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A characterization of Cesaro average utility™

Marcus Pivato!

February 22, 2022

Abstract

Let X be a connected metric space, and let > be a weak order defined on a suitable
subset of XN. We characterize when > has a Cesdro average utility representation.
This means that there is a continuous real-valued function u on X such that, for all
sequences X = (zp);_; and y = (yn)s_; in the domain of >, we have x > y if and
only if the limit as N—o0 of the average value of u(z1),...,u(zy) is higher than limit
as N—oo of the average value of u(y1),...,u(ynx). This has applications to decision
theory, game theory, and intergenerational social choice.

JEL class: D81, D63, D71.

1 Introduction

Certain problems in normative economics involve preferences over countably infinite se-
quences (z1, Tg, Z3, . ..) of outcomes. For example, such preferences arise in infinite-horizon
intertemporal choice, in infinitely repeated games, and in decisions under uncertainty with
a countable state space. Given a utility function u : X—R, one natural way to evaluate

N
an infinite sequence is via the Cesaro average utility lim % > u(z,), assuming this limit
N—coo " 2
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is well-defined. In models of intertemporal choice, Cesaro average utility describes prefer-
ences with infinite patience. This paper axiomatically characterizes preferences admitting
such a representation. Preferences with similar representations have previously been stud-
ied by Lauwers (1998), Marinacci (1998), Rébillé (2007), Khan and Stinchcombe (2018)
and Jonsson and Voorneveld (2018). But to our knowledge, this is the first characterization

of Cesaro average utilities.

The remainder of the paper is organized as follows. Section 2 explains the formal frame-
work and the four axioms, and states the main result. Section 3 reviews prior literature.

All proofs are in the Appendix.

2 Model and main result

Let N = {1,2,3,...}. Let X be a connected metric space, and let XN denote the set of all

0

® |, where x,, € X for all n € N. For any x € XN, we will say that x

sequences X = (z,)
is totally bounded if, for any € > 0, the set {z,}r_; can be covered with a finite number
of e-radius balls in X. Let (*(N, X) := {x € XN; x is totally bounded}. For example, if
X = RY then this is equivalent to requiring x to be a bounded sequence —i.e. requiring
sup |x,| < 00, so this definition reduces to the standard definition of /*(N,RY). But in a
gZieral metric space, total boundedness is more restrictive than mere boundedness. Define
the supremum metric d,, on (*(N, X) in the standard way:
do(x,y) = supd(x,,yn).

neN

If X = RY, then this is just the standard supremum norm metric on ¢*(N, RY).

Regular sequences. Let O(X) be the set of all sets of the form O n C, where O € X
is open and C < X is closed. In particular, O(X’) contains all open and closed subsets of
X. (If X is locally compact, then O(X) = {locally compact subsets of X'}. But we will

not use this fact.) A sequence x € XN is regular if, for any subset O € O(X), the limit

lim #{ne{l,...,N}; z, € O}
N—w N

(1)



exists.! Here are three examples of regular sequences.
e Any periodic sequence is regular.

e Suppose X = R. Let a,b € R be constants and let x, = sin(an + b) for all n € N;

then (z,)r_, is regular. So is any linear combination of such sequences.

e Let Y < X be a finite subset, let p be a probability measure on Y, and let y =
(Yo, Y1, Y2, - - .) be an infinite sequence of independent random variables drawn from
p. Then y is regular with probability 1. The same thing is true if y is a sequence of
exchangeable random variables, or if y is generated by a stationary Markov process,

or indeed, any stationary stochastic process on ) (see Lemma A.1 in the Appendix).

Let Reg(X) denote the set of all regular sequences in (*(N, X).

Semiregular sequences. A sequence x € XN is semiregular if either (1) x is regular, or
(2) there is a compact subset £ = X and a sequence (x?)%2, of elements of Reg(K) such
that hj& do(x7,x) = 0. Let Reg(X) denote the set of all semiregular sequences in AN
(It isjeasily shown that Reg(X) < ¢(*(N,X).) For example, suppose X is ball-compact,
meaning that every closed ball in X is compact. (This holds if X" itself is compact, but it
also holds if X is RY or any closed subset of RY.) Then x is semiregular if and only if it
is a dy-limit of elements of Reg(X). Thus, for ball-compact spaces, Reg(X) is the closure
of Reg(X) in the d,-metric. But the definition works for any metric space.

Some semiregular sequences are not regular. For example, if x = (x,,)%_; is a convergent,
sequence in X, then in general, x is not regular. But if X is locally compact, then x is

semiregular (see Lemma A.2 in the Appendix).

Cesaro averages. For any sequence r = (11, 79,...) € RY, the Cesaro average is defined

Ly
CesAve 1, = lim — Z Tn, (2)

neN N—o
n=1

when this limit exists. In this case, one says that r is Cesaro summable.

In the case X = R, these are similar to what Khan and Stinchcombe (2020, §3.7) call ergodic sequences.



Cesaro average utility. Let > be a weak order (i.e. a complete, transitive binary
relation) on Reg(X). Let us say that > has a Cesaro average utility representation if there
is a function u : X¥—R such that, for all x,y € Reg(&X),

x>y <= CesAve u(x,) > CesIA\Ive w(Yn). (3)
ne

neN

This paper axiomatically characterizes weak orders on Reg(X’) that admit such a represen-
tation. Such weak orders have a variety of applications in economics. We will now describe
four: intertemporal decisions, infinitely repeated games, intertemporal social choice, and

decisions under uncertainty.

Intertemporal choice. Suppose N represents an infinite sequence of future times, and
X is the set of outcomes that could occur at each time. So an element of Reg(X) represents
an infinite stream of outcomes. Thus, a weak order on Reg(X) represents the intertemporal
preferences of an agent. The Cesaro average utility representation (3) is something like the
limit of the discounted utility sum i 0" u(zy,) as d /1. (See equation (12) in Section 3.)
It thus describes an agent with iI;Lﬁ:Site patience. If an intertemporal preference has a
representation (3), then it satisfies a strong version of Koopmans’s (1960) Stationarity

axiom;? for all sequences (xg, x1, To, . ..) and (Yo, Y1, Y2, - - -), we have

(zo, 21, @2, ...) = (Yo, Y1, Y2, - - ) — (x1,22,...) = (Y1,Y2, . - ). (4)

Infinitely repeated games. Closely related to intertemporal choice is the theory of
repeated games. To obtain equilibria, it is common to assume that the game will be
repeated an infinite number of times. So it is necessary to endow players with preferences
over the resulting infinite-length payoff streams. For this purpose, the Cesaro average
utility (3) is quite convenient. It describes the preferences of infinitely patient players, and
appears in several important folk theorems; see e.g. Osborne and Rubinstein (1994, §8.6)

or Maschler et al. (2013, §13.5).

2Koopman’s original Stationarity axiom requires (4) only when zy = yo.
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Intertemporal social choice. Suppose the elements of N represent all the people who
will exist in the future, ordered chronologically by their moment of birth, and & is the set
of possible life outcomes for each future person. Thus, each element of Reg(X) represents
an intertemporal social outcome, and a weak order on Reg(X) is an intertemporal social

welfare order. In this interpretation, the Cesaro average (3) is a utilitarian SWEF.

Uncertainty and insufficient reason. Let S be a countably infinite space of possible
states of nature with a “natural” enumeration S = {sq, ss,...}. Let X be a topological
space of outcomes. An act is a function o : S—X&’. Since the foundational work of Savage
(1954), a weak order over acts has been used as a model of rational decision-making under
uncertainty. If we identify S with N in the obvious way (using the enumeration given),
then the act o can be identified with an element of XN. In this context, the Cesaro average
utility representation (3) can be interpreted as an expected utility representation, where u
is the agent’s utility function, and her probabilistic beliefs correspond roughly to density
of subsets of N.> For any subset B < N, its density is defined

Bn{l,...,N}

iB) = Alflir(l)o N : (5)

whenever this limit exists. We say that the agent’s beliefs correspond “roughly” to d
because the limit (5) does not exist for all subsets of N, and the sets for which it does
exist do not form a Boolean algebra. Nevertheless, ¢ is finitely additive on the sets for
which it is well-defined: if A and B are disjoint subsets of N such that d(.A) and §(B)
are both well-defined, then it is easily verified that (A u B) = 0(A) + §(B). Thus 0 is

something like a “uniformly distributed probability measure” on the state space S.* Such

3Given the Savage framework, it is tempting to describe this as subjective expected utility. However,

as noted by a referee, the Cesaro average (2) and density (5) are entirely objective. (But see footnote 4.)
4In fact, J can be extended to a finitely additive measure on the entire power set p(N). Such extensions

are called a density measures (Sleziak and Ziman, 2008; Letavaj et al., 2015). Likewise, the Cesaro averaging
operator can be extended to a continuous, positive linear functional on ¢*(N,R) (Bliimlinger and Obata,
1991, Theorem 3). But these extensions are far from unique. Thus, notwithstanding footnote 3, some

“subjectivity” would creep into the expected utility representation, if one tried to extend it beyond Reg(X).



a uniform distribution arises as an expression of Laplace’s (1829) Principle of Insufficient
Reason, which Keynes (1921) called the Principle of Indifference: if all elements of S look
indistinguishable a priori to the decision-maker, then she has no reason to assign greater

probability to some of them than she does to others.

