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Deliberation and epistemic democracy∗

Huihui Ding and Marcus Pivato†

February 23, 2021

Abstract

We study the effects of deliberation on epistemic social choice, in two settings.
In the first setting, the group faces a binary epistemic decision analogous to the
Condorcet Jury Theorem. In the second setting, group members have probabilistic
beliefs arising from their private information, and the group wants to aggregate these
beliefs in a way that makes optimal use of this information. During deliberation, each
agent discloses private information to persuade the other agents of her current views.
But her views may also evolve over time, as she learns from other agents. This process
will improve the performance of the group, but only under certain conditions; these
involve the nature of the social decision rule, the group size, and also the presence of
“neutral agents” whom the other agents try to persuade.

JEL classification: D71, D83.
Keywords: Deliberation; Epistemic social choice; Condorcet Jury Theorem; Proba-
bilistic belief aggregation; Multiplicative pooling

Just as a banquet to which many contribute dishes is finer than a single plain dinner,
for this reason in many cases a crowd judges better than any single person.

—Aristotle, Politics III.11 1286a

1 Introduction

In many collective decisions, there is an objectively correct answer, and the group wants
to find it. For example, a criminal trial jury must decide whether a defendant is innocent
or guilty. The Supreme Court must determine the constitutional validity of laws or lower-
court decisions. The directorate of the Central Bank must evaluate the risks of inflation and
recession over the coming year. The senior management of a firm must determine which
business strategy will maximize long-term profits. Finally, blue ribbon commissions and
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scientific committees must advise policy-makers on questions of scientific fact. Epistemic
social choice theory studies the conditions under which voting rules or opinion aggregation
methods can deliver accurate answers to such questions (see Pivato, 2013, 2017 or Diet-
rich and Spiekermann, 2020a,b for summaries). This has inspired a parallel literature in
political philosophy on epistemic democracy (Cohen, 1986; Landemore and Elster, 2012;
Schwartzberg, 2015; Goodin and Spiekermann, 2018). Starting with the Condorcet Jury
Theorem, most models in epistemic social choice theory have assumed that the opinions
of different voters are stochastically independent, conditional on the true state of nature.1

But in reality, the opinions of voters are correlated, because they deliberate with one an-
other. Indeed, there is now an extensive literature on deliberative democracy which argues
that deliberation should improve the epistemic competency of groups (Fishkin and Laslett,
2008; Landemore, 2013; Landemore and Page, 2015; Estlund and Landemore, 2018). But it
is not clear that deliberation is always beneficial in this regard. Deliberation enables agents
to pool information, but they might double-count this information (Berg, 1997). Deliber-
ation can also lead to “groupthink” (Janis, 1972; Solomon, 2006; Visser and Swank, 2007;
Mayo-Wilson et al., 2013), informational cascades (Banerjee, 1992; Bikhchandani et al.,
1992, 1998), and other pathologies. On the balance, does deliberation really lead to more
epistemically reliable group decisions?

Suppose that any initial heterogeneity of beliefs amongst the agents arises from hetero-
geneity of private information. And suppose that during deliberation, every agent truth-
fully reveals all of her private information to the group, and every other agent correctly
understands this information and updates her beliefs accordingly. Then deliberation will
generally improve the reliability of the group, because the collective decision will fully in-
corporate the pooled information of all group members. So if deliberation were this simple,
then the answer to the question in the previous paragraph would be trivially affirmative.
But in reality, things are not so simple, for two reasons. First, agents may either lie or
withhold information to manipulate the group decision to their own advantage. Second,
even amongst honest agents, communication can be costly: it may take time and effort for
an agent to clearly and credibly convey her private information to other group members
so that they fully understand it and update their beliefs accordingly. Indeed, if “private
information” is interpreted in the broadest sense, to encompass all of an agent’s prior ed-
ucation and professional experience, then it is simply infeasible for her to communicate all
her information to the group; she must select some small subset to disclose. Over the past
two decades, a considerable literature on strategic deliberation has developed in response to
the first problem (see Section 5 for a review). But there has been very little examination
of the second problem.2 This paper aims to fill this gap.

