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A characterization of Cesàro average utility∗

Marcus Pivato†

February 22, 2022

Abstract

Let X be a connected metric space, and let ľ be a weak order defined on a suitable

subset of XN. We characterize when ľ has a Cesàro average utility representation.

This means that there is a continuous real-valued function u on X such that, for all

sequences x “ pxnq
8
n“1 and y “ pynq

8
n“1 in the domain of ľ, we have x ľ y if and

only if the limit as NÑ8 of the average value of upx1q, . . . , upxN q is higher than limit

as NÑ8 of the average value of upy1q, . . . , upyN q. This has applications to decision

theory, game theory, and intergenerational social choice.

JEL class: D81, D63, D71.

1 Introduction

Certain problems in normative economics involve preferences over countably infinite se-

quences px1, x2, x3, . . .q of outcomes. For example, such preferences arise in infinite-horizon

intertemporal choice, in infinitely repeated games, and in decisions under uncertainty with

a countable state space. Given a utility function u : XÝÑR, one natural way to evaluate

an infinite sequence is via the Cesàro average utility lim
NÑ8

1
N

N
ř

n“1

upxnq, assuming this limit
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is well-defined. In models of intertemporal choice, Cesàro average utility describes prefer-

ences with infinite patience. This paper axiomatically characterizes preferences admitting

such a representation. Preferences with similar representations have previously been stud-

ied by Lauwers (1998), Marinacci (1998), Rébillé (2007), Khan and Stinchcombe (2018)

and Jonsson and Voorneveld (2018). But to our knowledge, this is the first characterization

of Cesàro average utilities.

The remainder of the paper is organized as follows. Section 2 explains the formal frame-

work and the four axioms, and states the main result. Section 3 reviews prior literature.

All proofs are in the Appendix.

2 Model and main result

Let N “ t1, 2, 3, . . .u. Let X be a connected metric space, and let X N denote the set of all

sequences x “ pxnq
8
n“1, where xn P X for all n P N. For any x P X N, we will say that x

is totally bounded if, for any ε ą 0, the set txnu
8
n“1 can be covered with a finite number

of ε-radius balls in X . Let `8pN,X q :“ tx P X N; x is totally boundedu. For example, if

X “ RN , then this is equivalent to requiring x to be a bounded sequence —i.e. requiring

sup
nPN

|xn| ă 8, so this definition reduces to the standard definition of `8pN,RNq. But in a

general metric space, total boundedness is more restrictive than mere boundedness. Define

the supremum metric d8 on `8pN,X q in the standard way:

d8px,yq :“ sup
nPN

dpxn, ynq.

If X “ RN , then this is just the standard supremum norm metric on `8pN,RNq.

Regular sequences. Let OpX q be the set of all sets of the form O X C, where O Ď X

is open and C Ď X is closed. In particular, OpX q contains all open and closed subsets of

X . (If X is locally compact, then OpX q “ tlocally compact subsets of X u. But we will

not use this fact.) A sequence x P X N is regular if, for any subset O P OpX q, the limit

lim
NÑ8

#tn P t1, . . . , Nu ; xn P Ou
N

(1)
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exists.1 Here are three examples of regular sequences.

• Any periodic sequence is regular.

• Suppose X “ R. Let a, b P R be constants and let xn “ sinpa n ` bq for all n P N;

then pxnq
8
n“1 is regular. So is any linear combination of such sequences.

• Let Y Ď X be a finite subset, let ρ be a probability measure on Y , and let y “

py0, y1, y2, . . .q be an infinite sequence of independent random variables drawn from

ρ. Then y is regular with probability 1. The same thing is true if y is a sequence of

exchangeable random variables, or if y is generated by a stationary Markov process,

or indeed, any stationary stochastic process on Y (see Lemma A.1 in the Appendix).

Let RegpX q denote the set of all regular sequences in `8pN,X q.

Semiregular sequences. A sequence x P X N is semiregular if either (1) x is regular, or

(2) there is a compact subset K Ď X and a sequence pxjq8j“1 of elements of RegpKq such

that lim
jÑ8

d8px
j,xq “ 0. Let RegpX q denote the set of all semiregular sequences in X N.

(It is easily shown that RegpX q Ď `8pN,X q.) For example, suppose X is ball-compact,

meaning that every closed ball in X is compact. (This holds if X itself is compact, but it

also holds if X is RN or any closed subset of RN .) Then x is semiregular if and only if it

is a d8-limit of elements of RegpX q. Thus, for ball-compact spaces, RegpX q is the closure

of RegpX q in the d8-metric. But the definition works for any metric space.

Some semiregular sequences are not regular. For example, if x “ pxnq
8
n“1 is a convergent

sequence in X , then in general, x is not regular. But if X is locally compact, then x is

semiregular (see Lemma A.2 in the Appendix).

Cesàro averages. For any sequence r “ pr1, r2, . . .q P RN, the Cesàro average is defined

CesAve
nPN

rn :“ lim
NÑ8

1

N

N
ÿ

n“1

rn, (2)

when this limit exists. In this case, one says that r is Cesàro summable.

1In the case X “ R, these are similar to what Khan and Stinchcombe (2020, §3.7) call ergodic sequences.
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Cesàro average utility. Let ľ be a weak order (i.e. a complete, transitive binary

relation) on RegpX q. Let us say that ľ has a Cesàro average utility representation if there

is a function u : XÝÑR such that, for all x,y P RegpX q,

x ľ y ðñ CesAve
nPN

upxnq ě CesAve
nPN

upynq. (3)

This paper axiomatically characterizes weak orders on RegpX q that admit such a represen-

tation. Such weak orders have a variety of applications in economics. We will now describe

four: intertemporal decisions, infinitely repeated games, intertemporal social choice, and

decisions under uncertainty.

Intertemporal choice. Suppose N represents an infinite sequence of future times, and

X is the set of outcomes that could occur at each time. So an element of RegpX q represents

an infinite stream of outcomes. Thus, a weak order on RegpX q represents the intertemporal

preferences of an agent. The Cesàro average utility representation (3) is something like the

limit of the discounted utility sum
8
ř

n“1

δn upxnq as δ Õ 1. (See equation (12) in Section 3.)

It thus describes an agent with infinite patience. If an intertemporal preference has a

representation (3), then it satisfies a strong version of Koopmans’s (1960) Stationarity

axiom;2 for all sequences px0, x1, x2, . . .q and py0, y1, y2, . . .q, we have

px0, x1, x2, . . .q ľ py0, y1, y2, . . .q ðñ px1, x2, . . .q ľ py1, y2, . . .q. (4)

Infinitely repeated games. Closely related to intertemporal choice is the theory of

repeated games. To obtain equilibria, it is common to assume that the game will be

repeated an infinite number of times. So it is necessary to endow players with preferences

over the resulting infinite-length payoff streams. For this purpose, the Cesàro average

utility (3) is quite convenient. It describes the preferences of infinitely patient players, and

appears in several important folk theorems; see e.g. Osborne and Rubinstein (1994, §8.6)

or Maschler et al. (2013, §13.5).

2Koopman’s original Stationarity axiom requires (4) only when x0 “ y0.
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Intertemporal social choice. Suppose the elements of N represent all the people who

will exist in the future, ordered chronologically by their moment of birth, and X is the set

of possible life outcomes for each future person. Thus, each element of RegpX q represents

an intertemporal social outcome, and a weak order on RegpX q is an intertemporal social

welfare order. In this interpretation, the Cesàro average (3) is a utilitarian SWF.

Uncertainty and insufficient reason. Let S be a countably infinite space of possible

states of nature with a “natural” enumeration S “ ts1, s2, . . .u. Let X be a topological

space of outcomes. An act is a function α : SÝÑX . Since the foundational work of Savage

(1954), a weak order over acts has been used as a model of rational decision-making under

uncertainty. If we identify S with N in the obvious way (using the enumeration given),

then the act α can be identified with an element of X N. In this context, the Cesàro average

utility representation (3) can be interpreted as an expected utility representation, where u

is the agent’s utility function, and her probabilistic beliefs correspond roughly to density

of subsets of N.3 For any subset B Ď N, its density is defined

δpBq :“ lim
NÑ8

ˇ

ˇ

ˇ
B X t1, . . . , Nu

ˇ

ˇ

ˇ

N
, (5)

whenever this limit exists. We say that the agent’s beliefs correspond “roughly” to δ

because the limit (5) does not exist for all subsets of N, and the sets for which it does

exist do not form a Boolean algebra. Nevertheless, δ is finitely additive on the sets for

which it is well-defined: if A and B are disjoint subsets of N such that δpAq and δpBq

are both well-defined, then it is easily verified that δpA \ Bq “ δpAq ` δpBq. Thus δ is

something like a “uniformly distributed probability measure” on the state space S.4 Such

3Given the Savage framework, it is tempting to describe this as subjective expected utility. However,

as noted by a referee, the Cesàro average (2) and density (5) are entirely objective. (But see footnote 4.)
4In fact, δ can be extended to a finitely additive measure on the entire power set ℘pNq. Such extensions

are called a density measures (Sleziak and Ziman, 2008; Letavaj et al., 2015). Likewise, the Cesàro averaging

operator can be extended to a continuous, positive linear functional on `8pN,Rq (Blümlinger and Obata,

1991, Theorem 3). But these extensions are far from unique. Thus, notwithstanding footnote 3, some

“subjectivity” would creep into the expected utility representation, if one tried to extend it beyond RegpX q.
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a uniform distribution arises as an expression of Laplace’s (1829) Principle of Insufficient

Reason, which Keynes (1921) called the Principle of Indifference: if all elements of S look

indistinguishable a priori to the decision-maker, then she has no reason to assign greater

probability to some of them than she does to others.