The Lévy group. A Lévy permutation® is a bijection v : N—N such that

L #ne (L. N ) > N)
N—w N

0. (6)

For example, if v only moves a finite subset of N and fixes all other elements, then it is
a Lévy permutation. More generally, if v only moves a zero-density subset of N (e.g. the
set of all perfect squares) and fixes all other elements, then it is a Lévy permutation. For

another example, consider this permutation that swaps the even and odd elements of N:

n+1 if n is odd;
V(n) = (7)

n—1 if n is even.

It is easily verified that v is a Lévy permutation. The set I' of all Lévy permutations
forms a group under composition, called the Lévy group. If x € XN, then define y(x) :=
(yn)2_, € XN by setting y,, := @) for all n € N. Clearly, v(x) € (*(N, X) if and only if
x € (*(N, X). Furthermore, if v € ', then ~(x) € Reg(X) if and only if x € Reg(X).

Axioms. Let > be a weak order on Reg(X). Define the weak order >, on X by restricting
> to constant sequences in the obvious way. Let > be the antisymmetric part of >. Let >,
be the antisymmetric part of >,. We will say that > is nondegenerate if >, is nontrivial.®

For any x = (2,)*_, € XN and any £ € N, define x; := (z¢)ser, an element of X*. A

n=1

®These permutations were introduced by Lévy (1951, Part III). Papers on infinite-population social
welfare such as Lauwers (1998) call them bounded permutations (a slightly misleading term, because the

set {n € N; ~(n) # n} is may be infinite, and the distance |y(n) — n| is may be unbounded as n—o0).
6 In Savage’s (1954) axiomatization, nondegeneracy is Axiom P5. If > is trivial, then > is the totally

indifferent relation; this has a trivial Cesaro average utility representation (3) in which « is any constant
function. So we can assume > is nontrivial without any loss of generality. Nondegeneracy implies that >

is nontrivial. Under mild assumptions, the converse is also true; see footnote 10.



subset M < N is non-null (for >) if there exist x,y € Reg(X) such that xy v = ynm but

x >y. Otherwise M is null (for >).” We will need > to satisfy four axioms.

Al. (Monotonicity) Let M < N be non-null, and let x,y € Reg(&Xx’). Suppose xym =
ynwm, and there exist z,y € X such that z,, = x and y,, = y for all m € M. If

x >4 1y, then x > y.

A2. (Continuity) Let x € Reg(X). Let {x*}?_, be a sequence in Reg(X') with klim do (x",x) =
—00
0. Ifx* >y forall ke N, thenx > y. If x* <y forall keN, then x <y.

A3.  (Separability) Let x,x",y,y’ € Reg(X). Let 7 < Nand K = N\J. Suppose x7 = x/;

and y 7 = y';, while xx = yx and X = yx. Then x > y if and only if X’ > y’.
A4. (T-invariance) For all x € Reg(X), and all ye I', x ~ y(x).

Note that Axioms Al, A3, and A4 apply only to Reg(X). Axiom A2 is the only one that
also extends to Reg(X). Axioms Al - A3 are standard and ubiquitous in social choice
and decision theory. It remains to explain Axiom A4. In an application to intertemporal
choice or infinitely-repeated games, A4 describes infinite patience: the agent is indifferent
between the payoff stream x and its permutation 7(x). This means that she assigns equal
importance to any two moments in time. More generally, she assigns equal importance to
any two sequences of future times, as long as one time-sequence is the image of the other
under an element of I'. For example, the sequence of even times and the sequence of odd
times are treated equally, via the permutation defined in formula (7).8

In an application to intertemporal social choice (where N indexes future people), A4
encodes impartiality. It says that any two future people are treated equally; furthermore,

any two populations are treated equally, if one is the image of the other under an element of

['. Lauwers (1998) introduced A4 under the name Bounded anonymity. Impartiality axioms

"Here we have defined “null” with reference to >, as in Savage’s P3. But we shall later see that in our

framework, nullity does not depend on >: a set is null for > if and only if it has zero density (Lemma A.7).
8In fact, we shall later see that Cesaro average utility is invariant under any permutation of N that

preserves the asymptotic frequency (5) of time sequences, encoding an even stronger notion of infinite

patience. But this stronger invariance property is not required for our axiomatization.
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of this nature are prevalent in intertemporal social choice theory; Khan and Stinchcombe
(2018) discuss the relevant ethical considerations, and Asheim (2010) provides a good
review of the literature.

In an application to decisions under uncertainty (where N represents a space of states
of nature), A4 encodes insufficient reason. It says that all states appear identical, a priori,
so they should have equal weight in the decision; furthermore, any two events (i.e. subsets
of N) should have equal weight, if one is the image of the other under an element of T

We will also need >, to satisfy the following richness condition:

(B) (Boundedness) For any countable, totally bounded Y < X, there exist z,z € X such
that x <, y <, zforally e ).

This is a mild condition that is usually satisfied automatically, as shown by the next result.

Proposition. If (X,d) is a complete metric space, then A2 implies (B).

Here is the main result of this paper.

Theorem. Let > be a nondegenerate weak order on Reg(X) satisfying condition (B).
Then > satisfies Axioms Al - A4 if and only if there is a continuous function u : X—R
such that > has a Cesaro average utility representation (3). In this representation, wu is

unique up to positive affine transformations.

Proof sketch. The first part of the proof roughly follows the proof strategy of Wakker
and Zank (1999) to derive what they call an “additive representation” for > from Ax-
ioms Al - A3. Then Axiom A4 and a theorem of Obata (1988a) are used to show that this
additive representation takes the form (3). See the Appendix for details. ]

The Cesaro average utility representation (3) does not satisfy the Weak Pareto axiom.?

But it does satisfy two weaker conditions. First, it clearly satisfies:

YWeak Pareto says: If z,, >4 v, for all n € N, then x > y. This “Pareto” terminology is appropriate
for applications to intertemporal social choice. In applications to individual intertemporal choice or choice
under uncertainty, the formally identical axiom is called Dominance. We will use the term “Pareto” for

brevity, and let the reader make the obvious translations.



Loose Pareto. For all x € Reg(X), if z,, > y, for all n € N, then x > y.!°

Recall that the lower density of a subset M < N is defined

M) = i |Mm{1]<7...,N}|.

If a weak order has a Cesaro average utility representation (3), then it is easy to verify

that it satisfies the following Pareto condition:

Weak asymptotic Pareto.!! For all x,y € Reg(X) and null M < N, if x,, >, ¥, for all
n € N\M, and there is € > 0 such that § {n € N;u(z,) > u(y,) + €} > 0, then x > y.

Under Axioms Al and A4, a subset M < N is null if 6(M) = 0 (see Lemma A.7). Thus,
Weak asymptotic Pareto applies in particular if (M) = 0 and z,, >, y, for all n € N\M.

A weak order > with representation (3) does not satisfy Full anonymity (i.e. invariance
under all permutations of N). But as already noted, Axiom A4 itself is an anonymity
condition. In fact, > satisfies a stronger anonymity property. To explain this, recall the
density 0 defined in formula (5). Let 28 be the family of all subsets of N with a well-defined
density. A bijection m : N—N is density preserving if 7(B) = 9B, and for all B € B we
have §[n(B)] = 6(B). It is easily verified that > satisfies the following axiom:

Density anonymity. If x,y € Reg(X), and there is a density-preserving permutation 7 :

N—N such that y = 7(x), then x ~ y.

The Lévy group is a proper subgroup of the group of density-preserving permutations

(Obata, 1988b, Propositions 3.1 and 4.1). So Density anonymity is stronger than A4.

The representation (3) might be criticized for failing to satisfy Weak Pareto or Full

anonymity. But in infinite-population social choice, there is a stark tradeoff between Pareto

0This is often called Monotonicity. The term loose Pareto is due to Lauwers and Vallentyne (2004).
As noted in footnote 6, nontriviality of >, implies the nontriviality of >. If we add Loose Pareto to our
axioms, then the converse is also true —i.e. the nontrivialities of > and >, are logically equivalent. But

it seems logically simpler to just assume the nontriviality of >, directly.
1Van Liedekerke and Lauwers (1997) refer to this as Infinite sensitivity, while Khan and Stinchcombe

(2018, Definition 2.2) call it Pareto responsiveness.



and anonymity principles. Weak Pareto is logically incompatible with Full anonymity, and
indeed is barely even compatible with Finite anonymity (i.e. invariance under finite per-
mutations, the weakest possible anonymity axiom); this has been shown in increasing
generality by Diamond (1965, §5), Fleurbaey and Michel (2003, Theorem 2), Zame (2007),
Dubey (2011), and Dubey and Mitra (2011). In fact, Petri (2019) has recently shown that
even Weak asymptotic Pareto is barely compatible with Finite anonymity. See Petri (2019)
for a good review of the relevant literature.