We will construct a stylized model of deliberation with costly communication amongst
Bayesian agents, and investigate whether deliberation improves the reliability of the group’s

1An early exception is Ladha (1992, 1995), who was the first to extend the Condorcet Jury Theorem
to correlated voters. For more recent related work, see Pivato (2017) and the references cited there.

2Exceptions are Fishman and Hagerty (1990) and Glazer and Rubinstein (2001, 2004), who consider
models of persuasion and argumentation in which agents can only disclose a subset of their information,
due to time constraints or other communication costs. Landa (2019) also discusses the importance of
information overload in deliberation.
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decision. In our model, the true state of the world is unknown; the group wants to deter-
mine this state. The agents have each received a set of private signals (“evidence”) that
are informative about the true state. In each time period, each piece of evidence is either
private or public. Private evidence is known by only one (or a few) agents. Public evidence
is known by everyone. Agents are Bayesian; at any moment in time, each agent’s beliefs
are obtained by combining her prior beliefs with her currently available evidence —that is,
her own private evidence and all the publicly available evidence. Deliberation is a way for
agents to “disclose” some of their private evidence, turning it into public evidence, so as
to modify the beliefs of the other agents.3 But evidence disclosure takes time. An agent
might have many pieces of private evidence, but she can only disclose one piece at a time.
Thus, unlike most deliberation models in the literature, our model is diachronic; we track
the evolution of each agent’s beliefs (and evidence base) over time.

Furthermore, evidence disclosure is costly: communication involves an expense of time
and effort, both for the sender and the receivers. So an agent will not disclose her private
evidence without an incentive. Her incentive is to convince the other agents of the correct-
ness of her current views. Unlike the literature on strategic deliberation, we assume that
the agents deliberate in good faith —that is, each agent simply wants the group decision
to converge to the correct answer (or at least, what she currently believes to be the correct
answer). Strategic deliberation is typically driven by heterogeneity of preferences. In our
model, there is no heterogeneity of preferences —only heterogeneity of beliefs. Also, unlike
the literature on strategic deliberation, agents in our model do not harbour second-order
beliefs about other agents’ undisclosed private information (and third-order beliefs about
other agents’ second-order beliefs, and so on). They only have first-order beliefs about the
state of the world, based upon the evidence currently available to them.

Agents take turns disclosing single pieces of evidence. Each agent only discloses evi-
dence that will move the beliefs of other group members closer to her own current beliefs.
But at the same time, her own beliefs also evolve, as a consequence of the evidence revealed
by other agents. This process continues until the group reaches a deliberative equilibrium
in which every agent is either unwilling or unable to disclose further evidence. This raises
two questions. First, do such equilibria exist? Second, how accurate are the resulting
group decisions? To answer these questions, we will consider three stylized scenarios.

Case 1. Suppose that the group must make a simple binary decision by majority vote (as
in the Condorcet Jury Theorem). Thus, at any stage in the deliberation, the goal of
each agent is that a majority of the other agents agree with her. If she is already part
of the majority, then this is automatically true. Otherwise, if her current opinion is
in the minority, then she will present new evidence to the group (if she has any) to
try to persuade voters in the opposing majority to agree with her.

Case 2. Now suppose the informed agents cannot vote, but instead act as “advisors”
to an external decision-maker (“the President”). Each advisor wants the President

3This is similar to the hidden-profiles paradigm of Stasser and Titus (1985), which has played a promi-
nent role in the social psychology literature on deliberation; see Lu et al. (2012) and Maciejovsky and
Budescu (2019) for recent reviews.
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to adopt her opinion. The President is initially uninformed but Bayesian, so her
decision will be determined by the balance of publicly available evidence. So each
advisor wants the publicly available evidence to support her current opinion.

Case 3. Finally, suppose that the group is no longer faced with a binary decision; in-
stead, it must select a probability distribution over two or more possibilities. Each
agent’s probabilistic beliefs are determined by her prior probability and her current
evidence, via Bayes rule. The goal of each agent is thus to present evidence so that
the probabilistic beliefs of other group members converge to her own current beliefs.