The Lévy group. A Lévy permutation5 is a bijection γ : NÝÑN such that

lim
NÑ8

#tn P t1, . . . , Nu; γpnq ą Nu

N
“ 0. (6)

For example, if γ only moves a finite subset of N and fixes all other elements, then it is

a Lévy permutation. More generally, if γ only moves a zero-density subset of N (e.g. the

set of all perfect squares) and fixes all other elements, then it is a Lévy permutation. For

another example, consider this permutation that swaps the even and odd elements of N:

γpnq “

$

&

%

n` 1 if n is odd;

n´ 1 if n is even.
(7)

It is easily verified that γ is a Lévy permutation. The set Γ of all Lévy permutations

forms a group under composition, called the Lévy group. If x P X N, then define γpxq :“

pynq
8
n“1 P X N by setting yn :“ xγpnq for all n P N. Clearly, γpxq P `8pN,X q if and only if

x P `8pN,X q. Furthermore, if γ P Γ, then γpxq P RegpX q if and only if x P RegpX q.

Axioms. Let ľ be a weak order on RegpX q. Define the weak order ľ˚ on X by restricting

ľ to constant sequences in the obvious way. Let ą be the antisymmetric part of ľ. Let ą˚

be the antisymmetric part of ľ˚. We will say that ľ is nondegenerate if ą˚ is nontrivial.6

For any x “ pxnq
8
n“1 P X N and any L Ď N, define xL :“ px`q`PL, an element of X L. A

5These permutations were introduced by Lévy (1951, Part III). Papers on infinite-population social

welfare such as Lauwers (1998) call them bounded permutations (a slightly misleading term, because the

set tn P N; γpnq ‰ nu is may be infinite, and the distance |γpnq ´ n| is may be unbounded as nÑ8).
6 In Savage’s (1954) axiomatization, nondegeneracy is Axiom P5. If ą is trivial, then ľ is the totally

indifferent relation; this has a trivial Cesàro average utility representation (3) in which u is any constant

function. So we can assume ą is nontrivial without any loss of generality. Nondegeneracy implies that ą

is nontrivial. Under mild assumptions, the converse is also true; see footnote 10.
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subsetM Ď N is non-null (for ľ) if there exist x,y P RegpX q such that xNzM “ yNzM but

x ą y. Otherwise M is null (for ľ).7 We will need ľ to satisfy four axioms.

A1. (Monotonicity) Let M Ď N be non-null, and let x,y P RegpX q. Suppose xNzM “

yNzM, and there exist x, y P X such that xm “ x and ym “ y for all m P M. If

x ą˚ y, then x ą y.

A2. (Continuity) Let x P RegpX q. Let txku8k“1 be a sequence in RegpX q with lim
kÑ8

d8px
k,xq “

0. If xk ľ y for all k P N, then x ľ y. If xk ĺ y for all k P N, then x ĺ y.

A3. (Separability) Let x,x1,y,y1 P RegpX q. Let J Ď N and K “ NzJ . Suppose xJ “ x1J

and yJ “ y1J , while xK “ yK and x1K “ y1K. Then x ľ y if and only if x1 ľ y1.

A4. (Γ-invariance) For all x P RegpX q, and all γ P Γ, x « γpxq.

Note that Axioms A1, A3, and A4 apply only to RegpX q. Axiom A2 is the only one that

also extends to RegpX q. Axioms A1 - A3 are standard and ubiquitous in social choice

and decision theory. It remains to explain Axiom A4. In an application to intertemporal

choice or infinitely-repeated games, A4 describes infinite patience: the agent is indifferent

between the payoff stream x and its permutation γpxq. This means that she assigns equal

importance to any two moments in time. More generally, she assigns equal importance to

any two sequences of future times, as long as one time-sequence is the image of the other

under an element of Γ. For example, the sequence of even times and the sequence of odd

times are treated equally, via the permutation defined in formula (7).8

In an application to intertemporal social choice (where N indexes future people), A4

encodes impartiality. It says that any two future people are treated equally; furthermore,

any two populations are treated equally, if one is the image of the other under an element of

Γ. Lauwers (1998) introduced A4 under the name Bounded anonymity. Impartiality axioms

7Here we have defined “null” with reference to ľ, as in Savage’s P3. But we shall later see that in our

framework, nullity does not depend on ľ: a set is null for ľ if and only if it has zero density (Lemma A.7).
8In fact, we shall later see that Cesàro average utility is invariant under any permutation of N that

preserves the asymptotic frequency (5) of time sequences, encoding an even stronger notion of infinite

patience. But this stronger invariance property is not required for our axiomatization.
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of this nature are prevalent in intertemporal social choice theory; Khan and Stinchcombe

(2018) discuss the relevant ethical considerations, and Asheim (2010) provides a good

review of the literature.

In an application to decisions under uncertainty (where N represents a space of states

of nature), A4 encodes insufficient reason. It says that all states appear identical, a priori,

so they should have equal weight in the decision; furthermore, any two events (i.e. subsets

of N) should have equal weight, if one is the image of the other under an element of Γ.

We will also need ľ˚ to satisfy the following richness condition:

(B) (Boundedness) For any countable, totally bounded Y Ď X , there exist x, z P X such

that x ĺ˚ y ĺ˚ z for all y P Y .

This is a mild condition that is usually satisfied automatically, as shown by the next result.

Proposition. If pX , dq is a complete metric space, then A2 implies (B).

Here is the main result of this paper.

Theorem. Let ľ be a nondegenerate weak order on RegpX q satisfying condition (B).

Then ľ satisfies Axioms A1 - A4 if and only if there is a continuous function u : XÝÑR

such that ľ has a Cesàro average utility representation (3). In this representation, u is

unique up to positive affine transformations.

Proof sketch. The first part of the proof roughly follows the proof strategy of Wakker

and Zank (1999) to derive what they call an “additive representation” for ľ from Ax-

ioms A1 - A3. Then Axiom A4 and a theorem of Obata (1988a) are used to show that this

additive representation takes the form (3). See the Appendix for details. l

The Cesàro average utility representation (3) does not satisfy the Weak Pareto axiom.9

But it does satisfy two weaker conditions. First, it clearly satisfies:

9Weak Pareto says: If xn ą˚ yn for all n P N, then x ą y. This “Pareto” terminology is appropriate

for applications to intertemporal social choice. In applications to individual intertemporal choice or choice

under uncertainty, the formally identical axiom is called Dominance. We will use the term “Pareto” for

brevity, and let the reader make the obvious translations.

8



Loose Pareto. For all x P RegpX q, if xn ľ˚ yn for all n P N, then x ľ y.10

Recall that the lower density of a subset M Ď N is defined

δpMq :“ lim inf
NÑ8

|MX t1, . . . , Nu|

N
.

If a weak order has a Cesàro average utility representation (3), then it is easy to verify

that it satisfies the following Pareto condition:

Weak asymptotic Pareto.11 For all x,y P RegpX q and null M Ă N, if xn ľ˚ yn for all

n P NzM, and there is ε ą 0 such that δ tn P N;upxnq ě upynq ` εu ą 0, then x ą y.

Under Axioms A1 and A4, a subset M Ă N is null if δpMq “ 0 (see Lemma A.7). Thus,

Weak asymptotic Pareto applies in particular if δpMq “ 0 and xn ľ˚ yn for all n P NzM.

A weak order ľ with representation (3) does not satisfy Full anonymity (i.e. invariance

under all permutations of N). But as already noted, Axiom A4 itself is an anonymity

condition. In fact, ľ satisfies a stronger anonymity property. To explain this, recall the

density δ defined in formula (5). Let B be the family of all subsets of N with a well-defined

density. A bijection π : NÝÑN is density preserving if πpBq “ B, and for all B P B we

have δrπpBqs “ δpBq. It is easily verified that ľ satisfies the following axiom:

Density anonymity. If x,y P RegpX q, and there is a density-preserving permutation π :

NÝÑN such that y “ πpxq, then x « y.

The Lévy group is a proper subgroup of the group of density-preserving permutations

(Obata, 1988b, Propositions 3.1 and 4.1). So Density anonymity is stronger than A4.

The representation (3) might be criticized for failing to satisfy Weak Pareto or Full

anonymity. But in infinite-population social choice, there is a stark tradeoff between Pareto

10This is often called Monotonicity. The term loose Pareto is due to Lauwers and Vallentyne (2004).

As noted in footnote 6, nontriviality of ą˚ implies the nontriviality of ą. If we add Loose Pareto to our

axioms, then the converse is also true —i.e. the nontrivialities of ą and ą˚ are logically equivalent. But

it seems logically simpler to just assume the nontriviality of ą˚ directly.
11Van Liedekerke and Lauwers (1997) refer to this as Infinite sensitivity, while Khan and Stinchcombe

(2018, Definition 2.2) call it Pareto responsiveness.
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and anonymity principles. Weak Pareto is logically incompatible with Full anonymity, and

indeed is barely even compatible with Finite anonymity (i.e. invariance under finite per-

mutations, the weakest possible anonymity axiom); this has been shown in increasing

generality by Diamond (1965, §5), Fleurbaey and Michel (2003, Theorem 2), Zame (2007),

Dubey (2011), and Dubey and Mitra (2011). In fact, Petri (2019) has recently shown that

even Weak asymptotic Pareto is barely compatible with Finite anonymity. See Petri (2019)

for a good review of the relevant literature.

In light of these incompatibility results, the relevant question is not whether one should

compromise on Pareto or anonymity principles, but rather, how much one should compro-

mise on each. Some authors (e.g. Jonsson and Voorneveld 2018) are willing not only to fall

back to Finite anonymity, but also to sacrifice completeness in order to satisfy Strong Pareto.

At the opposite extreme, Asheim et al. (2021a,b) maintain Full Anonymity by sacrificing

Pareto and ignoring all but the least fortunate members of an infinite population. A third

group (e.g. Van Liedekerke and Lauwers 1997, Khan and Stinchcombe 2018) adopt an in-

termediate position, combining Weak asymptotic Pareto with infinite anonymity principles;

this paper follows this third approach.

3 Prior literature

Lauwers (1998), Marinacci (1998), Rébillé (2007), Khan and Stinchcombe (2018) and Jons-

son and Voorneveld (2018) have studied Cesàro average utility representations or variants.