In light of these incompatibility results, the relevant question is not whether one should
compromise on Pareto or anonymity principles, but rather, how much one should compro-
mise on each. Some authors (e.g. Jonsson and Voorneveld 2018) are willing not only to fall
back to Finite anonymity, but also to sacrifice completeness in order to satisfy Strong Pareto.
At the opposite extreme, Asheim et al. (2021a,b) maintain Full Anonymity by sacrificing
Pareto and ignoring all but the least fortunate members of an infinite population. A third
group (e.g. Van Liedekerke and Lauwers 1997, Khan and Stinchcombe 2018) adopt an in-
termediate position, combining Weak asymptotic Pareto with infinite anonymity principles;

this paper follows this third approach.

3 Prior literature

Lauwers (1998), Marinacci (1998), Rébillé (2007), Khan and Stinchcombe (2018) and Jons-
son and Voorneveld (2018) have studied Cesaro average utility representations or variants.
Lauwers (1998, Proposition 3) shows that if a linear function F' : (*(N,R)—R is dy-

continuous and invariant under Lévy permutations, it is a medial limit —i.e. it satisfies'?

1 1
lim inf — < F < i - for all x € XN,
im in ; Xy (x) 1m sup T Z Ty or all x e

T—owo T T—0 =1

Marinacci (1998, Theorem 5) characterizes weak orders on XN represented by value func-

12T auwers refers to Lévy permutations as bounded permutations. His Proposition 3 follows from Theorem
2 of Bliimlinger and Obata (1991). Earlier, Van Liedekerke and Lauwers (1997) had proposed medial limits

as suitable SWFs for infinite populations, but without any axiomatic characterization.
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tions of the form

T—o0 | neN

Vi(x) = lim [inf (% Ti:nu(xt))] : for all x e AN, (8)

t=n

where u : X—R is some utility function. Meanwhile, Marinacci’s Theorem 14 character-

izes weak orders on XN represented by a Polya index of the form

A TR B N
Vo(x) = 11_{% Tlgrgoe—Tt_(lz_:)Tu(a:t) for all x e A, 9)

These representations extend the Cesaro average utility representation (3) because if
CenSG%\/e u(x,) exists, then Va(x) = Censégve u(z,), and if a uniform convergence condi-
tion is satisfied, then also Vj(x) = Censeéve u(xy,). For both representations, Marinacci
assumes that X is the space of all finite-support probability distributions over some un-
derlying set C of consequences, and assumes that > satisfies the six axioms of Gilboa and
Schmeidler (1989); he then enriches these with additional axioms of time-shift invariance
and permutation invariance to achieve his characterizations.

Rébillé (2007, Theorems 2 and 3) characterizes weak orders on ¢*(N,R) that can be
represented by Banach limits and Banach-Mazur limits. Like the present paper, his axioms
include versions of monotonicity, continuity, separability, and permutation-invariance. He
also requires invariance under addition of any element of ¢*(N,R); this yields a represen-
tation in terms of an integral relative to a purely finitely additive measure on N.

Khan and Stinchcombe (2018) study intergenerational social welfare orders on /*(N, R )
that satisfy the first-order distribution overtaking criterion. That is: for any x,y €
(*(N,R,), we have x > y whenever

1 T

liminf =37 (fl@) = fw) > 0, (10)

T—o0
t=1

for all differentiable, increasing functions f : R—R such that f/(r) > € for all r € R (for
some € > 0). This criterion alone does not select a unique social welfare order; Khan and

Stinchcombe study the family of SWOs satisfying this criteria and other normative axioms.

11



Jonsson and Voorneveld (2018, Theorem 1) axiomatically characterize the limit-discounted

utilitarian preorder >, on ¢*(N,R), which is defined as follows: for any x,y € /*(N,R),
a0

X >y — li%n/ilnf 8" (zy —y;) = 0. (11)
t=1

(This preorder is incomplete: it may be the case that neither x > y nor y > x.) Their
characterization involves three axioms: Strong Pareto, invariance under addition of a con-
stant, and the Compensation Principle, which states that if x = (x1,25,...) has Cesaro
average T, then x ~ (T, x1, x9, x3,...) (i.e. delaying an infinite utility stream by one period
can be “compensated” by supplying the Cesaro average utility during the first period).
The relation >,y defined by formula (11) is related to the Cesaro average utility
representation (3) because for any x € ¢*(N,R), a classical theorem of Frobenius (1880)

states that
e}
-0 = i w
when these limits exist. Furthermore, the right-hand limit exists if and only if the left-hand

limit exists. Thus, if x,y € {*(N,R) are Cesaro-summable sequences, and

%E%‘th - %E%onyf’

then it follows from (12) that

0 T 0

.1 .
(lsl/r*ql ) 2 = %%T;(xt—yt) > 0, hence };I/I'Ii;(;t(l't_yﬁ > 0,

and hence x >,y y.2?
Finally, Blackorby et al. (2005, Theorem 6.14, §6.8), Gravel et al. (2011, Theorem 2)
and Kothiyal et al. (2014, Theorem 7) axiomatically characterize average utilitarianism.

But these papers work with finite populations, so they are not closely related to this paper.

BHowever, it is possible that hm T Z Ty = hm T Z y; while hm Z 8t (zy —yp) < 0, so that x <, py
t=1
y. For example, this can occur 1f Ty = yt for all but finitely many t e N In particular, Cesaro average

utility does not satisfy Strong Pareto, whereas >,y does.
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A Appendix: Proofs

First we will prove some claims made early in Section 2 about regular and semiregular
sequences. Let ) be a finite set with the discrete topology. Endow YN with the product
topology and the resulting Borel sigma algbra. Let A(JY) be the set of Borel probability
measures on V": an element of A(yN) is called a stochastic process on Y. If ¢ : N—N is
any function, and y = (y,,)7; € YV, then we define ¢.(y) := (y,)>_,, where v}, := Yy(n)
for all n € N. This defines a continuous (hence, Borel-measurable) function ¢, : YN PN,
A measure p e A(YV) is ¢-invariant if [, (B)] = u[B] for all Borel subsets B < VM.

In particular, the shift map ¢ : N—N is defined by ¢(n) := n + 1 for all n € N;
a ¢-invariant measure in A(QYY) is called a stationary stochastic process. For example,
any stationary )Y-valued Markov chain defines a stationary stochastic process. A finite
permutation of N is a bijection ¢ : N—N that fixes all but a finite subset of N. If
p € A(YN) is invariant under all finite permutations, then it is called an exchangeable
stochastic process. For example, if p € A(Y) and p = @, p (describing an infinite
sequence of independent p-random variables), then p is exchangeable. Any exchangeable
process is stationary. The next result says that if y = (yo, y1, 92, - . .) is a random sequence

generated by any stationary stochastic process on ), then y is regular, almost-surely.

Lemma A.1 If Y is a finite set, and p € A(YY) is a stationary stochastic process, then
/e [Reg(V)] = 1.

Proof: Let ¢ : N—N be the shift map. Then (VV, u, @) is a measure-preserving dynamical
system. For any O < Y, define fo : YN—{0, 1} by setting fo(y) := 1 if y; € O, and
foly) :=0if y; ¢ O. Then for any y € YN, the expression (1) becomes

..,N}:y,eO .
]\lfi_I)I})O#{nE{l, ],V }7?/ € } _ ]\lfl_f)nw%ZfooﬁbZ(Y) (Al)

The right hand side of (A1) is the ergodic average of fo with respect to ¢,. Let Rp :=
{y € Y; the limit (A1) exists}. Then u[Re] = 1, by the Birkhoff Ergodic Theorem;
see e.g. Theorem 2.3 on p.30 of Petersen (1989) or Theorem 372J on p.190 of Fremlin
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(2002). By definition, Reg(Y) := (] Ro. Thus, Reg(}) is the intersection of a finite
ocy
number of subsets of measure 1 (because ) is finite), so u [Reg(Y)] = 1. O

In the special case when p is a product measure (describing an infinite sequence of i.i.d.
random variables), the almost-sure convergence of (Al) follows from the Law of Large
Numbers. In the special case when p is an exchangeable process, it follows from de
Finetti’s Theorem (Fremlin, 2006a, Theorem 459C, p.564). The finiteness of ) is not
required to invoke these results: for any particular O € O(Y), we have u[Rop] = 1. But
Reg(Y) = () Ro, and if Y was infinite, then O())) would be uncountably infinite, so

0eD(Y)
this intersection would not generally have positive measure.

Lemma A.2 Let x, € X, and let x = (x,)7_; be a sequence in X converging to .
(a) Suppose that x, # x,, whenever n # m. Then X is not reqular.

(b) If X is locally compact, then x is semireqular.

Proof: (a) Let M < N be arbitrary. The set O := {4} U {2y }mem is closed, hence an
element of O(X'). For this set, the limit (1) is §(M), which does not exist unless M € B.

Thus, x is not regular.