In Case 1, suppose that at least one member of the group begins with a neutral opinion,
either because she has no private information, or because her private information is equally
balanced between positive and negative evidence. Then deliberation often leads to the same
outcome as would be achieved if (counterfactually) all the agents revealed all their private
evidence (Theorems 1 and 2). Likewise, in Case 2, under certain conditions, deliberation
leads the President to make an optimally informed decision (Theorems 3 and 4). Finally,
in Case 3, under certain conditions, deliberation yields the decision that would occur under
full information pooling (Theorems 5 and 6).

The rest of the paper is organized as follows. Section 2 presents the model. Section 3
considers deliberation in a binary decision as in Cases 1 and 2 above, and contains Theorems
1 to 4. Section 4 considers deliberation in the context of probability aggregation, as in Case
3 above, and contains Theorems 5 and 6. Section 5 reviews prior literature and Section 6
discusses the hypotheses of the model. All proofs are in the Appendices.

2 Framework

Let X be a finite set of possible states of the world. Let Y be a space of possible signal
values. Let ∆∗(X ) be the set of all probability measures on X with full support —i.e. such
that every element of X receives nonzero probability. Define ∆∗(Y) in the same way. Let
ρ : X−→∆∗(Y) be a function; if the true state of the world is x ∈ X , then the signals will
be conditionally independent, identically distributed (i.i.d) random variables drawn from
the probability distribution ρ(x), which we will write as ρx.

Let x̃ be the (unknown) true state of the world. Suppose a Bayesian agent has prior
beliefs about x̃ given by π ∈ ∆∗(X ), and she receives a sequence y = (y1, y2, . . . , yM) of
i.i.d. random signals drawn from ρx̃. Let By be her posterior beliefs about x̃, given y.
Then By is the following probability distribution over X :

By(x) =
1

(SNC)
π(x) ·

M∏
m=1

ρx(ym), for all x ∈ X . (2A)

Here and throughout the paper, “(SNC)” refers to “Some Normalization Constant”, needed
to ensure that the expression in question defines a probability distribution. These normal-
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ization constants are not important to the analysis, so we will not specify them explicitly.4

Now let I be a set of agents. For all i ∈ I, let πi ∈ ∆∗(X ) be a probability distribution
describing i’s prior beliefs, before acquiring any information. Let M be a finite indexing
set, and let {ym}m∈M be a set of i.i.d. random signals drawn from ρx, where x is the
(unknown) true state of the world. We refer to these signals as evidence. For all i ∈ I, let
Mi ⊂M be the set of evidence received by agent i —this is i’s initial private information.
(We do not necessarily assume that these sets are disjoint.) Meanwhile, let C0 ⊂M be the
set of evidence that is common information at time 0. (We assume it is disjoint from the
setsMi.) Thus, before deliberation, formula (2A) says that i’s initial beliefs are given by

B0
i (x) =

πi(x)

(SNC)

∏
c∈C0

ρx(yc) ·
∏

m∈Mi

ρx(ym), for all x ∈ X . (2B)

We can assume without loss of generality that

M = C0 t
⋃
i∈I

Mi, (2C)

because any evidence which is not in this union will never be learned by the group after
any amount of deliberation, and is therefore irrelevant to our analysis.

Deliberation takes place in a series of “rounds”, indexed by the set of natural numbers
N = {0, 1, 2, . . .}. For any t ∈ N, let Cti ⊆ Mi be the part of agent i’s evidence which she
has disclosed (i.e. made into common information) at time t. Thus, P ti :=Mi \ Cti is the
part of agent i’s evidence which remains “private” at time t. Let

Ct := C0 t
⋃
i∈I

Cti . (2D)

This is the set of evidence that is common information at time t. Let Bt
i be the probabilistic

beliefs of agent i at time t. This is a combination of her prior, the publicly available
evidence, and her own (undisclosed) private evidence. By applying (2A), we obtain:

Bt
i(x) =

πi(x)