Lauwers (1998, Proposition 3) shows that if a linear function F : `8pN,RqÝÑR is d8-

continuous and invariant under Lévy permutations, it is a medial limit —i.e. it satisfies12

lim inf
TÑ8

1

T

N
ÿ

t“1

xt ď F pxq ď lim sup
TÑ8

1

T

N
ÿ

t“1

xt for all x P X N.

Marinacci (1998, Theorem 5) characterizes weak orders on X N represented by value func-

12Lauwers refers to Lévy permutations as bounded permutations. His Proposition 3 follows from Theorem

2 of Blümlinger and Obata (1991). Earlier, Van Liedekerke and Lauwers (1997) had proposed medial limits

as suitable SWFs for infinite populations, but without any axiomatic characterization.
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tions of the form

V1pxq :“ lim
TÑ8

«

inf
nPN

˜

1

T

T`n
ÿ

t“n

upxtq

¸ff

, for all x P X N, (8)

where u : XÝÑR is some utility function. Meanwhile, Marinacci’s Theorem 14 character-

izes weak orders on X N represented by a Polya index of the form

V2pxq :“ lim
εÑ0

¨

˝ lim
TÑ8

1

ε T

T
ÿ

t“p1´εqT

upxtq

˛

‚ for all x P X N. (9)

These representations extend the Cesàro average utility representation (3) because if

CesAve
nPN

upxnq exists, then V2pxq “ CesAve
nPN

upxnq, and if a uniform convergence condi-

tion is satisfied, then also V1pxq “ CesAve
nPN

upxnq. For both representations, Marinacci

assumes that X is the space of all finite-support probability distributions over some un-

derlying set C of consequences, and assumes that ľ satisfies the six axioms of Gilboa and

Schmeidler (1989); he then enriches these with additional axioms of time-shift invariance

and permutation invariance to achieve his characterizations.

Rébillé (2007, Theorems 2 and 3) characterizes weak orders on `8pN,Rq that can be

represented by Banach limits and Banach-Mazur limits. Like the present paper, his axioms

include versions of monotonicity, continuity, separability, and permutation-invariance. He

also requires invariance under addition of any element of `8pN,Rq; this yields a represen-

tation in terms of an integral relative to a purely finitely additive measure on N.

Khan and Stinchcombe (2018) study intergenerational social welfare orders on `8pN,R`q

that satisfy the first-order distribution overtaking criterion. That is: for any x,y P

`8pN,R`q, we have x ľ y whenever

lim inf
TÑ8

1

T

T
ÿ

t“1

´

fpxtq ´ fpytq
¯

ą 0, (10)

for all differentiable, increasing functions f : RÝÑR such that f 1prq ą ε for all r P R (for

some ε ą 0). This criterion alone does not select a unique social welfare order; Khan and

Stinchcombe study the family of SWOs satisfying this criteria and other normative axioms.
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Jonsson and Voorneveld (2018, Theorem 1) axiomatically characterize the limit-discounted

utilitarian preorder ľLDU on `8pN,Rq, which is defined as follows: for any x,y P `8pN,Rq,

x ľLDU y ðñ lim inf
δÕ1

8
ÿ

t“1

δt pxt ´ ytq ě 0. (11)

(This preorder is incomplete: it may be the case that neither x ľ y nor y ľ x.) Their

characterization involves three axioms: Strong Pareto, invariance under addition of a con-

stant, and the Compensation Principle, which states that if x “ px1, x2, . . .q has Cesàro

average x, then x « px, x1, x2, x3, . . .q (i.e. delaying an infinite utility stream by one period

can be “compensated” by supplying the Cesàro average utility during the first period).

The relation ľLDU defined by formula (11) is related to the Cesàro average utility

representation (3) because for any x P `8pN,Rq, a classical theorem of Frobenius (1880)

states that

lim
δÕ1
p1´ δq

8
ÿ

t“1

δt xt “ lim
TÑ8

1

T

T
ÿ

t“1

xt, (12)

when these limits exist. Furthermore, the right-hand limit exists if and only if the left-hand

limit exists. Thus, if x,y P `8pN,Rq are Cesàro-summable sequences, and

lim
TÑ8

1

T

T
ÿ

t“1

xt ą lim
TÑ8

1

T

T
ÿ

t“1

yt,

then it follows from (12) that

lim
δÕ1
p1´δq

8
ÿ

t“1

δt pxt´ytq “ lim
TÑ8

1

T

T
ÿ

t“1

pxt´ytq ą 0, hence lim
δÕ1

8
ÿ

t“1

δt pxt´ytq ą 0,

and hence x ąLDU y.13

Finally, Blackorby et al. (2005, Theorem 6.14, §6.8), Gravel et al. (2011, Theorem 2)

and Kothiyal et al. (2014, Theorem 7) axiomatically characterize average utilitarianism.

But these papers work with finite populations, so they are not closely related to this paper.

13However, it is possible that lim
TÑ8

1
T

T
ř

t“1
xt “ lim

TÑ8

1
T

T
ř

t“1
yt while lim

δÕ1

8
ř

t“1
δt pxt´ ytq ă 0, so that x ăLDU

y. For example, this can occur if xt “ yt for all but finitely many t P N. In particular, Cesàro average

utility does not satisfy Strong Pareto, whereas ľLDU does.
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A Appendix: Proofs

First we will prove some claims made early in Section 2 about regular and semiregular

sequences. Let Y be a finite set with the discrete topology. Endow YN with the product

topology and the resulting Borel sigma algbra. Let ∆pYNq be the set of Borel probability

measures on YN; an element of ∆pYNq is called a stochastic process on Y . If φ : NÝÑN is

any function, and y “ pynq
8
n“1 P YN, then we define φ˚pyq :“ py1nq

8
n“1, where y1n :“ yφpnq

for all n P N. This defines a continuous (hence, Borel-measurable) function φ˚ : YNÝÑYN.

A measure µ P ∆pYNq is φ-invariant if µ rφ´1˚ pBqs “ µrBs for all Borel subsets B Ď YN.

In particular, the shift map φ : NÝÑN is defined by φpnq :“ n ` 1 for all n P N;

a φ-invariant measure in ∆pYNq is called a stationary stochastic process. For example,

any stationary Y-valued Markov chain defines a stationary stochastic process. A finite

permutation of N is a bijection φ : NÝÑN that fixes all but a finite subset of N. If

µ P ∆pYNq is invariant under all finite permutations, then it is called an exchangeable

stochastic process. For example, if ρ P ∆pYq and µ “
Â8

n“1 ρ (describing an infinite

sequence of independent ρ-random variables), then µ is exchangeable. Any exchangeable

process is stationary. The next result says that if y “ py0, y1, y2, . . .q is a random sequence

generated by any stationary stochastic process on Y , then y is regular, almost-surely.

Lemma A.1 If Y is a finite set, and µ P ∆pYNq is a stationary stochastic process, then

µ rRegpYqs “ 1.

Proof: Let φ : NÝÑN be the shift map. Then pYN, µ, φ˚q is a measure-preserving dynamical

system. For any O Ď Y , define fO : YNÝÑt0, 1u by setting fOpyq :“ 1 if y1 P O, and

fOpyq :“ 0 if y1 R O. Then for any y P YN, the expression (1) becomes

lim
NÑ8

#tn P t1, . . . , Nu ; yn P Ou
N

“ lim
NÑ8

1

N

N
ÿ

n“1

fO ˝ φ
n
˚pyq. (A1)

The right hand side of (A1) is the ergodic average of fO with respect to φ˚. Let RO :“

ty P YN; the limit (A1) existsu. Then µrROs “ 1, by the Birkhoff Ergodic Theorem;

see e.g. Theorem 2.3 on p.30 of Petersen (1989) or Theorem 372J on p.190 of Fremlin
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(2002). By definition, RegpYq :“
Ş

OĎY
RO. Thus, RegpYq is the intersection of a finite

number of subsets of measure 1 (because Y is finite), so µ rRegpYqs “ 1. l

In the special case when µ is a product measure (describing an infinite sequence of i.i.d.

random variables), the almost-sure convergence of (A1) follows from the Law of Large

Numbers. In the special case when µ is an exchangeable process, it follows from de

Finetti’s Theorem (Fremlin, 2006a, Theorem 459C, p.564). The finiteness of Y is not

required to invoke these results: for any particular O P OpYq, we have µrROs “ 1. But

RegpYq “
Ş

OPOpYq
RO, and if Y was infinite, then OpYq would be uncountably infinite, so

this intersection would not generally have positive measure.

Lemma A.2 Let x˚ P X , and let x “ pxnq
8
n“1 be a sequence in X converging to x˚.

(a) Suppose that xn ‰ xm whenever n ‰ m. Then x is not regular.

(b) If X is locally compact, then x is semiregular.

Proof: (a) Let M Ď N be arbitrary. The set O :“ tx˚u Y txmumPM is closed, hence an

element of OpX q. For this set, the limit (1) is δpMq, which does not exist unlessM P B.

Thus, x is not regular.

(b) Let K0 be a compact neighbourhood of x˚. Find M P N such that xm P K0

for all m ě M . Let K :“ K0 Y tx1, . . . , xMu; then K is compact. For all j P N,

let xj :“ px1, . . . , xj, x˚, x˚, . . .q. Then xj P RegpKq (because xj takes only a finite

number of distinct values, all in K), and lim
jÑ8

d8px
j,xq “ 0 (because lim

jÑ8
xn “ x˚); thus

x P RegpX q. l

Proof of the Proposition. It is easily deduced from Axiom A2 that ľ˚ is a continuous

order on X —in other words, all upper and lower contour sets of ľ˚ are closed subsets of

X . From this, it follows by standard arguments that any compact subset of X contains

at least one ľ˚-maximal element and at least one ľ˚-minimal element.
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Now let Y Ď X be totally bounded. Let Y be its closure. Then Y is complete because

X is complete (Willard, 2004, Thm 24.10), and is totally bounded because Y is totally

bounded. Thus, Y is compact (Willard, 2004, Thm 39.9). Thus, by the remarks in the

previous paragraph, there exist some x, z P Y such that x ĺ˚ y ĺ˚ z for all y P Y . l

The proof of the Theorem requires some machinery. For any subset B Ď N, recall that

δpBq is defined by the limit (5), if this limit exists, and B is the collection of all subsets

B Ď N for which δpBq is well-defined. This collection is closed under complementation (i.e.