(b) Let Ky be a compact neighbourhood of z,. Find M e N such that x,, € Ky
for all m > M. Let K := Koy u {x1,...,zpy}; then K is compact. For all j € N,
let x/ := (T1,...,2j, T4, Ts,...). Then x/ € Reg(K) (because x’/ takes only a finite
number of distinct values, all in K), and ]h_,% do(x?,x) = 0 (because ]h_{g T, = x); thus

x € Reg(X). O

Proof of the Proposition. It is easily deduced from Axiom A2 that >, is a continuous
order on X —in other words, all upper and lower contour sets of >, are closed subsets of
X. From this, it follows by standard arguments that any compact subset of X contains

at least one >,-maximal element and at least one >,-minimal element.
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Now let Y € X be totally bounded. Let Y be its closure. Then Y is complete because
X is complete (Willard, 2004, Thm 24.10), and is totally bounded because ) is totally
bounded. Thus, ) is compact (Willard, 2004, Thm 39.9). Thus, by the remarks in the

previous paragraph, there exist some z,z € ) such that z <, y <, z forallye ). [J

The proof of the Theorem requires some machinery. For any subset B < N, recall that
d(B) is defined by the limit (5), if this limit exists, and B is the collection of all subsets
B < N for which §(B) is well-defined. This collection is closed under complementation (i.e.
Be®B < B'eB) and under finite disjoint unions (i.e. if A,B€ B and An B = &,
then A L B € B). But it is not a Boolean algebra, or even a A-system.'* However, § is
“finitely additive”: for all disjoint A, B € B, we have 6(A L B) = §(A) + §(B). Note that
a sequence x € XN is regular in the sense of formula (1) if and only if x is “measurable”
with respect to B, in the sense that for any O € O(X), the set {n e N; x, € O} is in B.
A partition of N is a finite collection of disjoint sets P,...,P; < N (called cells) such
that N = Py u--- uPy. If Pp,..., Py € B, then let us call this a B-partition. Let
B ={Py,....,P,;} and Q = {Qq,...,Qx} be two partitions. Say that P is a refinement of
Q if, for all j € {1,...,J} there exists k € {1,..., K} such that P; < Q. It follows that

every cell of  is a disjoint union of cells of B. Thus,
If B is a B-partition, and P refines Q, then 9 is also a B-partition. (A2)

Any two partitions have a common refinement. But the common refinement of two ‘B-
partitions might not be a B-partition.

An element x € XV is simple if it only takes finitely many values —in other words, there
exist y1,...,yn € X and a partition P = {Py, ..., P} such that z, = y; for all p e P;, for
all j € {1,...,J}. In this case, say x is subordinate to *B. If x is simple, then x € /*(N, X).
If P is a B-partition, then x € Reg(X). Let Smp(X) be the set of simple elements in
(*(N, X). Let SmpReg(&X') be the set of simple elements in Reg(X).

14A A-system (or Dynkin system) is a collection of subsets that is closed under complementation and
under countable disjoint unions (Aliprantis and Border, 2006, §4.3). But N itself is countable, so the only

A-system on N containing all singleton sets is the entire power set p(N).
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Lemma A.3 Smp(X) is dy-dense in (°(N, X), and SmpReg(X) is dy-dense in Reg(X).

Proof: Let x € (*(N,X). Then the set {z,},en is totally bounded. So for any e > 0,
there exists a finite subset {y,...,y;} < X such that {z,},en < U}Ll B(y;,€). For all
jef{l,....J} let M, :={neN; d(z,,y;) <e}. Then N=M; u---uM,. But these
sets are not necessarily disjoint. Define A; := My, Ay := My\M;, and inductively,
Aj = M\ My u---UM;_4) forall je{3,...,J}. Then A,,..., A, are disjoint and
N=A u---uA; Now define z € Smp(X) by setting z, := y; for all a € A;, for all
jef{l,...,J}. Clearly, z is simple, and d(z,x) < € by construction. This works for

any € > 0. This shows that Smp(X) is d,-dense in ¢*(N, X).

Reg(X) is dy-dense in Reg(X), so to prove that SmpReg(X) is dy-dense in Reg(X),
it suffices to show that SmpReg(X') is dy-dense in Reg(X). So, let x € Reg(X). For
any € > 0 and choice of {y;,...,y;} < X, if one defines A;y,..., A; as in the previous
paragraph, then A;,..., A; € B. To see this, note that A; := {n € N; x, € V;} where
V; = B(y;, O\\UIZ) B(y, €) is the difference of two open sets. Thus, J; € O(X), so
A; € B because x € Reg(X). Thus, z € SmpReg(X’). This shows that SmpReg(X) is
dy-dense in Reg(X). O

Lemma A.4 Let x € SmpReg(X), and let y € X. If z € XN is defined by setting z, =
maxs, {Z,,y} for alln € N, then z € SmpReg(X). Likewise, if w € XN is defined by setting
wy, = miny  {x,,y} for all n € N, then w € SmpReg(X).

Proof: Suppose x is subordinate to the B-partition {By,...,B;}. It is easily verified that
z and w are simple, and are subordinate to partitions that are refined by {By,...,B,}
(that is: the cells of these partitions are unions of cells from {By,...,B;}). Thus, these

partitions are also B-partitions, by statement (A2). O

The next lemma provides some useful properties about null subsets of N.

Lemma A.5
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(a) Let A,B < N be disjoint. Then (A and B are both null) < (A w B is null).

(b) Suppose > satisfies A4, A< N and vy e'. Then (A is null) < (v(A) is null).
Proof: (a) “<=" It follows from the definition that any subset of a null set is null.

“=" Suppose A and B are null. Let x,z € Reg(X), and suppose Xy 4.8 = Zn40uB-
Then there exists y € Reg(X) such that xy 4 = ymua and ynp = zng. Thus, x ~ y ~ z,
because A and B are null. Thus, x ~ z, by transitivity. Thus, A L B is null.

(b) “=" Suppose A is null. Let x,y € Reg(X), and suppose Xy (4) = YNy (4). We
must show that x ~ y. Let X' := y(x) and y’ := 7(y). Then X’N\A = y{\I\A. Thus,
x' ~ y’, because A is null. But Axiom A4 says x ~ x’ and y’ ~ y. Thus, x ~ y. This
holds for any x,y € Reg(X') with Xy 4) = Ynq(a). Thus, v(A) is null.

“«=" ~71eT. So exchange the roles of A and (A) and apply the proof of “=". []

Here are three results by Obata (1988a) that we will use repeatedly.

Lemma A.6 (a) For any B e B with §(B) = B > 0 and any A € (0, B), there exists
AeB with A< B and 6(A) = A.

(b) For any A, B € B with 0 < §(A) = 6(B) < 1, there exists v € T such that
V(A) = B.

(c) Let pn: B—>R, be a nonzero function that is finitely additive (i.e. u[Aw B] =
u[A] + u[B] for any disjoint A, B € B) and T'-invariant (i.e. p[y '(B)] = u[B] for
any B € B and v € I'). Then there is some r > 0 such that = r9.

Proof: See Proposition 1.3, Proposition 2.5 and Theorem 2 of Obata (1988a).'? O

15Part (c) also follows indirectly from Theorem 2 of Bliimlinger and Obata (1991), using the equivalence
between finitely additive measures on N and linear functionals on £*. For other very similar results, see
Theorem 1.12 of van Douwen (1992), Proposition 3 of Lauwers (1998), and Proposition 2.4 of Sleziak and
Ziman (2008). Importantly, Obata’s Theorem 2 only requires p to be defined on B —in other words, it

does not need to be a I'-invariant finitely additive measure defined on a Boolean algebra.
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Lemma A.7 Assume Al and A4. Let B e B. Then (6(B) = 0) < (B is null for >).

Proof: “=" Suppose we enumerate B by writing B = {by < by < by < b < ...}. For
each r € {0, 1,2}, define B, := {b,; n = r mod 3}. Thus, B = By 1 B; u By. By Lemma
A.5(a), to show that B is null for >, it suffices to show that By, By, and B, are all null.

First we show that By is null. For this, we will construct sequences x,y € Reg(X') that
are equal everywhere outside of By, and take different constant values a and b inside By,

such that a >, b but x ~ y; this forces B; to be null, on pain of contradicting Axiom Al.

For this task, we first define a permutation o : B—B such that o(By) = By u By,
while 0(B, L By) = By. For all r € {0,1,2} and ¢ € N let by := by,y,. Thus, B, =
{b((]r) < b({) < bg) < bgr) < ...} for each r € {0, 1,2}. Now define oy : Bp— B, 1 B; by

(0) e )
Uo(béo)) _ bq/2 if ¢ is even,
bg)q)/Q if ¢ is odd.

Clearly, o is a bijection from By to By L By. Meanwhile, define oy : By 1 Bo— By by

b ifr =2
b2 if r = 1.

2q+1

al(b((]’")) =

Clearly, o, is a bijection from By u By to By. Finally, define 0 = 0¢ L oq; then o : B—B

is a permutation.

Now define v : N—N by setting (b) := o(b) for all b € B, while v(n) := n for all
n e B'. Then v € I' (because §(B) = 0, so equation (6) is clearly satisfied). Thus,

Axiom A4 says > is invariant under 7.