(SNC)
·
∏
p∈Pt

i

ρx(yp) ·
∏
c∈Ct

ρx(yc), for all x ∈ X . (2E)

In other words, agent i’s beliefs about the world at time t are entirely determined by the
evidence which is available to her at time t. In particular, she does not speculate about
the possibility of further, undisclosed evidence still held by other agents.5 From formula
(2E) it is clear that, when agent i discloses evidence (i.e. transfers it from P ti to Ct), her
own beliefs will not change. However, this disclosure may affect the beliefs of other people.
Conversely, agent i’s own beliefs can evolve as Ct accumulates more and more evidence from

4To be precise, in equation (2A), (SNC) =
∑
x∈X

π(x)

(
M∏
m=1

ρx(ym)

)
.

5We discuss this assumption further after Example (a) in Section 3, and also in Section 6.
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other people. At any moment in time, her deliberation behaviour (i.e. the sort of evidence
she discloses) depends on her current beliefs. So as her beliefs evolve, her behaviour may
change. She may stop advocating one position (i.e. stop disclosing evidence supporting
this position), and even start advocating a position she previously opposed. In Sections 3
and 4, we will explore two special cases of this model.

3 Deliberating binary decisions

In this section, we will focus on the simplest nontrivial example of the model, where
X = Y = {±1}. Fix p ∈ (1

2
, 1), and suppose that ρ(x|x) = p and ρ(−x|x) = 1−p, for both

x ∈ X . This is essentially the set-up of the Condorcet Jury Theorem. We will describe
+1-valued signals as “positive” and −1-valued signals as “negative”. We assume all agents
have a common prior π, which assigns probability 1

2
to each state.

For all i ∈ I and t ∈ N, the opinion of agent i at time t is the variable sti ∈ {−1, 0, 1}
describing whether i believes the positive state or the negative state to be more probable,
according to the probabilistic beliefs Bt

i defined by equation (2E). Formally,

sti :=


1 if Bt

i(1) > Bt
i(−1);

0 if Bt
i(1) = Bt

i(−1);
−1 if Bt

i(1) < Bt
i(−1).

(3A)

Using equation (2E) and the common prior π, it is easily verified that sti is entirely deter-
mined by the amount of positive and negative evidence available to i at time t. Formally,

sti = sign

∑
p∈Pt

i

yp +
∑
c∈Ct

yc

 . (3B)

Dissent and disclosure. We assume that it is easy for agents to learn their peers’
opinions during each round of deliberation, simply by asking them yes/no questions or
holding a straw vote. But in this section, we assume that it is not possible for agents
to learn the underlying beliefs of their peers. (See Section 4 for a model with belief
disclosure.) Furthermore, it is difficult to learn what evidence —or even how much evidence
—their peers have to justify these opinions. We have abstractly represented each “piece
of evidence” as a single binary signal. But in reality, it may by a complex corpus of facts,
analysis, interpretation and arguments that may take considerable time and effort for an
agent to clearly explain to her peers. Thus, an agent will not “disclose” this evidence (i.e.
explain these facts and arguments) unless she has an incentive to do so. We assume that
each agent wants the collective decision to be correct. At any time during deliberation,
she believes that her current opinion is correct; thus, she seeks to persuade other group
members to agree with her current opinion.6 She will disclose evidence only if it advances

6See Section 6 for further discussion of this assumption. Also, note that sti = 0 does not mean that i
has “no opinion” —it means that i thinks ±1 are equally probable, and hence the correct answer for the
group is to remain ambivalent.
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this goal. To be precise, she will only disclose evidence if her current opinion disagrees
with the current collective decision —in this case, we say that she dissents from the group.
Agents who already agree with the current collective decision will not disclose evidence,
because such disclosure is costly, and they have no reason to incur this cost.

