If ε > 0 is small enough, then bu + ε e ∈ ∗BF
x,y.

Proof Let ε > 0. If ε is small enough, thenContinuity implies that ∅ �= F(bu+ε e) ⊆
{x, y} (because F(bu) = {x, y}). But (x − y) •

λ
φ(bu + ε e) = (x − y) •

λ
φ(bu) = 0

(because φ(bu + ε e) j = φ(b j ) for all j ∈ J , while (x − y)k = 0 for all k ∈ L).
Thus, we must have F(bu + ε e) = {x, y}; hence bu + ε e ∈ ∗BF

x,y. � Claim 10B

Claim 3 says that ∗BF
x,y is a relatively open subset of some affine hyperplane H.

Claims 10A and 10B imply that H is parallel to all vectors in the set {(λ j ei − λi e j );
i, j ∈ J } ∪ {e;  ∈ L}. But the hyperplane Hx,y is spanned by this set. Thus, H is
parallel to Hx,y. Let z = (x + y)/2. Then z ∈ Hx,y. But Claim 1 and Reinforcement
imply that z is a cluster point of ∗BF

x,y. Thus, H = Hx,y. ♦ Claim 10

For any x ∈ X , let Cmed
x := {c ∈ C; x ∈ Median (X , c)}. Then Cmed

x is a convex
polyhedron whose supporting hyperplanes are the sets Hx,y (from Claim 10) for all
y ∈ X \ {y}, along with the supporting hyperplanes of C itself. Claims 4 and 10 show
that every one of these supporting hyperplanes is also a supporting hyperplane of
the convex polyhedron CF

x . Thus, CF
x ⊆ Cmed

x for all x ∈ X . However, the systems
{CF

x }x∈X and {Cmed
x }x∈X are each partitions of C into closed convex polyhedra which

meet only along their boundaries. Thus, they must be identical. Thus, F is the median
rule. ��
Proof of Theorem 1 It is easy to verify that the median rule (2) satisfies ESME,Continu-
ity, and Reinforcement; we must verify the converse. So, suppose F is a rule satisfying
these axioms. Proposition 1 says that F is an additive majority rule, because it satis-
fies ESME and Continuity. Any unweighted judgement context obviously has balanced
weights. Thus, if F also satisfies Reinforcement, then Theorem 2 says it is the median
rule. ��
Theorem 3 is a consequence of a more general result, involving a more compli-
cated structural condition. Let F be a judgement aggregation rule on the context
C = (K,λ,X ,Y), and let Θ ⊂ Δ(Y) be a collection of profiles. Let VF

θ := {x ∈ X ;

∃ μ ∈ Θ such that F(μ) = {x}}. For any v,w ∈ VF
θ , we write v

F∼ w if

d(v,w) ≤ 2 and there is some μ ∈ Θ with F(μ) = {v,w}. Thus, (VF
Θ,

F∼) is
a graph. This graph is path-connected if, for any u,w ∈ VF

θ , there is some path

u
F∼ v1

F∼ v2
F∼ · · · F∼ vN

F∼ w connecting them in VF
θ . We will say that the judge-

ment context C is frangible if for any additive majority rule F satisfying Continuity,
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there exists an open, connected subset Θ ⊂ Δ(Y) such that the graph (VF
Θ,

F∼) is not
path-connected. Theorem 3 is a corollary of the next result.

Theorem C.1 Let C = (K,λ,X ,Y) be a frangible weighted judgement context such
that Y is thick, and let F : Δ(Y) ⇒ X be a judgement aggregation rule. Then F
satisfies WESME, Continuity, and Reinforcement if and only if F is the median rule
(8).

Proof Suppose C is frangible and Y is thick, and F is an additive majority rule satis-
fying Continuity and Reinforcement. It suffices to show that C is suitable for F .

SinceC is frangible, there is some open, connected Θ ⊆ Δ(Y) and some v,w ∈ VF
Θ

in different
F∼-connected components. Let Θ̃ := {μ̃; μ ∈ Θ}; this is an open,

connected subset of R
K (because the function Δ(Y) � μ �→ μ̃ ∈ R

K is open and
continuous). Let C = conv(Y); then Θ̃ ⊆ C. As explained after Claim 4 in the proof of
Theorem 2, the sets {CF

x }x∈X partition C into closed, convex polyhedra, which overlap
only on their boundaries. Now, Θ̃ intersects ∗CF

v and ∗CF
w (because v,w ∈ VF

Θ ). Thus,
it is possible to construct a continuous path α : [0, 1]−→Θ̃ with α(0) ∈ ∗CF

v and
α(1) ∈ ∗CF

w , such that for all x, y ∈ X , if α crosses from CF
x to CF

y , then it does so by

passing through the codimension-1 face between CF
x and CF

y —call this face Fx,y.
In fact, we will now show that we can assume without loss of generality that for all

x, y ∈ X , if α crosses from CF
x to CF

y , then it does so by passing through the set ∗BF
x,y.