B P B ðñ BA P B) and under finite disjoint unions (i.e. if A,B P B and A X B “ H,

then A \ B P B). But it is not a Boolean algebra, or even a λ-system.14 However, δ is

“finitely additive”: for all disjoint A,B P B, we have δpA\ Bq “ δpAq ` δpBq. Note that

a sequence x P X N is regular in the sense of formula (1) if and only if x is “measurable”

with respect to B, in the sense that for any O P OpX q, the set tn P N; xn P Ou is in B.

A partition of N is a finite collection of disjoint sets P1, . . . ,PJ Ď N (called cells) such

that N “ P1 \ ¨ ¨ ¨ \ PJ . If P1, . . . ,PJ P B, then let us call this a B-partition. Let

P “ tP1, . . . ,PJu and Q “ tQ1, . . . ,QKu be two partitions. Say that P is a refinement of

Q if, for all j P t1, . . . , Ju there exists k P t1, . . . , Ku such that Pj Ď Qk. It follows that

every cell of Q is a disjoint union of cells of P. Thus,

If P is a B-partition, and P refines Q, then Q is also a B-partition. (A2)

Any two partitions have a common refinement. But the common refinement of two B-

partitions might not be a B-partition.

An element x P X N is simple if it only takes finitely many values —in other words, there

exist y1, . . . , yN P X and a partition P “ tP1, . . . ,PJu such that xp “ yj for all p P Pj, for

all j P t1, . . . , Ju. In this case, say x is subordinate to P. If x is simple, then x P `8pN,X q.

If P is a B-partition, then x P RegpX q. Let SmppX q be the set of simple elements in

`8pN,X q. Let SmpRegpX q be the set of simple elements in RegpX q.
14A λ-system (or Dynkin system) is a collection of subsets that is closed under complementation and

under countable disjoint unions (Aliprantis and Border, 2006, §4.3). But N itself is countable, so the only

λ-system on N containing all singleton sets is the entire power set ℘pNq.
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Lemma A.3 SmppX q is d8-dense in `8pN,X q, and SmpRegpX q is d8-dense in RegpX q.

Proof: Let x P `8pN,X q. Then the set txnunPN is totally bounded. So for any ε ą 0,

there exists a finite subset ty1, . . . , yJu Ă X such that txnunPN Ă
ŤJ
j“1 Bpyj, εq. For all

j P t1, . . . , Ju, let Mj :“ tn P N; dpxn, yjq ă εu. Then N “M1 Y ¨ ¨ ¨ YMJ . But these

sets are not necessarily disjoint. Define A1 :“ M1, A2 :“ M2zM1, and inductively,

Aj :“MjzpM1 Y ¨ ¨ ¨ YMj´1q for all j P t3, . . . , Ju. Then A1, . . . ,AJ are disjoint and

N “ A1 Y ¨ ¨ ¨ Y AJ . Now define z P SmppX q by setting za :“ yj for all a P Aj, for all

j P t1, . . . , Ju. Clearly, z is simple, and d8pz,xq ă ε by construction. This works for

any ε ą 0. This shows that SmppX q is d8-dense in `8pN,X q.

RegpX q is d8-dense in RegpX q, so to prove that SmpRegpX q is d8-dense in RegpX q,

it suffices to show that SmpRegpX q is d8-dense in RegpX q. So, let x P RegpX q. For

any ε ą 0 and choice of ty1, . . . , yJu Ă X , if one defines A1, . . . ,AJ as in the previous

paragraph, then A1, . . . ,AJ P B. To see this, note that Aj :“ tn P N; xn P Yju where

Yj :“ Bpyj, εqz
Ťj´1
k“1 Bpyk, εq is the difference of two open sets. Thus, Yj P OpX q, so

Aj P B because x P RegpX q. Thus, z P SmpRegpX q. This shows that SmpRegpX q is

d8-dense in RegpX q. l

Lemma A.4 Let x P SmpRegpX q, and let y P X . If z P X N is defined by setting zn :“

maxľ˚txn, yu for all n P N, then z P SmpRegpX q. Likewise, if w P X N is defined by setting

wn :“ minľ˚txn, yu for all n P N, then w P SmpRegpX q.

Proof: Suppose x is subordinate to the B-partition tB1, . . . ,BJu. It is easily verified that

z and w are simple, and are subordinate to partitions that are refined by tB1, . . . ,BJu

(that is: the cells of these partitions are unions of cells from tB1, . . . ,BJu). Thus, these

partitions are also B-partitions, by statement (A2). l

The next lemma provides some useful properties about null subsets of N.

Lemma A.5
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(a) Let A,B Ă N be disjoint. Then pA and B are both nullq ô pA\ B is nullq.

(b) Suppose ľ satisfies A4, A Ă N and γ P Γ. Then pA is nullq ô pγpAq is nullq.

Proof: (a) “ðù” It follows from the definition that any subset of a null set is null.

“ùñ” Suppose A and B are null. Let x, z P RegpX q, and suppose xNzA\B “ zNzA\B.

Then there exists y P RegpX q such that xNzA “ yNzA and yNzB “ zNzB. Thus, x « y « z,

because A and B are null. Thus, x « z, by transitivity. Thus, A\ B is null.

(b) “ùñ” Suppose A is null. Let x,y P RegpX q, and suppose xNzγpAq “ yNzγpAq. We

must show that x « y. Let x1 :“ γpxq and y1 :“ γpyq. Then x1NzA “ y1NzA. Thus,

x1 « y1, because A is null. But Axiom A4 says x « x1 and y1 « y. Thus, x « y. This

holds for any x,y P RegpX q with xNzγpAq “ yNzγpAq. Thus, γpAq is null.

“ðù” γ´1 P Γ. So exchange the roles of A and γpAq and apply the proof of “ùñ”. l

Here are three results by Obata (1988a) that we will use repeatedly.

Lemma A.6 (a) For any B P B with δpBq “ B ą 0 and any A P p0, Bq, there exists

A P B with A Ď B and δpAq “ A.

(b) For any A,B P B with 0 ă δpAq “ δpBq ă 1, there exists γ P Γ such that

γpAq “ B.

(c) Let µ : BÝÑR` be a nonzero function that is finitely additive (i.e. µrA \ Bs “

µrAs ` µrBs for any disjoint A,B P B) and Γ-invariant (i.e. µrγ´1pBqs “ µrBs for

any B P B and γ P Γ). Then there is some r ą 0 such that µ “ r δ.

Proof: See Proposition 1.3, Proposition 2.5 and Theorem 2 of Obata (1988a).15 l

15Part (c) also follows indirectly from Theorem 2 of Blümlinger and Obata (1991), using the equivalence

between finitely additive measures on N and linear functionals on `8. For other very similar results, see

Theorem 1.12 of van Douwen (1992), Proposition 3 of Lauwers (1998), and Proposition 2.4 of Sleziak and

Ziman (2008). Importantly, Obata’s Theorem 2 only requires µ to be defined on B —in other words, it

does not need to be a Γ-invariant finitely additive measure defined on a Boolean algebra.
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Lemma A.7 Assume A1 and A4. Let B P B. Then pδpBq “ 0q ô pB is null for ľq.

Proof: “ùñ” Suppose we enumerate B by writing B “ tb0 ă b1 ă b2 ă b3 ă . . .u. For

each r P t0, 1, 2u, define Br :“ tbn; n ” r mod 3u. Thus, B “ B0 \ B1 \ B2. By Lemma

A.5(a), to show that B is null for ľ, it suffices to show that B0, B1, and B2 are all null.

First we show that B1 is null. For this, we will construct sequences x,y P RegpX q that

are equal everywhere outside of B1, and take different constant values a and b inside B1,

such that a ą˚ b but x « y; this forces B1 to be null, on pain of contradicting Axiom A1.

For this task, we first define a permutation σ : BÝÑB such that σpB0q “ B0 \ B1,

while σpB1 \ B2q “ B2. For all r P t0, 1, 2u and q P N let b
prq
q :“ b3 q`r. Thus, Br “

tb
prq
0 ă b

prq
1 ă b

prq
2 ă b

prq
3 ă . . .u for each r P t0, 1, 2u. Now define σ0 : B0ÝÑB0 \ B1 by

σ0pb
p0q
q q :“

$

&

%

b
p0q
q{2 if q is even;

b
p1q
pq´1q{2 if q is odd.

Clearly, σ0 is a bijection from B0 to B0 \ B1. Meanwhile, define σ1 : B1 \ B2ÝÑB2 by

σ1pb
prq
q q :“

$

&

%

b
p2q
2q if r “ 2;

b
p2q
2q`1 if r “ 1.

Clearly, σ1 is a bijection from B1\B2 to B2. Finally, define σ “ σ0\σ1; then σ : BÝÑB

is a permutation.

Now define γ : NÝÑN by setting γpbq :“ σpbq for all b P B, while γpnq :“ n for all

n P BA. Then γ P Γ (because δpBq “ 0, so equation (6) is clearly satisfied). Thus,

Axiom A4 says ľ is invariant under γ.

Now let a, b, c P X with a ą˚ b. (These exist because ľ is nondegenerate.) Define

x P `8pN,X q as follows: for all k P N,

xk :“

$

’

’

’

&

’

’

’

%

a if k P B0 \ B1;

b if k P B2;

c if k P BA.
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Note that x P RegpX q. (To see this, note that BA P B because δpBAq “ 1, while

B0,B1,B2 P B, because any subset of B has density 0, hence is an element of B.) Let

y “ γpxq. Then y « x by Axiom A4, because γ P Γ. It is easily verified that

yk :“

$

’

’

’

&

’

’

’

%

a if k P B0;

b if k P B1 \ B2;

c if k P BA.

In other words, xBA1 “ yBA1 , while xk “ a ą˚ b “ yk for all k P B1. If B1 was non-null for

ľ, this would contradict Axiom A1. Thus, B1 must be null. By a similar construction

(exchanging the roles of B0, B1, and B2), one can show that B0 and B2 are also null.