Now let a,b,c € X with a >, b. (These exist because > is nondegenerate.) Define

x € (*(N, X) as follows: for all k € N,

a ifkeByubBy;
Tk = b if ke Bsy;
c ifkeB.
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Note that x € Reg(X). (To see this, note that B° € B because §(B') = 1, while
By, By, By € B, because any subset of B has density 0, hence is an element of 9.) Let
y = 7(x). Then y ~ x by Axiom A4, because v € I'. It is easily verified that

a ifk‘GBQ;
Y = b ifkeB;ubBy;
c if ke B

In other words, Xp: = Yt while z, = a >, b =y, for all k € B;. If By was non-null for
>, this would contradict Axiom Al. Thus, By must be null. By a similar construction
(exchanging the roles of By, B, and B;), one can show that By and By are also null.

Thus, B itself is null, by Lemma A.5(a).

“«=" We will prove the contrapositive: if §(B) > 0, then B is not null for >. Find
N € N such that & < 0(B). Lemma A.6(a) yields some A; € B with A; < B such that
6(A1) = +. Tt suffices to prove that A; is non-null (because any superset of a non-null
set is non-null, by the contrapositive of Lemma A.5(a)). Lemma A.6(a) yields Ay, = A%
with 6(Az) = +, and then Az = (A; L Ay)* with §(As) = +, and so on. Inductively, we
obtain disjoint A;, ..., Ax_1 € B with §(A4,) = % forallne {l1,...,N—1}. Let Ay :=
(A uAx_1)" Then Ay e Band §(Ax) =1-0(A - U Ay_,) = 1—% = %

Now suppose A; is null. For all n € {2,..., N}, Lemma A.6(b) yields v € I such that
v(A;) = A,. Thus, As, ..., Ay are also null, by Lemma A.5(b). Thus, A; u--- U Ay
is null, by Lemma A.5(a). But A; u---u Ay = N, so this contradicts the assumed

nontriviality of >. Thus, A; cannot be null. ]

Lemma A.8 Suppose > satisfies Al and A4. For any B € B, if B is not null, then there
is a B-partition P = {P1, P, Ps} of N such that P, = B while Py and Ps are both non-null.

Proof: B* € B because B € B. Also, §(B') > 0 by the contrapositive of Lemma A.7,
because B is not null. Lemma A.6(a) yields Py € B with P, < B* and §(P,) = 6(B°)/2.
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Now, P, and B are disjoint, so Py L B € B. Thus, if P3 := (P, u B)', then P53 € B.
Furthermore, N = B L1 Py L1 P3, so 1 = §(N) = §(B) + 6(P2) + 0(P3) so

§(Ps) = 1—6(B) = 6(Ps) = 6(B") — 6(B°)/2 = 6(B")/2 = 6(P2).

Thus, Lemma A.6(b) yields some « € I' such that v(Py) = P3. Thus, Axiom A4 implies
that P, is non-null if and only if Ps is non-null. If Py and Ps; are both null, then
P, L Py = BC is null, contradicting our hypothesis. Thus, at least one of them must be

non-null, which means they are both non-null. O

The next lemma is a standard result about the uniqueness of additive utility representa-

tions. We include a proof for completeness.

Lemma A.9 Let X be a connected topological space with a continuous order >,. Let >
be a continuous weak order on X x X. Let uy,us,v1,v9 : X—>R be continuous functions,
all strictly increasing in >, such that the functions U(xy,xs) = ui(x1) + us(xs) and
V(z1,x2) = vi(x1) + va(x2) are both representations for >. Then there is a constant a > 0

and constants by, by € R such that v; = au; + b; for j =1,2.

Proof: Let Uy := ui(X), Uy 1= ug(X), Vi := v1(X), and Vs := v3(X). These are intervals
in R because uq, ug, v1, and vy are continuous and X’ is connected. The functions uq, us,
vy, and vy are all strictly increasing in >,; thus, they are increasing transformations of
one another. In particular, there are increasing bijections ¢, : Uy—V, and ¢, : Us—> Vs

such that vy = ¢1 ouy and vy = ¢ 0 us.

Let U :=U(X x X) and V := V(X x X). Again, these are intervals in R because U
and V' are continuous and X x X is connected. The functions U and V' both represent
>, so there is an increasing bijection ® : /—V such that V = ® o U. In other words,

for any (z1,z9) € X x X, we have:

) (ul(ajl) + u2(1:2)> bolU(xry,zy) = Vi(xy, zo)

vi(x1) +va(x2) = Prour(x1) + P2 0us(xz). (A3)
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Letting (x1, z2) range over all of X x X' in equation (A3), we get:
O(ry+1re) = d1(r1) + Pa(ra), for all (r1,72) € Uy x Us. (A4)

This is a Pexider equation. Since ¢1, ¢ and ® are increasing bijections between intervals,
they are continuous functions. Thus, there exist constants a > 0, by, b, € Rand b = b;+b,
such that ¢1(ry) = ary + by for all ry € Uy, ¢o(re) = ary + by for all 79 € Uy, and
®(r) =ar + b, for all r € U (Radé and Baker, 1987, Theorem 1 and Corollary 3).'° In

other words, v; = auq + by and vy = aus + by, as claimed. ]

The proof of the main result adapts ideas from the proof of Theorem 16 of Wakker and
Zank (1999) (hereafter refered to as WZ) to construct an “additive representation” for >.
To do this, we will follow some steps in the proof of WZ Theorem 11 —the special case
of WZ Theorem 16 when X = R. We will show that these steps still work when X is a
connected metric space and Axioms Al - A4 are satisfied.

One complication is that WZ start with a weak order defined on the set F of all acts
that are measurable with respect to a Boolean algebra 2l of subsets of the state space.
As we have already noted, B is not a Boolean algebra. And Reg(X) does not include all
functions on N that are “measurable” relative to 8. However, the proof of WZ does not
actually need F to contain all measurable functions (it suffices that F contain all simple
functions). Also, the proof does not need all the properties of a Boolean algebra; what
properties it does use, we can verify on an ad hoc basis for B.

For any B € 9B, let SmpReg(B, X) denote the set of all simple regular sequences in
(*(B, X). Following the terminology of WZ, an additive representation for > on SmpReg(X)
is a set of functions {Vz : SmpReg(B, X' )—>R}gem such that

(AR1) > is represented by V := V.

(AR2) For all B € 9B, the function Vj is d-continuous on SmpReg(B, X'). It is either con-
stant, or it is increasing with respect to >, when restricted to the constant elements

of SmpReg(B, X) (identified with X" in the obvious way).

16See also Theorem 13.3.5, p.361 of Kuczma (2009) for the special case when Uy = Us = U = R.
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(AR3) For any disjoint By,...,By € B with B = By u - u By € B, and any x €
N

SmpReg(B, X), Vs(x) = Z Vs, (xs5,)-
n=1

For any z € X and B < N, let [z]g be the all-z element of (*(B,X). In particular, let

[z] := [x]n. The next result is analogous to WZ Proposition 3.

Lemma A.10 Let > be a weak order on SmpReg(X) satisfying Azioms Al - A4. Let

0,1l € X with o <, . Then > admits an additive representation on SmpReg(X), such that

V([1]) = 1, while Vx([o]s) = 0 for all B € *B.

Proof: Consider a B-measurable partition P = {Py,...,Px} of N. Let SmpReg(P) be
the set of all elements of SmpReg(X) subordinate to 8. Then SmpReg(B) is isomor-
phic to the Cartesian product X¥ in the obvious way, and the order > restricted to
SmpReg(P) thereby induces an order >¢ on X*. Some cells might be null sets for >.
By permuting the cells if necessary, suppose that Py, ..., P, are non-null, and (if J < K)
that Psi1,..., Pk are null. The order > is reducible to an order on X, because it is
independent of the values of coordinates {J + 1,..., K}. We will refer to the order on

X7 as =y (If J = K, then > is the same as >q.)

Assume J > 3. The order >, is >,-increasing in each coordinate of X 7 by Axiom Al,

continuous by Axiom A2 and separable by Axiom A3, so Debreu’s (1960) theorem yields

a collection of continuous functions u?gl, e ,u?;] : X—R, each increasing relative to
>, such that the function V(zy,...,2z;) := ugl (1) 4+ -+ u?ﬁJ () is a representation

of 2(43.17 This representation is unique up to positive affine transformations. By adding

suitable (distinct) constants to u;gl, e ,uﬁj and then multiplying them by a suitable
(common) scalar, one can ensure that
u?gl(o) == u;EJ(o) = 0, while u?gl(l) +- 4+ u;EJ(l) = 1. (A5)

For all j € {J +1,..., K}, define u?gj : X—R to be the constant 0-valued function.

"Debreu assumed X < R was an interval. But his theorem holds when X is any connected topological

space (Wakker, 1989, Theorem I11.6.6, Remarks II1.7.1 and A3.1). We have assumed X is connected.
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Thus, for any x,y € SmpReg (),

(x > y) = <u?§1 (z1) + -+ +up (zx) = up (1) + - + u%(y@) ; (AG)

where z1,...,2x and yy, ...,y are the values that x and y take on the cells of 3.