To see this, let t ∈ [0, 1], and suppose α(t) ∈ Fx,y for some x, y ∈ X . Claim 4(b,c)
in the proof of Theorem 2 says that ∗BF

x,y is nonempty, and is a subset of Fx,y. So, let

b ∈ ∗BF
x,y, let ε > 0, and replace α with the path α′ defined:

α′(s) :=
{

α(s) if s /∈ (t − ε, t + ε);
(ε − |s − t |)b + (1 − ε + |s − t |) α(s) if s ∈ (t − ε, t + ε).

Recall that Θ̃ is open; thus, if ε is small enough, then α′(s) ∈ Θ̃ for all s ∈ [0, 1];
furthermore, α′ passes through exactly the same polyhedral cells as α, and its passage
through all other faces is unchanged. However, α′(t) = εb + (1 − ε)α(t). Thus,
Reinforcement yields F[α′(t)] = F(b) ∩ F[α(t)] = {x, y}, so that α′(t) ∈ ∗BF

x,y, as
desired.

Thus, we can construct α such that for all t ∈ [0, 1], either α(t) ∈ ∗CF
x for some

x ∈ X (so that F[α(t)] = {x}) or α(t) ∈ ∗BF
x,y for some x, y ∈ X (so that F[α(t)] =

{x, y}).
Now, suppose that C is not suitable for F . Then whenever α(t) ∈ ∗BF

x,y for some

x, y ∈ X , we must have d(x, y) = 2, and hence, x
F∼ y. Thus, the function F ◦ α

defines a path from v to w in the graph (VF
Θ,

F∼). But v and w are in different connected

components of (VF
Θ,

F∼). Contradiction.
To avoid this contradiction, C must be suitable for F . Then Theorem 2 says that F

is the median rule (8). ��
Case (a) of Theorem 3 follows from Theorem C.1 and the next result.

123



The median rule in judgement aggregation

Lemma C.4 Let C = (K,λ,X ,Y). If X is rugged and Y is McGarvey, then C is
frangible.

Proof Let z ∈ {±1}K\X andx, y ∈ Xz be such thatd(x, z) �= d(y, z). (By ruggedness,
such a z exists). Let Θ := {μ ∈ Δ(Y); xμ = z} = {μ ∈ Δ(Y); sign(μ̃k) = zk , for
all k ∈ K}.
Claim 1: Θ is nonempty, open and convex (hence, connected).

Proof Θ is nonempty because Y is McGarvey. It is defined by a finite system of strict
linear inequalities, so it is open and convex. ♦ Claim 1

Now let F be any additive majority rule satisfying Continuity. We will show that

(VF
Θ,

F∼) is disconnected. First, we need some terminology. A view x ∈ X is Condorcet
admissible for μ if there does not exist any other y ∈ X such that yk μ̃k ≥ xk μ̃k for
all k ∈ K—in other words, there is no view y ∈ X which agrees with the major-
ity in a strictly larger set of issues than those where x agrees with the majority. Let
Cond(X , μ) ⊆ X be the set of all views that are Condorcet admissible for μ.42 It is
easily verified that supermajority efficiency (for any λ) implies Condorcet admissibil-
ity. Thus, SME (X ,λ, μ) ⊆ Cond(X , μ).

Claim 2: VF
Θ = Xz.

Proof “⊆ For any μ ∈ Θ , we must have F(μ) ⊆ SME (X , μ) ⊆ Cond(X , μ). But
Cond(X , μ) ⊆ Xz by Lemma 1.5 of Nehring et al. (2014).

“⊇” Let x ∈ Xz. Let J := { j ∈ K; x j = z j }. By negating certain coordinates of
X and Y if necessary, we can assume without loss of generality that z j = x j = 1 for
all j ∈ J . Since Y is McGarvey, there exists some μ ∈ Δ(Y) such that μ̃ j > 0 for
all j ∈ J and μ̃k = 0 for all k ∈ K \J (by Footnote 36). Since z is near to x, there is
no other y ∈ X \ {x} such that y j = 1 for all j ∈ J . Thus, SME (X , μ) = {x}. Thus,
F(μ) = {x}, because F is supermajority efficient by Lemma B.3.

Let θ ∈ Θ be arbitrary. For all s ∈ [0, 1], define μs := s θ + (1 − s) μ. Thus,
lims→0 μs = μ. Thus, Continuity implies that F(μs) = {x} for all s sufficiently
close to zero. But for all s > 0, we have μs ∈ Θ (because for all k ∈ K we have
sign(μ̃s

k) = sign(s θ̃k + (1 − s) μ̃k) = sign(θ̃k) = zk). Thus, x ∈ VF
Θ . This argument

works for all x ∈ Xz, so VF
Θ ⊇ Xz, as claimed. ♦ Claim 2

Claim 3: For any v,w ∈ VF
Θ , if v and w are in the same

F∼-connected component,
then d(v, z) = d(w, z).