Thus, B itself is null, by Lemma A.5(a).

“ðù” We will prove the contrapositive: if δpBq ą 0, then B is not null for ľ. Find

N P N such that 1
N
ă δpBq. Lemma A.6(a) yields some A1 P B with A1 Ď B such that

δpA1q “
1
N

. It suffices to prove that A1 is non-null (because any superset of a non-null

set is non-null, by the contrapositive of Lemma A.5(a)). Lemma A.6(a) yields A2 Ď AA1
with δpA2q “

1
N

, and then A3 Ď pA1\A2q
A with δpA3q “

1
N

, and so on. Inductively, we

obtain disjoint A1, . . . ,AN´1 P B with δpAnq “ 1
N

for all n P t1, . . . , N´1u. Let AN :“

pA1\¨ ¨ ¨\AN´1qA. Then AN P B and δpANq “ 1´ δpA1\¨ ¨ ¨\AN´1q “ 1´ N´1
N
“ 1

N
.

Now suppose A1 is null. For all n P t2, . . . , Nu, Lemma A.6(b) yields γ P Γ such that

γpA1q “ An. Thus, A2, . . . ,AN are also null, by Lemma A.5(b). Thus, A1 \ ¨ ¨ ¨ \AN
is null, by Lemma A.5(a). But A1 \ ¨ ¨ ¨ \ AN “ N, so this contradicts the assumed

nontriviality of ľ. Thus, A1 cannot be null. l

Lemma A.8 Suppose ľ satisfies A1 and A4. For any B P B, if BA is not null, then there

is a B-partition P “ tP1,P2,P3u of N such that P1 “ B while P2 and P3 are both non-null.

Proof: BA P B because B P B. Also, δpBAq ą 0 by the contrapositive of Lemma A.7,

because BA is not null. Lemma A.6(a) yields P2 P B with P2 Ă BA and δpP2q “ δpBAq{2.
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Now, P2 and B are disjoint, so P2 \ B P B. Thus, if P3 :“ pP2 \ BqA, then P3 P B.

Furthermore, N “ B \ P2 \ P3, so 1 “ δpNq “ δpBq ` δpP2q ` δpP3q so

δpP3q “ 1´ δpBq ´ δpP2q “ δpBAq ´ δpBAq{2 “ δpBAq{2 “ δpP2q.

Thus, Lemma A.6(b) yields some γ P Γ such that γpP2q “ P3. Thus, Axiom A4 implies

that P2 is non-null if and only if P3 is non-null. If P2 and P3 are both null, then

P2 \ P3 “ BA is null, contradicting our hypothesis. Thus, at least one of them must be

non-null, which means they are both non-null. l

The next lemma is a standard result about the uniqueness of additive utility representa-

tions. We include a proof for completeness.

Lemma A.9 Let X be a connected topological space with a continuous order ľ˚. Let ľ

be a continuous weak order on X ˆ X . Let u1, u2, v1, v2 : XÝÑR be continuous functions,

all strictly increasing in ľ˚, such that the functions Upx1, x2q “ u1px1q ` u2px2q and

V px1, x2q “ v1px1q ` v2px2q are both representations for ľ. Then there is a constant a ą 0

and constants b1, b2 P R such that vj “ a uj ` bj for j “ 1, 2.

Proof: Let U1 :“ u1pX q, U2 :“ u2pX q, V1 :“ v1pX q, and V2 :“ v2pX q. These are intervals

in R because u1, u2, v1, and v2 are continuous and X is connected. The functions u1, u2,

v1, and v2 are all strictly increasing in ľ˚; thus, they are increasing transformations of

one another. In particular, there are increasing bijections φ1 : U1ÝÑV1 and φ2 : U2ÝÑV2
such that v1 “ φ1 ˝ u1 and v2 “ φ2 ˝ u2.

Let U :“ UpX ˆ X q and V :“ V pX ˆ X q. Again, these are intervals in R because U

and V are continuous and X ˆ X is connected. The functions U and V both represent

ľ, so there is an increasing bijection Φ : UÝÑV such that V “ Φ ˝ U . In other words,

for any px1, x2q P X ˆ X , we have:

Φ
´

u1px1q ` u2px2q
¯

“ Φ ˝ Upx1, x2q “ V px1, x2q

“ v1px1q ` v2px2q “ φ1 ˝ u1px1q ` φ2 ˝ u2px2q. (A3)
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Letting px1, x2q range over all of X ˆ X in equation (A3), we get:

Φpr1 ` r2q “ φ1pr1q ` φ2pr2q, for all pr1, r2q P U1 ˆ U2. (A4)

This is a Pexider equation. Since φ1, φ2 and Φ are increasing bijections between intervals,

they are continuous functions. Thus, there exist constants a ą 0, b1, b2 P R and b “ b1`b2

such that φ1pr1q “ a r1 ` b1 for all r1 P U1, φ2pr2q “ a r2 ` b2 for all r2 P U2, and

Φprq “ a r ` b, for all r P U (Radó and Baker, 1987, Theorem 1 and Corollary 3).16 In

other words, v1 “ a u1 ` b1 and v2 “ a u2 ` b1, as claimed. l

The proof of the main result adapts ideas from the proof of Theorem 16 of Wakker and

Zank (1999) (hereafter refered to as WZ) to construct an “additive representation” for ľ.

To do this, we will follow some steps in the proof of WZ Theorem 11 —the special case

of WZ Theorem 16 when X “ R. We will show that these steps still work when X is a

connected metric space and Axioms A1 - A4 are satisfied.

One complication is that WZ start with a weak order defined on the set F of all acts

that are measurable with respect to a Boolean algebra A of subsets of the state space.

As we have already noted, B is not a Boolean algebra. And RegpX q does not include all

functions on N that are “measurable” relative to B. However, the proof of WZ does not

actually need F to contain all measurable functions (it suffices that F contain all simple

functions). Also, the proof does not need all the properties of a Boolean algebra; what

properties it does use, we can verify on an ad hoc basis for B.

For any B P B, let SmpRegpB,X q denote the set of all simple regular sequences in

`8pB,X q. Following the terminology of WZ, an additive representation for ľ on SmpRegpX q

is a set of functions tVB : SmpRegpB,X qÝÑRuBPB such that

(AR1) ľ is represented by V :“ VN.

(AR2) For all B P B, the function VB is d8-continuous on SmpRegpB,X q. It is either con-

stant, or it is increasing with respect to ľ˚ when restricted to the constant elements

of SmpRegpB,X q (identified with X in the obvious way).

16See also Theorem 13.3.5, p.361 of Kuczma (2009) for the special case when U1 “ U2 “ U “ R.
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(AR3) For any disjoint B1, . . . ,BN P B with B “ B1 \ ¨ ¨ ¨ \ BN P B, and any x P

SmpRegpB,X q, VBpxq “
N
ÿ

n“1

VBnpxBnq.

For any x P X and B Ď N, let rxsB be the all-x element of `8pB,X q. In particular, let

rxs :“ rxsN. The next result is analogous to WZ Proposition 3.

Lemma A.10 Let ľ be a weak order on SmpRegpX q satisfying Axioms A1 - A4. Let

o, l P X with o ă˚ l. Then ľ admits an additive representation on SmpRegpX q, such that

V prlsq “ 1, while VBprosBq “ 0 for all B P B.

Proof: Consider a B-measurable partition P “ tP1, . . . ,PKu of N. Let SmpRegpPq be

the set of all elements of SmpRegpX q subordinate to P. Then SmpRegpPq is isomor-

phic to the Cartesian product XK in the obvious way, and the order ľ restricted to

SmpRegpPq thereby induces an order ľP on XK . Some cells might be null sets for ľ.

By permuting the cells if necessary, suppose that P1, . . . ,PJ are non-null, and (if J ă K)

that PJ`1, . . . ,PK are null. The order ľP is reducible to an order on X J , because it is

independent of the values of coordinates tJ ` 1, . . . , Ku. We will refer to the order on

X J as ľ1
P. (If J “ K, then ľ1

P is the same as ľP.)

Assume J ě 3. The order ľ1
P is ľ˚-increasing in each coordinate of X J by Axiom A1,

continuous by Axiom A2 and separable by Axiom A3, so Debreu’s (1960) theorem yields

a collection of continuous functions uPP1
, . . . , uPPJ

: XÝÑR, each increasing relative to

ľ˚, such that the function V px1, . . . , xJq :“ uPP1
px1q ` ¨ ¨ ¨ ` uPPJ

pxJq is a representation

of ľP.17 This representation is unique up to positive affine transformations. By adding

suitable (distinct) constants to uPP1
, . . . , uPPJ

and then multiplying them by a suitable

(common) scalar, one can ensure that

uPP1
poq “ ¨ ¨ ¨ “ uPPJ

poq “ 0, while uPP1
plq ` ¨ ¨ ¨ ` uPPJ

plq “ 1. (A5)

For all j P tJ ` 1, . . . , Ku, define uPPj
: XÝÑR to be the constant 0-valued function.

17Debreu assumed X Ď R was an interval. But his theorem holds when X is any connected topological

space (Wakker, 1989, Theorem III.6.6, Remarks III.7.1 and A3.1). We have assumed X is connected.
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Thus, for any x,y P SmpRegpPq,

´

x ľ y
¯

ðñ

´

uPP1
px1q ` ¨ ¨ ¨ ` u

P
PJ
pxKq ě uPP1

py1q ` ¨ ¨ ¨ ` u
P
PJ
pyKq

¯

, (A6)

where x1, . . . , xK and y1, . . . , yK are the values that x and y take on the cells of P.

For any non-null B P B such that BA is also non-null, Lemma A.8 yields a three-

element B-partition P where one cell is B and the other two cells are non-null. Thus,

one can always find at least one B-partition P such that uPB is well-defined. We now

show that it is independent of the B-partition in which B is embedded.18

Claim 1: For all non-null B P B such that BA is also non-null, there is a function

uB : XÝÑR such that uPB “ uB for any B-partition P in which B is a cell.