For any non-null B € B such that B' is also non-null, Lemma A.8 yields a three-
element B-partition ¥ where one cell is B and the other two cells are non-null. Thus,
one can always find at least one ‘B-partition B such that u? is well-defined. We now

show that it is independent of the B-partition in which B is embedded.'®

Claim 1:  For all non-null B € 8 such that B® is also non-null, there is a function

ug : X—R such that u? = ug for any *B-partition 3 in which B is a cell.

Proof: Let P = {Py,...,P;} and Q = {Qy,...,Qk} be two B-partitions, with P; =
B = Q;. We claim that u? = u’g. To see this, define the functions vy : & x X—R

and vg : X x X—R as follows: for any x,y € X,

J

vp(z,y) = u?(fv)JrZu;’%(y) and  wa(z,y) = ug(e)+ Y ug (y)

Let R be the B-partition R := {B, B'}. There is an obvious bijection from SmpReg(R)
to X x X. Thus, the restriction of > to SmpReg(R) induces a weak order on X x X,
and vy and vq are both additive representations of this weak order. Thus, Lemma A.9
says they are equivalent up to positive affine transformation. But the normalization

(A5) implies that u}(o) = u?c(o) = u@(0) = ug(0o) = 0, and ub(l) + u?;c(l) =1=

ug(l) + ug(1). Thus, up = ud. < claim 1

Meanwhile, for any null B € 93, let ug be the constant 0-valued function on X.

Claim 2: For any disjoint A, B € B such that (A 1 B)" is non-null, and any = € X,

ua(x) +up(x) = uqp(x).

18W7Z prove this using the fact that any two partitions have a common refinement. Unfortunately, two

B-partitions do not necessarily have a common B-partition refinement, so we cannot use this strategy.
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Proof: If one of A or B is null, this is trivial. So assume that both are non-null. By
hypothesis C := (A u B)¢ is also non-null. Consider the three-element $B-partition
B = {A,B,C} and the two-element partition Q = {A 1 B,C}. Claim 1 says that
u? = Uc = ug for some function wue. Likewise, uiﬁ = Uy, u?g = ug, and uﬁug = UgB-
Let >q be the restriction of > to SmpReg(P); then the functions {u4, ug, uc} yield

an additive representation of >q in the sense of formula (A6). Likewise, let >q be

the restriction of > to SmpReg(Q); then {u, 5, uc} yields an additive representation
of >q. But >gq is also the restriction of >¢ to SmpReg(Q). Thus, the two functions

{(ug + ug),uc} yield another additive representation of >q5. Lemma A.9 says these

two representations are equivalent up to positive affine transformation. Invoking the

normalization (A5) yields uy(z) + up(x) = uap(x) for all z e X. <& claim 2

Conspicuously, Claim 1 does not address the case when B° is null —in particular, when
B = N. Given any B-partition B = {P1,...,P,} (with J = 3), we could construct
functions up,, ..., up, : ¥—R yielding an additive representation (A6) and satisfying

the normalization conditions (A5), and then define u} : X —R by setting
ub(z) = up(x)+---+up,(x), foralzelX. (A7)

However, if Q = {Qy,..., Qk} is another B-partition, then it is not obvious that u?\f =
uf\?. We cannot apply Claim 2, because this claim specifically does not address the case
when (A U B)t is null —in particular, when A U B = N. If 8 and Q had a common
B-partition refinement R = {R4,..., R}, then we could apply Claim 2 to express the
functions up,,...,up, and ug,, ..., ug, in terms of sums of ug,, ..., ug,; from this, we
could deduce that u?g = u} = ul. But as we have already noted, B is not a Boolean

algebra, so B and 9 do not necessarily have a common B-partition refinement. So this

option is unavailable. Instead, we will use the following two claims.

Claim 3: Let P = {P1,...,P;} and Q = {Qy,...,Q,} be two B-partitions, each
with at least two non-null cells. Suppose there is some v € I' such that v(P;) = Q, for
all je{l,...,J}. Then up, = ug, for all j € {1,...,J}.
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Proof: Define v* : SmpReg(Q)—SmpReg(*B) by setting v*(x) := x’ where ], := ()
for all » € N. For all x,y € SmpReg(Q), Axiom A4 implies that x > y if and
only if v*(x) > 7*(y). Thus, >y and >q are the same weak order on X”/. But
up,,...,up, and ug,,...,ug, both yield additive representations of this weak order.
Thus, standard uniqueness results (e.g. Lemma A.9) say they are equal up to positive
affine transformation. Thus, the normalization (A5) implies that up, = ug, for all

jed{l,..., J}. <& clainm 3

Claim 4: Let P = {Py,..., Py} and Q = {Qy,..., Qr} be two B-partitions of N,

each with at least two non-null cells. Then for all x € X, up,(x) + -+ + up,(x) =

U’Ql(x) +t UQK(x)'

Proof: By merging some of the cells of B together and applying Claim 2, we can assume
without loss of generality that B has only two cells (both non-null); say, P = {P;, P»}.
Likewise, by applying Claim 2 we can assume that Q = {Q;, Q»}. Let p; := d(P;)
and ¢; := 6(Q;) for j = 1,2; then 0 < p1,p2,q1,¢2 < 1 (by the contrapositive of
Lemma A.7), and p; + po = 1 = ¢1 + ¢o.

Lemma A.6(a) yields Ry; < Py with Ry; € 9B such that §(Rqy1) = piqr. Let
Ri2 := P1\Rq1; then it is easily verified that Ri2 € B and §(R12) = p1 (1 —q1) = p1 @2
(because 6(R11) + 0(R12) = 0(P1) = p1). Likewise, Lemma A.6(a) yields Ro; S Po
with Ro; € B and 0(Ra1) = pa q1; if Rag := P2\Ro; then Ros € B and 0(Ras) = p2 ¢a.

Now let Q) := R11 Ry and Q) := Ri211Rae. Then 9}, Q) € B, so Q' := {Q], Q}}
is another B-partition. Furthermore, 6(Q}) = 0(R11) + 0(Ra1) =11 + peqi = 1 =
6(Q1). Thus, Lemma A.6(b) yields some « € I" such that v(Q;) = Q). Since Q; = O}
and Q) = (Q))°, it follows that 7(Q) = Q). Thus, Claim 3 implies that

ugr =ug, and ug, = ug,. (A8)
Thus, for any z € X, we have:

up, () + up,(r) = ur,, (%) + ury, () + Ury (7) + ury, (2)
= ug,(2) +ugy(r) = ug(x)+ug,(x),
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as desired. Here, (*) is by Claim 2 because P; = Ri; 1 Ri2 and Py = Roy L Roa,
while (1) is by Claim 2 because Q) = R11 U Ro; and Q) = Ry L Roo. Finally, (¢) is
by equation (AS). & Claim 4

We can now define uy as in formula (A7); Claim 4 guarantees that this definition is
independent of the choice of partition 3. But there is still the question of how to define
ug when B € 5B is a proper subset of N such that B is null.

Claim 5:  Let B € B such that B® is null. Let 8 = {Py,...,P;} be a B-partition
of N with at least two non-null cells. For all j € {1,...,J}, let Q; := P; n B. Then
Qy,...,9;€B, and for all x € X, ug, (z) + -+ + ug,(x) = un(x).

Proof: Let Qy := B then 6(Qy) = 0 by Lemma A.7. Thus, any subset of Qg also
has zero density, and hence is an element of 8. In particular, for all j € {1,...,J},
we have Qy N P; € B, and thus Q; € B, because Q; = P;\(Qp n P;). Thus, Q :=
{Qo, Q1,...,9,} is a B-partition of N.

Let >q and >q be the weak orders induced on X7 and X”/*! respectively by the
restrictions of > to SmpReg(P) and SmpReg(Q). Then {up,,...,up,} yields an addi-
tive representation of >g, while {ug,, uo,,...,ug,} yields an additive representation

of >q. (Of course, ug, = 0 because Qy is null.)

For any x = (z0,21,...,25) and 'y = (Yo,%1,...,%s) in R/TL if we define x' :=
(v1,...,2y) and y' := (y1,...,ys) in R7, then it is easily verified that x >g y if
and only if X' >q y’ (because Qp is null). Thus, {ug,,...,ug,} is another additive
representation of >q. Thus, the two representations are equal up to positive affine
transformation. Thus, the normalization (A5) implies that ug, = up, for all j €
{1,...,J}. Thus, for all x € X, we have ug, (x)+- - - +ug,(x) = up, () +- - -+up,(x) =

un(x), where the second equality is by (AT7). < clainm 5

Now, for any B € B such that B° is null, define ug as follows. Let Q := {Qq, Q1,..., Q }
be any B-partition of N with Qy = B*, and define ug(x) := ug, (¥)+- - -+ug,(z). Claim 5
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says that this is independent of the choice of 9, and furthermore, ug = uy.

Claim 6: For any disjoint A, B € B and any x € X, uy(z) + up(x) = uap(x).