Proof It suffices to prove this in the case when v
F∼ w; the general case follows by

induction on path length. Now, if v
F∼ w, then d(v,w) = 2. Thus, K(v,w) = {i, j}

for some i, j ∈ K.

Claim 3A: Either i ∈ K(v, x) or i ∈ K(w, z). but not both. Likewise, either j ∈
K(v, z) or j ∈ K(w, z), but not both.

42 See Nehring et al. (2014, 2016) and Nehring and Pivato (2014) for an analysis of Condorcet admissibility
in judgement aggregation.
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Proof Since vi = −wi , we either have vi = −zi or wi = −zi . But if vi = −zi , then
evidently wi = zi . This proves the first claim. The second is similar. � Claim 3A

Claim 3B:Exactly one of i or j is in K(v, z).

Proof (by contradiction) If {i, j} ⊆ K(v, z), then Claim 3A implies K(w, z) =
K(v, z) \ {i, j}, which means K(w, z) � K(v, z), which contradicts the fact that v is
near to z. On the other hand, if {i, j} is disjoint from K(v, z), then Claim 3A implies
K(w, z) = K(v, z) � {i, j}, which means K(v, z) � K(w, z), which contradicts the
fact that w is near to z. � Claim 3B

Without loss of generality, suppose i ∈ K(v, z) and j /∈ K(v, z). Thus, Claim 3A
says i /∈ K(w, z). But by an argument similar to Claim 3B, exactly one of i or j is in
K(w, z). Thus, we must have j ∈ K(w, z). At this point, we deduce that K(w, z) =
{ j} � K(v, z) \ {i}. Thus, |K(w, z)| = |K(v, z)|. In other words, d(v, z) = d(w, z),
as claimed. ♦ Claim 3

By the definition of z, there exist x, y ∈ Xz such that d(x, z) �= d(y, z). Claim 2

says that x, y ∈ VF
Θ , and Claim 3 implies that they must be in different

F∼-connected

components. Thus, (VF
Θ,

F∼) is disconnected, as desired.
This argument works for any additive majority rule (actually, any supermajority

efficient rule) satisfying Continuity. Thus, C is frangible. ��
Case (b) of Theorem 3 follows from Theorem C.1 and the next result.

Lemma C.5 Let C = (K,λ,X ,Y). If X ⊆ {±1}K is distal, then C is frangible.

Proof By hypothesis, there exist some x, z ∈ X with x near to z and d(x, z) ≥ 3. Let
δx and δz be the point masses at x and z, respectively, and let μ := 1

2 (δx + δz). Let Θ

be an open ball of small radius around μ; Θ is obviously open and connected.
Now let F be any additive majority rule satisfying Continuity. We claim that VF

θ ⊆
{x, z}. To see this, let J := K(x, y) and let L := K \ J . Without loss of generality,
suppose x = z = 1 for all  ∈ L. Then μ̃ = 1 for all  ∈ L, while μ̃ j = 0 for all
j ∈ J . Fix a weight vector λ ∈ R

K+ , and let Λ = ∑
∈L λ. Then for any y ∈ X and

any q ∈ [0, 1], we have γ λ
μ,x(q) = γ λ

μ,z(q) = Λ ≥ γ λ
μ,y(q), with equality if and only

if y is between x and z. But x is near to z, so there is no y ∈ X \{x, y} which is between
x and z. Thus, SME (X , μ) ⊆ {x, z}. Thus, Lemma B.3 implies that F(μ) ⊆ {x, z}.
If we make the ball Θ small enough, then Continuity implies that F(θ) ⊆ {x, z} for
all θ ∈ Θ; thus, VF

θ ⊆ {x, z}.
To see that VF

θ = {x, z}, define μn := n+1
2n δx + n−1

2n δz for all n ∈ N. Then by
an argument similar to the previous paragraph, supermajority efficiency implies that
Fn(μn) = {x} for all n ∈ N. If n is large enough, then μn ∈ Θ; thus, x ∈ VF

Θ . By an
identical argument (defining μn := n−1

2n δx + n+1
2n δz for all n ∈ N), we obtain z ∈ VF

Θ .
Thus, VF

θ = {x, z}, as claimed. But d(x, z) ≥ 3; thus, (VF
θ ,∼) is not path-connected,

and thus, C is frangible. ��
Proof of Theorem 3 It is easy to verify that the weighted median rule (8) satisfies
WESME, Continuity, and Reinforcement; we must verify the converse. If F is a rule
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satisfying WESME and Continuity, then Proposition 4 says that F is an additive major-
ity rule. Suppose F also satisfies Reinforcement. If X is rugged and Y is McGarvey,
then Lemma C.4 says C is frangible. On the other hand, if X is distal and Y is thick,
then Lemma C.5 says C is frangible. Either way, Theorem C.1 implies that F is the
median rule. ��
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