Proof: Let P “ tP1, . . . ,PJu and Q “ tQ1, . . . ,QKu be two B-partitions, with P1 “

B “ Q1. We claim that uPB “ uQB . To see this, define the functions vP : X ˆ XÝÑR

and vQ : X ˆ XÝÑR as follows: for any x, y P X ,

vPpx, yq :“ uPB pxq `
J
ÿ

j“2

uPPj
pyq and vQpx, yq :“ uQB pxq `

K
ÿ

k“2

uQQk
pyq

Let R be the B-partition R :“ tB,BAu. There is an obvious bijection from SmpRegpRq

to X ˆX . Thus, the restriction of ľ to SmpRegpRq induces a weak order on X ˆX ,

and vP and vQ are both additive representations of this weak order. Thus, Lemma A.9

says they are equivalent up to positive affine transformation. But the normalization

(A5) implies that uPB poq “ uPBApoq “ uQB poq “ uQBApoq “ 0, and uPB plq ` uPBAplq “ 1 “

uQB plq ` u
Q
BAplq. Thus, uPB “ uQB . 3 Claim 1

Meanwhile, for any null B P B, let uB be the constant 0-valued function on X .

Claim 2: For any disjoint A,B P B such that pA \ BqA is non-null, and any x P X ,

uApxq ` uBpxq “ uA\Bpxq.

18WZ prove this using the fact that any two partitions have a common refinement. Unfortunately, two

B-partitions do not necessarily have a common B-partition refinement, so we cannot use this strategy.
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Proof: If one of A or B is null, this is trivial. So assume that both are non-null. By

hypothesis C :“ pA \ BqA is also non-null. Consider the three-element B-partition

P “ tA,B, Cu and the two-element partition Q “ tA \ B, Cu. Claim 1 says that

uPC “ uC “ uQC for some function uC. Likewise, uPA “ uA, uPB “ uB, and uQA\B “ uA\B.

Let ľP be the restriction of ľ to SmpRegpPq; then the functions tuA, uB, uCu yield

an additive representation of ľP in the sense of formula (A6). Likewise, let ľQ be

the restriction of ľ to SmpRegpQq; then tuA\B, uCu yields an additive representation

of ľQ. But ľQ is also the restriction of ľP to SmpRegpQq. Thus, the two functions

tpuA ` uBq, uCu yield another additive representation of ľQ. Lemma A.9 says these

two representations are equivalent up to positive affine transformation. Invoking the

normalization (A5) yields uApxq ` uBpxq “ uA\Bpxq for all x P X . 3 Claim 2

Conspicuously, Claim 1 does not address the case when BA is null —in particular, when

B “ N. Given any B-partition P “ tP1, . . . ,PJu (with J ě 3), we could construct

functions uP1 , . . . , uPJ
: XÝÑR yielding an additive representation (A6) and satisfying

the normalization conditions (A5), and then define uPN : XÝÑR by setting

uPNpxq :“ uP1pxq ` ¨ ¨ ¨ ` uPJ
pxq, for all x P X . (A7)

However, if Q “ tQ1, . . . ,QKu is another B-partition, then it is not obvious that uPN “

uQN . We cannot apply Claim 2, because this claim specifically does not address the case

when pA \ BqA is null —in particular, when A \ B “ N. If P and Q had a common

B-partition refinement R “ tR1, . . . ,RLu, then we could apply Claim 2 to express the

functions uP1 , . . . , uPJ
and uQ1 , . . . , uQK

in terms of sums of uR1 , . . . , uRL
; from this, we

could deduce that uPN “ uRN “ uQN . But as we have already noted, B is not a Boolean

algebra, so P and Q do not necessarily have a common B-partition refinement. So this

option is unavailable. Instead, we will use the following two claims.

Claim 3: Let P “ tP1, . . . ,PJu and Q “ tQ1, . . . ,QJu be two B-partitions, each

with at least two non-null cells. Suppose there is some γ P Γ such that γpPjq “ Qj for

all j P t1, . . . , Ju. Then uPj
“ uQj

for all j P t1, . . . , Ju.
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Proof: Define γ˚ : SmpRegpQqÝÑSmpRegpPq by setting γ˚pxq :“ x1 where x1n :“ xγpnq

for all n P N. For all x,y P SmpRegpQq, Axiom A4 implies that x ľ y if and

only if γ˚pxq ľ γ˚pyq. Thus, ľP and ľQ are the same weak order on X J . But

uP1 , . . . , uPJ
and uQ1 , . . . , uQJ

both yield additive representations of this weak order.

Thus, standard uniqueness results (e.g. Lemma A.9) say they are equal up to positive

affine transformation. Thus, the normalization (A5) implies that uPj
“ uQj

for all

j P t1, . . . , Ju. 3 Claim 3

Claim 4: Let P “ tP1, . . . ,PJu and Q “ tQ1, . . . ,QKu be two B-partitions of N,

each with at least two non-null cells. Then for all x P X , uP1pxq ` ¨ ¨ ¨ ` uPJ
pxq “

uQ1pxq ` ¨ ¨ ¨ ` uQK
pxq.

Proof: By merging some of the cells of P together and applying Claim 2, we can assume

without loss of generality that P has only two cells (both non-null); say, P “ tP1,P2u.

Likewise, by applying Claim 2 we can assume that Q “ tQ1,Q2u. Let pj :“ δpPjq

and qj :“ δpQjq for j “ 1, 2; then 0 ă p1, p2, q1, q2 ă 1 (by the contrapositive of

Lemma A.7), and p1 ` p2 “ 1 “ q1 ` q2.

Lemma A.6(a) yields R11 Ď P1 with R11 P B such that δpR11q “ p1 q1. Let

R12 :“ P1zR11; then it is easily verified that R12 P B and δpR12q “ p1 p1´ q1q “ p1 q2

(because δpR11q ` δpR12q “ δpP1q “ p1). Likewise, Lemma A.6(a) yields R21 Ď P2

with R21 P B and δpR21q “ p2 q1; if R22 :“ P2zR21; then R22 P B and δpR22q “ p2 q2.

Now let Q11 :“ R11\R21 and Q12 :“ R12\R22. Then Q11,Q12 P B, so Q1 :“ tQ11,Q12u

is another B-partition. Furthermore, δpQ11q “ δpR11q ` δpR21q “ p1 q1 ` p2 q1 “ q1 “

δpQ1q. Thus, Lemma A.6(b) yields some γ P Γ such that γpQ1q “ Q11. Since Q2 “ QA1
and Q12 “ pQ11qA, it follows that γpQ2q “ Q12. Thus, Claim 3 implies that

uQ11 “ uQ1 and uQ12 “ uQ2 . (A8)

Thus, for any x P X , we have:

uP1pxq ` uP2pxq p˚q
uR11pxq ` uR12pxq ` uR21pxq ` uR22pxq

p:q
uQ11pxq ` uQ12pxq p˛q

uQ1pxq ` uQ2pxq,
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as desired. Here, p˚q is by Claim 2 because P1 “ R11 \ R12 and P2 “ R21 \ R22,

while p:q is by Claim 2 because Q11 “ R11 \R21 and Q12 “ R12 \R22. Finally, p˛q is

by equation (A8). 3 Claim 4

We can now define uN as in formula (A7); Claim 4 guarantees that this definition is

independent of the choice of partition P. But there is still the question of how to define

uB when B P B is a proper subset of N such that BA is null.

Claim 5: Let B P B such that BA is null. Let P “ tP1, . . . ,PJu be a B-partition

of N with at least two non-null cells. For all j P t1, . . . , Ju, let Qj :“ Pj X B. Then

Q1, . . . ,QJ P B, and for all x P X , uQ1pxq ` ¨ ¨ ¨ ` uQJ
pxq “ uNpxq.

Proof: Let Q0 :“ BA; then δpQ0q “ 0 by Lemma A.7. Thus, any subset of Q0 also

has zero density, and hence is an element of B. In particular, for all j P t1, . . . , Ju,

we have Q0 X Pj P B, and thus Qj P B, because Qj “ PjzpQ0 X Pjq. Thus, Q :“

tQ0,Q1, . . . ,QJu is a B-partition of N.

Let ľP and ľQ be the weak orders induced on X J and X J`1 respectively by the

restrictions of ľ to SmpRegpPq and SmpRegpQq. Then tuP1 , . . . , uPJ
u yields an addi-

tive representation of ľP, while tuQ0 , uQ1 , . . . , uQJ
u yields an additive representation

of ľQ. (Of course, uQ0 “ 0 because Q0 is null.)

For any x “ px0, x1, . . . , xJq and y “ py0, y1, . . . , yJq in RJ`1, if we define x1 :“

px1, . . . , xJq and y1 :“ py1, . . . , yJq in RJ , then it is easily verified that x ľQ y if

and only if x1 ľP y1 (because Q0 is null). Thus, tuQ1 , . . . , uQJ
u is another additive

representation of ľP. Thus, the two representations are equal up to positive affine

transformation. Thus, the normalization (A5) implies that uQj
“ uPj

for all j P

t1, . . . , Ju. Thus, for all x P X , we have uQ1pxq`¨ ¨ ¨`uQJ
pxq “ uP1pxq`¨ ¨ ¨`uPJ

pxq “

uNpxq, where the second equality is by (A7). 3 Claim 5

Now, for any B P B such that BA is null, define uB as follows. Let Q :“ tQ0,Q1, . . . ,QJu

be any B-partition of N withQ0 “ BA, and define uBpxq :“ uQ1pxq`¨ ¨ ¨`uQJ
pxq. Claim 5
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says that this is independent of the choice of Q, and furthermore, uB “ uN.

Claim 6: For any disjoint A,B P B and any x P X , uApxq ` uBpxq “ uA\Bpxq.