Proof: Let C := (A u B)t. If C is non-null, this follows from Claim 2. If C is null, then
{A,B,C} is a B-partition, and u4,p = u4+ up by the definition just above. < ciain 6

At this point, we have defined the functions ug for all B € 8. Now, for any B € B,
define Vi : SmpReg(B, X)—R as follows. Let x € SmpReg(B, X), and suppose x is
subordinate to the B-partition € = {Cy,...,C;} of B. Thus, there exist X;,..., X; e X
such that z. = X for all ce C; and all j € {1,...,.J}. Define

VB(X) = ucl(Xl) + .- +UCJ(XJ>. (Ag)

Of course, x is subordinate to many different B-partitions of B. In spite of this, Vx(x)

is well-defined by (A9), by the next claim.

Claim 7:  The value of Vz(x) in formula (A9) is independent of the choice of subor-

dinating partition.

Proof: Let € be the coarsest B-partition to which x is subordinate. (It is easily verified
that this exists.) Every subordinating partition is a refinement of €. Thus, Claim 6
ensures that the value obtained by applying formula (A9) with any other subordinating
partition is equal to the the value obtained by applying (A9) to €. <& claim 7

We have now constructed a collection of functions {Vz : SmpReg(B, X)—R}zcn. It is
straightforward to verify that this collection satisfies properties (AR1)-(AR3). Thus, it
yields an additive representation on SmpReg(&’). Furthermore the normalization (A5)

implies that V([{]) = 1, while Vz([o]g) = 0 for all B € B. O

Proof of the Theorem. 1t is easily verified that the Cesaro average utility representation

(3) implies that > satisfies Axioms Al - A4. So we will focus on the converse implication.
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Suppose > satisfies condition (B) and Axioms Al - A4. Fix o,l € X with o <, L.
Let {Vg}pen be the additive representation of > on SmpReg(X) from Lemma A.10. So
V([{]) = 1, while Vz([o]s) = 0 for all B € B.

Claim 1: For any x,y € SmpReg(X), if x,, >, y, for alln € N, then x >y.

Proof: This follows from Lemma A.10, exactly as in WZ Corollary 18. <& claim 1

Claim 2: For all y € Reg(X), there exist z,z € X such that [z] <y < [z].

Proof: We will prove the existence of z. The proof for z is similar. The set {y,}*_; is
totally bounded, because y € Reg(X) < ¢*(N, X). Thus, Condition (B) yields z € X

such that y,, <, z for all n e N.

For any k € N, Lemma A.3 yields some w € SmpReg(X') such that dy(w,y) <
i. Suppose w is subordinate to the B-partition {By,...,B,}, and takes the values
Wi, ..., Wy onthese cells. Forall j € 7, let n; € B; be arbitrary; then d(y,,, W;) < ﬁ
Also, Yy, <4 2. So, define y* € SmpReg(X) as follows: for all j € {1,...,J} and all

be Bj, set yp = yn,. It follows that yf <, z and d(y}, ws) = d(yn,, W;) < 5-. Thus,
(a) For all ne N, yf <, 2.
(b) For all n e N, d(y,, ya) < d(yy, wn) + d(wn, yn) < 57 + 5 = -

Observation (b) means that do(y*,y) < +. Meanwhile, observation (a) and Claim 1

1
E.
imply that y* < [z]. Repeat this construction for all k& € N, to obtain a sequence

{y*}, with y* < [z] for all k € N, such that klim do(y",y) = 0. Thus, Axiom A2
—00
implies that y < [z]. <& claim 2

Let x € Reg(X). We shall say that y is a constant equivalent for x if [y] ~ x.'°

Claim 3: Every element of Reg(X) has a constant equivalent.

Proof: (Following WZ Lemma 8) Let y € Reg(X). Let X~ := {r € &; [z] <y} and
let Xt := {2z € X; [z] = y}. These sets are nonempty by Claim 2, and closed by

YFor comparison, Wakker and Zank (1999) call this a certainty equivalent.
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Axiom A2. Finally, X = X~ U X', since > is a complete relation. Thus, X~ and X"

cannot be disjoint, since X is connected. Let y € X~ n X*. Then [y] ~ x. < clain 3

For all x € X, let u(x) := V([z]). This defines a function u : X—R. This function
is continuous and increasing with respect to >,, by property (AR2) from Lemma A.10.

Also, u(l) = 1 and u(0) = 0. For any x € Reg(X), let
V(x) = u®@), where T € X' is a constant equivalent of x, (A10)

where this constant equivalent T exists by Claim 3. If T and Z are both constant equiv-
alents for x, then [T] ~ x ~ [Z], so that u(Z) = V([z]) = V([Z]) = u(Z) by property
(AR1). Thus, V(x) is well-defined in formula (A10).

Claim 4: V represents >.

Proof: Let x,y € Reg(X) with x > y. If T and ¥ are the constant equivalents of x
and y, then [7] » x > y ~ [], so [z] = [7], so V([z]) = V([7]), by (AR1) from
Lemma A.10. Thus, V(x) = V(y) by formula (A10). <& claim 4

Claim 5: V is dy-continuous on Reg(X).

Proof: (Following WZ Lemma 19) Let R := {V(y); y € Reg(X)}. Then R = {u(z);
xr € X} by (A10). Thus, R is connected, because u is continuous and X is connected.

Now let r € R; we will show that the preimage set V~![r, ) is dy-closed. Let
y € Reg(X) such that V(y) = . Then V7![r,0) := {x € Reg(X); x > y} by
Claim 4, and this set is dy-closed, by Axiom A2. By a similar argument, V~1(—c0, r]

is dy-closed. This holds for all r € R; thus, V is dy-continuous. < Claim 5

Recall from Lemma A.10 that
Vs([o]g) = 0, forall BeB. (A11)
For any x € X, define the function p* : 8—R as follows:
w'(B) = Va([z]n), for all B € B. (A12)
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This function is finitely additive: for any disjoint A, B € B, property (AR3) and defini-
tion (A12) yield p*[AuB] = p*[A]+p”[B].2° The next claim says that y* is T-invariant.

Claim 6: Forallze X, all Be B, and all y e T, u*[v1(B)] = p*[B].
Proof: Let B' := v *(B). Define x,x’ € Reg(X) as follows: z, = z for all n € B and

x, = o for all n ¢ B. Likewise, 2!, = z for all n € B’ and 2/, = o for all n ¢ B’. Thus,

for all n € N,

, x if nebB; z if ~(n)e B;
Ty = = = Tyn)- (A13)
o if ne¢B o if ~(n)¢B

In other words, x’ = y(x). Thus, x ~ x/, by Axiom A4. Thus,
V) = V), (AL4)
by property (AR1) from Lemma A.10. Now let C := N\B and C’ := N\B'. Then

V(x) = Vs(xp) +Velxe) = Vas(lz]s) + Ve(lole) = u*[B], (AlD)
and V(X) = Ve(xp)+Volxe) 5 Vel(lzls)+ Ve(lole)

= u[B] = wh™(B) (A16)
Here, both (%) are by (AR3) from Lemma A.10, both (f) are by the definitions of
x and x’; and both (¢) are by equations (All) and (A12). Combining equations
(A14)-(A16), we get pu“[y~1(B)] = p*[B], as claimed. This works for any z, B, and 7.

<> Claim 6

For any x € X, Claim 6 and Lemma A.6(c) yield r € Ry such that u*[B] = r§(B) for
all B e ®B. In fact, r = u(z), because p”[N] = V([z]) = u(x), while §(N) = 1. Thus,

pB] = wu(z)o(B), forall BeB. (A17)

In particular, p'[B] = §(B), for all B € B, because u(l) = 1.

Claim 7: Ify € SmpReg(X) , then V(y) = Ces%ve u(Yn)-
ne

20We do not call u* a “measure” because B is not a Boolean algebra.
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Proof: If y € SmpReg(X), then there exist a B-partition {By,...,By}and Y1, ..., YM e
X such that y, = Y™ for all b € B, and all m € {1,...,M}. In other words,
VB, = [Ym]Bm. ThUS,

Viy) = > Vs, (ys,) = D Ve, ([Y"s,)

m=1 m=1
M M M
) > 1 (Bu) 5 Dluy™)-6(Bn) = > u(Y™) CesAve 15, (n)
m=1 m=1 m=1
M
— Ceﬁqe%ve Z_lu(Ym)-lgm(n) = CensEANve w(Yn),

as claimed. Here, (§) is by property (AR3) from Lemma A.10, (x) is by equation

(A12), (1) is by (A17), (f) is by the linearity of the Cesaro average operator, and (o)
M

is because u(y,) = Z u(Y™) - 1g,,(n) for all n e N. <& claim 7

m=1

Claim 8: Lety € Reg(X), let x € SmpReg(X), and let € > 0.

(a) Suppose y, > x, for all n € N. Then there exists y’ € SmpReg(X') such that
do(y',y) <eand V(y') = V(x) —e.

(b) Suppose y, <. z, for all n € N. Then there exists y' € SmpReg(X) such that
do(y',y) <eand V(y') < V(x) + .