Although it will not play any formal role in the model that follows, it might be helpful
to rationalize these behavioural assumptions with a stylized utility function. Let 0 < ε <
1. Suppose agent i starts with Mi pieces of private evidence, and during the course of
deliberation, she discloses Ci of them. Suppose that the group decision is x ∈ {−1, 0, 1},
but agent i’s opinion is y. Then i’s final utility will be −|x − y| − ε Ci/Mi. So disclosing
each piece of evidence is costly, but this cost is outweighed by i’s desire for the group
decision to agree with her opinion. Thus, at any time t, she is always willing to disclose
more evidence, if she thinks it will increase by more than ε the probability of the group
agreeing with her. If ε is very small, then even a tiny gain in the probability of the group
agreeing with her opinion is sufficient incentive for i to disclose more evidence. But if
the group already agrees with her, then she will not incur the cost of disclosing further
evidence.

Deliberative equilibrium. For most of this section, we will assume that the collective
decision is made by majority vote (except in subsection 3.3). Formally, for any t ∈ N, the
majority opinion at time t is defined

Majt := sign

(∑
i∈I

sti

)
∈ {−1, 0, 1}, (3C)

where {sti}i∈I are the individuals’ opinions from formula (3B). Let i ∈ I. If sti = Majt,
then we assume that i remains silent during round t. If sti > Majt,7 then we assume that
i may disclose one piece of positive evidence from P ti , so that it becomes part of Ct+1. On
the other hand, if sti < Majt, then we assume that i may disclose one piece of negative
evidence from P ti , so it becomes part of Ct+1.

Note that we only assume that voter i may disclose evidence in round t —not that she
will disclose evidence. Whether or not i actually discloses evidence in round t depends
on two things: first, whether she has any pertinent evidence left to disclose (see Example
(a) below), and second, the nature of the deliberation protocol. In the parallel protocol
discussed in Section 3.2 below, every dissenting agent can disclose evidence during round t
(if they have any). But in the serial protocol of Section 3.1, only one dissenting agent can
disclose evidence during each round. This distinction has implications for the outcome of
deliberation, as we shall see later.

After each disclosure, everyone in the group will update their beliefs based on the
newly revealed evidence. This process of deliberation must end in finite time (because
C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ CT ⊆ M and M is finite). When it ends, all the agents are silent,
either because they have no evidence left to disclose, or because they have no incentive to
disclose their remaining evidence. We then say that the group is in a deliberative equilibrium.

7This occurs if sti = 1 and Majt ∈ {−1, 0}, or if sti ∈ {0, 1} and Majt = −1.
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It might seem that in any such equilibrium, there will be unanimous consensus. The
next example shows that this is not the case.

Example (a) Suppose I = {h, i, j, k, `}, with Mh = {⊕1}, Mi = {⊕2,⊕3,�1}, Mj =
{�2,�3,�4,�5}, Mk = {�6,�7,�8,�9} and M` = {�10,�11,�12,�13}, where the sig-
nals ⊕1,⊕2,⊕3 are positive while �1, . . . ,�13 are negative. Also, suppose C0 = ∅. Thus,∑

m∈Mh

ym =
∑
m∈Mi

ym = 1, so that s0h = s0i = 1, while∑
m∈Mj

ym =
∑
m∈Mk

ym =
∑
m∈M`

ym = −4, so that s0j = s0k = s0` = −1.

The collective decision is made by majority vote. The initial majority decision is −1.
Agents h and i dissent from this majority, so they disclose their positive evidence to try
to convince j, k and `. Suppose that during the first three rounds of deliberation, h and i
disclose signals ⊕1, ⊕2, and ⊕3. Then at time t = 3, we have C3 = {⊕1,⊕2,⊕3}, P3

h = ∅,
P3
i = {�1}, P3

j = {�2, . . . ,�5}, P3
k = {�6, . . . ,�9} and P3

` = {�10, . . . ,�13}. Thus,∑
c∈C3

yc +
∑
p∈P3

h

yp = 3, and
∑
c∈C3

yc +
∑
p∈P3

i

yp = 3− 1 = 2, while

∑
c∈C3

yc +
∑
p∈P3

j

yp =
∑
c∈C3

yc +
∑
p∈P3

k

yp =
∑
c∈C3

yc +
∑
p∈P3

`

yp = 3− 4 = −1,

so that s3h = s3i = 1 while s3j = s3k = s3` = −1. In other words, h and i have failed to change
the minds of j, k and `, and they have now run out of positive evidence. Four agents still
have undisclosed negative evidence, but none of them have any reason to disclose it; i will
not disclose her negative evidence because it undermines her own (positive) opinion, while
j, k and ` will not disclose their negative evidence because they already agree with the
majority decision. Thus, the group is in deliberative equilibrium, but h and i still disagree
with j, k and `. ♦