Proof: Let C :“ pA \ BqA. If C is non-null, this follows from Claim 2. If C is null, then

tA,B, Cu is a B-partition, and uA\B “ uA`uB by the definition just above. 3 Claim 6

At this point, we have defined the functions uB for all B P B. Now, for any B P B,

define VB : SmpRegpB,X qÝÑR as follows. Let x P SmpRegpB,X q, and suppose x is

subordinate to the B-partition C “ tC1, . . . , CJu of B. Thus, there exist X1, . . . , XJ P X

such that xc “ Xj for all c P Cj and all j P t1, . . . , Ju. Define

VBpxq :“ uC1pX1q ` ¨ ¨ ¨ ` uCJ pXJq. (A9)

Of course, x is subordinate to many different B-partitions of B. In spite of this, VBpxq

is well-defined by (A9), by the next claim.

Claim 7: The value of VBpxq in formula (A9) is independent of the choice of subor-

dinating partition.

Proof: Let C be the coarsest B-partition to which x is subordinate. (It is easily verified

that this exists.) Every subordinating partition is a refinement of C. Thus, Claim 6

ensures that the value obtained by applying formula (A9) with any other subordinating

partition is equal to the the value obtained by applying (A9) to C. 3 Claim 7

We have now constructed a collection of functions tVB : SmpRegpB,X qÝÑRuBPB. It is

straightforward to verify that this collection satisfies properties (AR1)-(AR3). Thus, it

yields an additive representation on SmpRegpX q. Furthermore the normalization (A5)

implies that V prlsq “ 1, while VBprosBq “ 0 for all B P B. l

Proof of the Theorem. It is easily verified that the Cesàro average utility representation

(3) implies that ľ satisfies Axioms A1 - A4. So we will focus on the converse implication.
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Suppose ľ satisfies condition (B) and Axioms A1 - A4. Fix o, l P X with o ă˚ l.

Let tVBuBPB be the additive representation of ľ on SmpRegpX q from Lemma A.10. So

V prlsq “ 1, while VBprosBq “ 0 for all B P B.

Claim 1: For any x,y P SmpRegpX q, if xn ľ˚ yn for all n P N, then x ľ y.

Proof: This follows from Lemma A.10, exactly as in WZ Corollary 18. 3 Claim 1

Claim 2: For all y P RegpX q, there exist x, z P X such that rxs ĺ y ĺ rzs.

Proof: We will prove the existence of z. The proof for x is similar. The set tynu
8
n“1 is

totally bounded, because y P RegpX q Ď `8pN,X q. Thus, Condition (B) yields z P X

such that yn ĺ˚ z for all n P N.

For any k P N, Lemma A.3 yields some w P SmpRegpX q such that d8pw,yq ă

1
2k

. Suppose w is subordinate to the B-partition tB1, . . . ,BJu, and takes the values

W1, . . . ,WJ on these cells. For all j P J , let nj P Bj be arbitrary; then dpynj
,Wjq ă

1
2k

.

Also, ynj
ĺ˚ z. So, define yk P SmpRegpX q as follows: for all j P t1, . . . , Ju and all

b P Bj, set ykb :“ ynj
. It follows that ykb ĺ˚ z and dpykb , wbq “ dpynj

,Wjq ă
1
2k

. Thus,

(a) For all n P N, ykn ĺ˚ z.

(b) For all n P N, dpykn, ynq ď dpykn, wnq ` dpwn, ynq ă
1

2k
`

1

2k
“

1

k
.

Observation (b) means that d8py
k,yq ď 1

k
. Meanwhile, observation (a) and Claim 1

imply that yk ĺ rzs. Repeat this construction for all k P N, to obtain a sequence

tyku8k“1 with yk ĺ rzs for all k P N, such that lim
kÑ8

d8py
k,yq “ 0. Thus, Axiom A2

implies that y ĺ rzs. 3 Claim 2

Let x P RegpX q. We shall say that y is a constant equivalent for x if rys « x.19

Claim 3: Every element of RegpX q has a constant equivalent.

Proof: (Following WZ Lemma 8) Let y P RegpX q. Let X´ :“ tx P X ; rxs ĺ yu and

let X` :“ tz P X ; rzs ľ yu. These sets are nonempty by Claim 2, and closed by

19For comparison, Wakker and Zank (1999) call this a certainty equivalent.
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Axiom A2. Finally, X “ X´YX`, since ľ is a complete relation. Thus, X´ and X`

cannot be disjoint, since X is connected. Let y P X´ X X`. Then rys « x. 3 Claim 3

For all x P X , let upxq :“ V prxsq. This defines a function u : XÝÑR. This function

is continuous and increasing with respect to ľ˚, by property (AR2) from Lemma A.10.

Also, uplq “ 1 and upoq “ 0. For any x P RegpX q, let

V pxq :“ upxq, where x P X is a constant equivalent of x, (A10)

where this constant equivalent x exists by Claim 3. If x and px are both constant equiv-

alents for x, then rxs « x « rpxs, so that upxq “ V prxsq “ V prpxsq “ uppxq by property

(AR1). Thus, V pxq is well-defined in formula (A10).

Claim 4: V represents ľ.

Proof: Let x,y P RegpX q with x ľ y. If x and y are the constant equivalents of x

and y, then rxs « x ľ y « rys, so rxs ľ rys, so V prxsq ě V prysq, by (AR1) from

Lemma A.10. Thus, V pxq ě V pyq by formula (A10). 3 Claim 4

Claim 5: V is d8-continuous on RegpX q.

Proof: (Following WZ Lemma 19) Let R :“ tV pyq; y P RegpX qu. Then R “ tupxq;

x P X u by (A10). Thus, R is connected, because u is continuous and X is connected.

Now let r P R; we will show that the preimage set V ´1rr,8q is d8-closed. Let

y P RegpX q such that V pyq “ r. Then V ´1rr,8q :“ tx P RegpX q; x ľ yu by

Claim 4, and this set is d8-closed, by Axiom A2. By a similar argument, V ´1p´8, rs

is d8-closed. This holds for all r P R; thus, V is d8-continuous. 3 Claim 5

Recall from Lemma A.10 that

VBprosBq “ 0, for all B P B. (A11)

For any x P X , define the function µx : BÝÑR as follows:

µxpBq :“ VBprxsBq, for all B P B. (A12)
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This function is finitely additive: for any disjoint A,B P B, property (AR3) and defini-

tion (A12) yield µxrA\Bs “ µxrAs`µxrBs.20 The next claim says that µx is Γ-invariant.

Claim 6: For all x P X , all B P B, and all γ P Γ, µxrγ´1pBqs “ µxrBs.

Proof: Let B1 :“ γ´1pBq. Define x,x1 P RegpX q as follows: xn “ x for all n P B and

xn “ o for all n R B. Likewise, x1n “ x for all n P B1 and x1n “ o for all n R B1. Thus,

for all n P N,

x1n “

$

&

%

x if n P B1;

o if n R B1

,

.

-

“

$

&

%

x if γpnq P B;

o if γpnq R B

,

.

-

“ xγpnq. (A13)

In other words, x1 “ γpxq. Thus, x « x1, by Axiom A4. Thus,

V pxq “ V px1q, (A14)

by property (AR1) from Lemma A.10. Now let C :“ NzB and C 1 :“ NzB1. Then

V pxq
p˚q

VBpxBq ` VCpxCq
p:q

VBprxsBq ` VCprosCq
p˛q

µxrBs, (A15)

and V px1q
p˚q

VB1px
1
B1q ` VC1px

1
C1q p:q

VB1prxsB1q ` VC1prosC1q

p˛q
µxrB1s “ µxrγ´1pBqs. (A16)

Here, both p˚q are by (AR3) from Lemma A.10, both p:q are by the definitions of

x and x1, and both p˛q are by equations (A11) and (A12). Combining equations

(A14)-(A16), we get µxrγ´1pBqs “ µxrBs, as claimed. This works for any x, B, and γ.

3 Claim 6

For any x P X , Claim 6 and Lemma A.6(c) yield r P R` such that µxrBs “ r δpBq for

all B P B. In fact, r “ upxq, because µxrNs “ V prxsq “ upxq, while δpNq “ 1. Thus,

µxrBs “ upxq δpBq, for all B P B. (A17)

In particular, µlrBs “ δpBq, for all B P B, because uplq “ 1.

Claim 7: If y P SmpRegpX q , then V pyq “ CesAve
nPN

upynq.

20We do not call µx a “measure” because B is not a Boolean algebra.
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Proof: If y P SmpRegpX q, then there exist a B-partition tB1, . . . ,BMu and Y 1, . . . , Y M P

X such that yb “ Y m for all b P Bm and all m P t1, . . . ,Mu. In other words,

yBm “ rY
msBm . Thus,

V pyq
p§q

M
ÿ

m“1

VBmpyBmq “

M
ÿ

m“1

VBmprY
m
sBmq

p˚q

M
ÿ

m“1

µY
m

pBmq
p:q

M
ÿ

m“1

upY m
q ¨ δpBmq “

M
ÿ

m“1

upY m
qCesAve

nPN
1Bmpnq

p;q
CesAve

nPN

M
ÿ

m“1

upY m
q ¨ 1Bmpnq p˛q

CesAve
nPN

upynq,

as claimed. Here, p§q is by property (AR3) from Lemma A.10, p˚q is by equation

(A12), p:q is by (A17), p;q is by the linearity of the Cesàro average operator, and p˛q

is because upynq “
M
ÿ

m“1

upY m
q ¨ 1Bmpnq for all n P N. 3 Claim 7

Claim 8: Let y P RegpX q, let x P SmpRegpX q, and let ε ą 0.

(a) Suppose yn ľ˚ xn for all n P N. Then there exists y1 P SmpRegpX q such that

d8py
1,yq ă ε and V py1q ě V pxq ´ ε.

(b) Suppose yn ĺ˚ xn for all n P N. Then there exists y1 P SmpRegpX q such that

d8py
1,yq ă ε and V py1q ď V pxq ` ε.

Proof: We will prove (a); the proof of (b) is analogous. Let Y “ tynu
8
n“1. Then Y is

totally bounded because y P RegpX q Ď `8pN,X q. So there exist t1, . . . , tJ P X such

that Y Ď
J
ď

j“1

Bptj, ε2q. For all j P t1, . . . , Ju, let Yj :“ Y X Bptj, ε2q.