Proof: We will prove (a); the proof of (b) is analogous. Let Y = {y,}r_,. Then Y is
totally bounded because y € Reg(X) < ¢*(N,X). So there exist ty,...,t; € X such

J
that Y < U B(t;,5). Forall je{l,...,J}, let V; :=Y n B(t;, 5).
j=1

Condition (B) yields x, z € X such that z <, y <, zforall y € Y. So u(z) < u(y) <

u(z) for ally € Y. Let M := [(u(z) —u(zx))/e|. Then for each j € {1,...,J}, there is a
finite subset W; < ); (with |W;| < M) such that for all y € ); there is some w € W;
with [u(y) — u(w)| < e. Note that d(y,w) < d(y,t;) + d(tj;,w) < § + § = €. Thus,
y € B(w,e€). So for all we W;, let O, := {z € B(w,¢); |u(x) —u(w)| < e}. This is

an open subset of X' (because u is continuous and B(w, €) is open). We have just seen
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that ), < U O.. Repeating this construction for all j € {1,...,J}, we deduce that
wer

J
Yy < ) 0w = |JOuw where W = | W,
1L weWw; j=1

j= wew

W is a finite union of finite sets, hence finite. By repeating the construction of
Lemma A.3, we obtain y’ € SmpReg(N, W) such that for all w € W and all n € N, if
Y, = w, then y, € O,. Thus, d(y,,y,,) < € and |u(y,) — u(y,)| < €, hence u(y,) <
u(y.,) + €. By hypothesis, z,, <, yn, s0 u(x,) < u(y,); thus, we get u(z,) < u(y),) + €.

Thus, u(y,) > u(z,) — € for all n € N, so V(y') = V(x) — € by Claim 7 and
monotonicity of the Cesaro average. Also, d(y,,y,,) < € for all n € N, so d(y,y’) < €.

< clain 8

The next claim shows that V' satisfies a limited form of pointwise monotonicity.!

Claim 9: Let y € Reg(X) and x € SmpReg(X).

(a) Ifx, <, y, for alln e N, then V(x) < V(y).

(b) If z,, >, y, for all n € N, then V(x) = V(y).

Proof: We will prove (a). The proof of (b) is analogous. Claim 8(a) yields a sequence
{y*}_, in SmpReg(X) with limy_ ., d(y*,y) = 0, such that for any ¢ > 0, there is
some K € N such that V(y*) > V(x)—eall k > K. Claim 5 yields Jim V(y") = V(y).
Thus, V(y) = V(x) — ¢, for any € > 0. Thus, V(y) = V(x). <& Claim 9

Claim 10: For any y € Reg(X), V(y) = Ces%ve w(Yn)-
ne

Proof: The set {y,}r_; is totally bounded, because Reg(X) < (*(N, X). So (B) yields

x,z € X with z <, y, <, 2z for all n € N. Thus, u(z) < u(y,) < u(z) for all n e N.

Let € > 0. Let M := [|u(z) — u(z)|/€e]. Since X is connected and wu is continuous,

there exist wy,...,wy € X with x = wyg < wy < -+ < wy = z and |u(w,,) —

21The corresponding result in WZ is Lemma 9. But their proof uses the fact that R is linearly ordered

and its order topology is the same as its metric topology. So it is not suitable in the present context.
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w(wm-1)| < e forall me {1,..., M}. Define By := {neN; wy_1 <y, < wy}, and

forallme [1... M), define B,, := {neN; w,_1 <y, <w,}. Then N = By -1By.

Claim 10A: B, €*B forallme {1,..., M}.

Proof: First suppose m e [1...M). Let O,, == {x € X; wp—1 <4 T <4 Ym}. Axiom A2
implies that the order >, is continuous on X. Thus, O,, is the intersection of the
open set {r € X; = <, y,,} and the closed set {x € X'; w,,_1 <, z}, hence it is an
element of O(X). But B, := {neN; y, € O,}; thus B,, € B because y is regular.
This argument works for m € [1...M). A similar argument shows that By, € B

(but in this case, the set Oy is closed in &X). V Claim 10A
Now define y,y € SmpReg (&) as follows:
For all me {1,..., M} and all b € B,,, Y, = Wp—1 and Y, 1= Wp.

Thus, for all n € N, we have Y. =« Yn <4 Y, Thus Claim 9 yields

Viy) < Vily) < V@) (A18)
Meanwhile, Claim 7 says that
Viy) = Censeé}gve u(y ) and V(y) = CenseANve u(7,)- (A19)
Combining statements (A18) and (A19), we get
CenselA\]ve uly ) < Viy) < Censé%ve u(7,), (A20)

Also, for all n € N, we have |u(7y,) — u(y )| < e. Thus,

=—n

< e and |uF,) —uly)| <

=N

for all n € N, ‘u(yn) —u(y )

Thus,

Ces%ve w(y,) — Ces%ve u(yn)

< eand |CesAve u(y,) — CesAve u(y )| < e
neN neN =n

(A21)
Combining (A20) and (A21) yields
CesAve u(y,) —e < V(y) < CesAve u(y,) +e¢,
neN neN
This holds for any € > 0. The claim follows. <& claim 10
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We now extend Claim 10 to Reg(X'), using d..-density.

Claim 11: For any y € Reg(X), V(y) = Ces%ve w(Yn)-
ne

Proof: Let y € Reg(X). If y € Reg(X) then Claim 10 immediately yields the above
equation. Otherwise, there is a compact subset K = X and a sequence (y7)72, of
elements of Reg(KC) such that jhjg dw(y?,y) = 0. Thus, Claim 5 yields

ImV(y) = Viy). (A22)
For all n € N, we have y, = lim; . 3/, so y, € K, because K is closed. Now, u is
continuous and K is compact, so the restricted function ¢ is uniformly continuous.
Thus, for any € > 0 there is some 1 > 0 such that |u(z) —u(y)| < € for all z,y € K with
d(xz,y) <n. But h—>Holo do(y’,y) = 0, so there is some J, € N such that for all j > J,
we have dy(y?, y)] < n; hence for all n € N, d(y?, y,,) < n and thus |u(y?) — u(y,)| < e.
From this it follows that

CesAve u(y®) — CesAve u(y,)| < ¢ for all j > J..

neN neN

We can find such a J, for any € > 0. Thus,

lim CesAve u(y)) = CesAve u(y,). (A23)

Jj—00 neN neN

Finally, for all j € N, Claim 10 says V(y’) = Ces}%ve u(y?). Combine this fact with
ne
equations (A22) and (A23) to conclude that V(y) = Ces%ve w(Yn). O claim 11
ne

The theorem now follows by combining Claims 4 and 11. ]

Remarks. (a) We have required Axiom A3 (Separability) to apply on all of Reg(X). But
an inspection of the proof shows that we really only need A3 to hold on SmpReg(X).

(b) In the proof of the theorem, the first step was to show that > has a “subjective
expected utility” (SEU) representation involving a finitely additive “measure” p on 8. We

then used Axiom A4 to show that p is I-invariant, and then invoked Theorem 2 of Obata
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(1988a) to deduce that y is the natural density measure 6. From this, we deduced that the
aforementioned SEU representation is the Cesaro average utility representation (3). To
achieve the initial SEU representation, we used Axioms Al - A4 and the proof strategy of

Wakker and Zank (1999). But one could use another axiomatic characterization of SEU.

One complication is that B is not a Boolean algebra. So the original theorem of Savage
(1954) is not applicable. However, 8 is a mosaic; thus, the axiomatization of Kopylov
(2007) is applicable.?? Thus, one could state and prove a version of the main result using

Kopylov’s formulation of Savage’s axioms in place of Axioms Al - A4.

(c) A version of Cesaro average can be defined on any countable amenable group (or
monoid) using a Fglner sequence.?® The standard Cesaro average on N is just the special
case corresponding to the Fglner sequence {{1,..., N}}%_;. Except for Lemma A.6 (based
on results of Obata (1988a)), the proof of the Theorem does not use any special proper-
ties of N. The rest of the proof generalizes immediately to any other countable monoid
(indeed, any countable set). Thus, given an extension of Obata’s results to some other
countable amenable monoid M, one could immediately obtain a corresponding extension
of the Theorem to M. Unfortunately, to our knowledge, there are no such extensions. This

is an interesting avenue for future research.

22 A mosaic is any collection B of subsets satisfying statement (A2).
23 A countable group (or monoid) (G, ) is amenable if there is a finitely additive probability measure u

defined on the power set ©(G) that is invariant under left-multiplication —that is, for any A < G and
g€G, plg-A) = pu(A) (see e.g. Fremlin 2006a, §449). For example, N and Z are amenable, as is any
Cartesian product N7 x ZX for any .J, K € N. Any finitely generated abelian group is amenable. So is any
solvable group, or any group with a Cayley digraph having subexponential growth.

A Fglner sequence for G is an increasing sequence of finite subsets § = {F,}°_; of G such that

(1) § exzhausts G: For all g € G there is some N € N such that g € F, for all n > N; and
[Pl
A countable group is amenable if and only if it has a Fglner sequence (Fglner 1955; Fremlin 2006a,

(2) § is approzimately invariant: For all g € G, lim
n—o0

449X (n)). For monoids, the situation is similar but more complicated; see e.g. Gray and Kambites (2017).
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