A natural question arises in Example (a): Why do h and i not deduce from the neg-
ative opinions of j, k and ` that there is negative evidence that h and i currently do
not know? The answer is that while h and i can deduce that j, k and ` know some
negative information, they cannot deduce how much negative evidence they know. (Nor
can h deduce how much positive information is known by i, or vice versa —at least,
until deliberative equilibrium is reached.) From the perspective of h and i, it is possi-
ble that Mj = {�2,�3,�4,�5,�6,�7,⊕4,⊕5}, Mk = {�2,�3,�4,�5,�6,�7,⊕6,⊕7}, and
M` = {�2,�3,�4,�5,�6,�7,⊕8,⊕9}, where ⊕4, ⊕5, ⊕6, ⊕7, ⊕8 and ⊕9 are six hypothet-
ical positive signals (two for each of j, k and `), while �2, �3, �4, �5, �6 and �7, are
six hypothetical negative signals, which are unwittingly shared by all of j, k and `. This
hypothesis is consistent with the pattern of behaviour that h and i observe from j, k and
` during the entire deliberation process, up to and including the equilibrium. But if h
and i believed this, then they would believe that j, k and ` hold six pieces of positive
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evidence in total, and also six pieces of negative evidence, so it would be rational for h
and i to maintain their own positive opinions throughout the deliberation (including the
equilibrium), given their private information and what has been publicly disclosed.

Furthermore, once we enrich the model to allow agents to hold second-order beliefs
about one another’s unrevealed evidence, we could enrich it further to allow the agents
to hold third-order beliefs about one another’s second-order beliefs. For example, h and
i might think that in fact Mj = Mk = M` = {�1,�2}, but also think that j, k and `
maintain their negative opinions because each of them believes (incorrectly) that the other
two hold several other pieces of undisclosed negative evidence; this would be consistent
with their behaviour during and after deliberation.

Indeed, in a model where agents can have second-order and higher-order beliefs, any
pattern of deliberative behaviour would be consistent with some set of reasonable hypothe-
ses on the part of the agents. One solution to this underdetermination problem would be
a more detailed model, deploying stronger assumptions about each agents’ knowledge of
the other agents’ information sources, so as to constrain their higher-order beliefs.8 But
such a model would be complex and not necessarily realistic. Instead, we opt for a simpler
approach: our agents take their own evidence at face value, and do not speculate about
the hidden evidence that other agents might possess. We do not suppose that agents are
unaware that other agents may have undisclosed evidence, or that they lack a “theory of
mind”. But they do not form probabilistic second-order beliefs about other agents’ possi-
ble undisclosed evidence (and third-order beliefs about other agents’ second-order beliefs,
etc.), because they lack the background information and cognitive resources needed to
construct and consistently update such beliefs; see Section 6 for further discussion.9

For similar reasons, our model of deliberation is not a game; hence, a deliberative
equilibrium is not a Nash equilibrium. A deliberative equilibrium is a stationary state
in a diachronic process of nonstrategic sequential information disclosure. A diachronic
model of strategic deliberation would be an extensive-form game; a subgame-perfect Nash
equilibrium of such a game would require each agent at each time to anticipate the possible
disclosures that other agents might make in the future, and to preemptively disclose her
own evidence accordingly. In our model, agents do not hold beliefs about what private
information other agents have, or even how much information other agents have, so it is
not possible for them to engage in this sort of forward-looking strategic reasoning. (But
see Appendix C for a simple game-theoretic interpretation of our results.)