Condition (B) yields x, z P X such that x ĺ˚ y ĺ˚ z for all y P Y . So upxq ď upyq ď

upzq for all y P Y . Let M :“ rpupzq´upxqq{εs. Then for each j P t1, . . . , Ju, there is a

finite subset Wj Ď Yj (with |Wj| ďM) such that for all y P Yj there is some w PWj

with |upyq ´ upwq| ă ε. Note that dpy, wq ď dpy, tjq ` dptj, wq ă
ε
2
` ε

2
“ ε. Thus,

y P Bpw, εq. So for all w P Wj, let Ow :“ tx P Bpw, εq; |upxq ´ upwq| ă εu. This is

an open subset of X (because u is continuous and Bpw, εq is open). We have just seen
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that Yj Ď
ď

wPWj

Ow. Repeating this construction for all j P t1, . . . , Ju, we deduce that

Y Ď

J
ď

j“1

ď

wPWj

Ow “
ď

wPW
Ow, where W :“

J
ď

j“1

Wj.

W is a finite union of finite sets, hence finite. By repeating the construction of

Lemma A.3, we obtain y1 P SmpRegpN,Wq such that for all w P W and all n P N, if

y1n “ w, then yn P Ow. Thus, dpyn, y
1
nq ă ε and |upynq ´ upy1nq| ă ε, hence upynq ă

upy1nq ` ε. By hypothesis, xn ĺ˚ yn, so upxnq ď upynq; thus, we get upxnq ă upy1nq ` ε.

Thus, upy1nq ą upxnq ´ ε for all n P N, so V py1q ě V pxq ´ ε by Claim 7 and

monotonicity of the Cesàro average. Also, dpyn, y
1
nq ă ε for all n P N, so d8py,y

1q ă ε.

3 Claim 8

The next claim shows that V satisfies a limited form of pointwise monotonicity.21

Claim 9: Let y P RegpX q and x P SmpRegpX q.

(a) If xn ĺn yn for all n P N, then V pxq ď V pyq.

(b) If xn ľn yn for all n P N, then V pxq ě V pyq.

Proof: We will prove (a). The proof of (b) is analogous. Claim 8(a) yields a sequence

tyku8k“1 in SmpRegpX q with limkÑ8 dpy
k,yq “ 0, such that for any ε ą 0, there is

some K P N such that V pykq ě V pxq´ε all k ě K. Claim 5 yields lim
kÑ8

V pykq “ V pyq.

Thus, V pyq ě V pxq ´ ε, for any ε ą 0. Thus, V pyq ě V pxq. 3 Claim 9

Claim 10: For any y P RegpX q, V pyq “ CesAve
nPN

upynq.

Proof: The set tynu
8
n“1 is totally bounded, because RegpX q Ď `8pN,X q. So (B) yields

x, z P X with x ĺ˚ yn ĺ˚ z for all n P N. Thus, upxq ď upynq ď upzq for all n P N.

Let ε ą 0. Let M :“ r|upzq ´ upxq|{εs. Since X is connected and u is continuous,

there exist w0, . . . , wM P X with x “ w0 ă w1 ă ¨ ¨ ¨ ă wM “ z and |upwmq ´

21The corresponding result in WZ is Lemma 9. But their proof uses the fact that R is linearly ordered

and its order topology is the same as its metric topology. So it is not suitable in the present context.
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upwm´1q| ă ε for all m P t1, . . . ,Mu. Define BM :“ tn P N; wM´1 ĺ yn ĺ wMu, and

for all m P r1 . . .Mq, define Bm :“ tn P N; wn´1 ĺ yn ă wnu. Then N “ B1\¨ ¨ ¨\BM .

Claim 10A: Bm P B for all m P t1, . . . ,Mu.

Proof: First suppose m P r1 . . .Mq. Let Om :“ tx P X ; wm´1 ĺ˚ x ă˚ ymu. Axiom A2

implies that the order ľ˚ is continuous on X . Thus, Om is the intersection of the

open set tx P X ; x ă˚ ymu and the closed set tx P X ; wm´1 ĺ˚ xu, hence it is an

element of OpX q. But Bm :“ tn P N; yn P Omu; thus Bm P B because y is regular.

This argument works for m P r1 . . .Mq. A similar argument shows that BM P B

(but in this case, the set OM is closed in X ). O Claim 10A

Now define y,y P SmpRegpX q as follows:

For all m P t1, . . . ,Mu and all b P Bm, y
b

:“ wm´1 and yb :“ wm.

Thus, for all n P N, we have y
n

ĺ˚ yn ĺ˚ yn. Thus Claim 9 yields

V pyq ď V pyq ď V pyq. (A18)

Meanwhile, Claim 7 says that

V pyq “ CesAve
nPN

upy
n
q and V pyq “ CesAve

nPN
upynq. (A19)

Combining statements (A18) and (A19), we get

CesAve
nPN

upy
n
q ď V pyq ď CesAve

nPN
upynq, (A20)

Also, for all n P N, we have |upynq ´ upynq| ď ε. Thus,

for all n P N,
ˇ

ˇ

ˇ
upynq ´ upynq

ˇ

ˇ

ˇ
ď ε and |upynq ´ upynq| ď ε.

Thus,
ˇ

ˇ

ˇ
CesAve

nPN
upynq ´ CesAve

nPN
upynq

ˇ

ˇ

ˇ
ď ε and

ˇ

ˇ

ˇ
CesAve

nPN
upynq ´ CesAve

nPN
upy

n
q

ˇ

ˇ

ˇ
ď ε.

(A21)

Combining (A20) and (A21) yields

CesAve
nPN

upynq ´ ε ď V pyq ď CesAve
nPN

upynq ` ε,

This holds for any ε ą 0. The claim follows. 3 Claim 10
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We now extend Claim 10 to RegpX q, using d8-density.

Claim 11: For any y P RegpX q, V pyq “ CesAve
nPN

upynq.

Proof: Let y P RegpX q. If y P RegpX q then Claim 10 immediately yields the above

equation. Otherwise, there is a compact subset K Ď X and a sequence pyjq8j“1 of

elements of RegpKq such that lim
jÑ8

d8py
j,yq “ 0. Thus, Claim 5 yields

lim
jÑ8

V pyjq “ V pyq. (A22)

For all n P N, we have yn “ limjÑ8 y
j
n, so yn P K, because K is closed. Now, u is

continuous and K is compact, so the restricted function u|K is uniformly continuous.

Thus, for any ε ą 0 there is some η ą 0 such that |upxq´upyq| ă ε for all x, y P K with

dpx, yq ă η. But lim
jÑ8

d8py
j,yq “ 0, so there is some Jε P N such that for all j ě Jε,

we have d8py
j,yq ă η; hence for all n P N, dpyjn, ynq ă η and thus |upyjnq ´ upynq| ă ε.

From this it follows that

ˇ

ˇ

ˇ
CesAve

nPN
upyknq ´ CesAve

nPN
upynq

ˇ

ˇ

ˇ
ă ε, for all j ě Jε.

We can find such a Jε for any ε ą 0. Thus,

lim
jÑ8

CesAve
nPN

upyjnq “ CesAve
nPN

upynq. (A23)

Finally, for all j P N, Claim 10 says V pyjq “ CesAve
nPN

upyjnq. Combine this fact with

equations (A22) and (A23) to conclude that V pyq “ CesAve
nPN

upynq. 3 Claim 11

The theorem now follows by combining Claims 4 and 11. l

Remarks. (a) We have required Axiom A3 (Separability) to apply on all of RegpX q. But

an inspection of the proof shows that we really only need A3 to hold on SmpRegpX q.

(b) In the proof of the theorem, the first step was to show that ľ has a “subjective

expected utility” (SEU) representation involving a finitely additive “measure” µ on B. We

then used Axiom A4 to show that µ is Γ-invariant, and then invoked Theorem 2 of Obata
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(1988a) to deduce that µ is the natural density measure δ. From this, we deduced that the

aforementioned SEU representation is the Cesàro average utility representation (3). To

achieve the initial SEU representation, we used Axioms A1 - A4 and the proof strategy of

Wakker and Zank (1999). But one could use another axiomatic characterization of SEU.

One complication is that B is not a Boolean algebra. So the original theorem of Savage

(1954) is not applicable. However, B is a mosaic; thus, the axiomatization of Kopylov

(2007) is applicable.22 Thus, one could state and prove a version of the main result using

Kopylov’s formulation of Savage’s axioms in place of Axioms A1 - A4.

(c) A version of Cesàro average can be defined on any countable amenable group (or

monoid) using a Følner sequence.23 The standard Cesàro average on N is just the special

case corresponding to the Følner sequence tt1, . . . , Nuu8N“1. Except for Lemma A.6 (based

on results of Obata (1988a)), the proof of the Theorem does not use any special proper-

ties of N. The rest of the proof generalizes immediately to any other countable monoid

(indeed, any countable set). Thus, given an extension of Obata’s results to some other

countable amenable monoid M, one could immediately obtain a corresponding extension

of the Theorem to M. Unfortunately, to our knowledge, there are no such extensions. This

is an interesting avenue for future research.

22A mosaic is any collection B of subsets satisfying statement (A2).
23A countable group (or monoid) pG, ¨q is amenable if there is a finitely additive probability measure µ

defined on the power set ℘pGq that is invariant under left-multiplication —that is, for any A Ď G and

g P G, µpg ¨ Aq “ µpAq (see e.g. Fremlin 2006a, §449). For example, N and Z are amenable, as is any

Cartesian product NJ ˆZK for any J,K P N. Any finitely generated abelian group is amenable. So is any

solvable group, or any group with a Cayley digraph having subexponential growth.

A Følner sequence for G is an increasing sequence of finite subsets F “ tFnu8n“1 of G such that

(1) F exhausts G: For all g P G there is some N P N such that g P Fn for all n ě N ; and

(2) F is approximately invariant: For all g P G, lim
nÑ8

|pg ¨ Fnq X Fn|
|Fn|

“ 1.

A countable group is amenable if and only if it has a Følner sequence (Følner 1955; Fremlin 2006a,

449X(n)). For monoids, the situation is similar but more complicated; see e.g. Gray and Kambites (2017).
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