Reliability and full disclosure. If the agents hold a majority vote at time t, then the
decision is given by formula (3C). The reliability of this decision is the probability that it

8For example, in Aumann’s (1976) model, each agent knows the information partitions of the other
agents; see Sections 4 and 6 for further discussion on this point.

9A referee has suggested that, even if the agents cannot form precise probabilistic second-order beliefs
about each other, they might cope with this uncertainty by maximizing the minimum expected utility over
a set of probabilistic second-order beliefs, or using one of the other non-expected utility models investigated
in decision theory. This is an interesting avenue for future investigation.
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correctly identifies the true state.10 We say there is full disclosure if all agents have complete
information —that is Ct =M. In this case, all agents update to identical posterior beliefs
via formula (3B); thus, the group is unanimous.

Proposition. The (unanimous) majority decision under full disclosure achieves the max-
imum reliability possible given the information in M.

Since communication is costly, full disclosure may be unachievable. Fortunately, it may
also be unnecessary. We will say that a deliberative equilibrium is full-disclosure equivalent
if the collective decision in the equilibrium is the same as the consensus that would be
reached under full disclosure. So it is sufficient to seek full-disclosure equivalence. For
example, the equilibrium in Example (a) is full-disclosure equivalent, because the majority
decision is negative, and likewise∑
c∈C0

yc+
∑
m∈Mh

ym+
∑
m∈Mi

ym+
∑
m∈Mj

ym+
∑
m∈Mk

ym+
∑
m∈M`

ym = 0+1+1−4−4−4 = −10 < 0.

Not all deliberative equilibria are full-disclosure equivalent. Also, the agents themselves
might not know that their equilibrium is full-disclosure equivalent. (If h and i understood
this in Example (a), then presumably they would switch to negative opinions.) But it is
beyond the scope of this paper to model the agents’ beliefs after deliberation ends.

Deliberation protocols. We have not yet described the timing of evidence disclosure
—what we call the protocol. We will consider two possible protocols. In the serial protocol,
only one dissenting agent can speak during each round of deliberation. In the parallel pro-
tocol, all dissenting agents can speak during each round of deliberation. The distinction
between the two protocols is best understood as a question of the relative speed at which
agents can transmit information, versus the speed at which they can incorporate new in-
formation into their beliefs. In the serial protocol, agents can incorporate new information
very quickly: every time an agent reveals information, the other agents immediately update
their beliefs. In the parallel protocol, agents update their beliefs more slowly. Thus, all
dissenting agents have a chance to disclose new information, and then (perhaps during a
brief interlude), all agents update their beliefs before the next round of deliberation begins.

This small difference in timing causes a big difference in the outcome. In the serial pro-
tocol, deliberation leads to full-disclosure equivalence under broad conditions (Theorem 1).
But in the parallel protocol, deliberation is guaranteed to yield full-disclosure equivalence
only under very special conditions (Theorem 2). These results depend on two assumptions.

(A) After some point during the deliberation, the agents have disjoint private informa-
tion sets. That is, there is some t ∈ N such that P ti ∩ P tj = ∅ for all distinct i, j ∈ I.

10 A collective decision of “0” is assigned reliability 0.5. Also, we neglect the possibility of strategic
voting raised by Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1996, 1997, 1998, 1999).
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(B) There is some agent i ∈ I who is internally neutral, by which we mean
∑
m∈Mi

ym = 0.

To satisfy Assumption (B), it is sufficient (but not necessary) thatMi = ∅. Meanwhile,
Assumption (A) is satisfied ifMi∩Mj = ∅ for all distinct i, j ∈ I. But this is not necessary;
it is sufficient that all private information shared by two or more agents be disclosed at
some point during the deliberation process.

One reason why this is plausible is that evidence held by two or more agents is more
likely to be disclosed early in deliberation, so that the group converges to a situation where
Assumption (A) is satisfied. There are two informal arguments for this claim. First, if
agents disclose their evidence at random, then a piece of evidence which is known by three
people is three times as likely to be disclosed as a piece of evidence known only by one
person. So shared evidence tends to get disclosed earlier. Second, recall that disclosure
is costly: it takes time and effort to clearly and credibly communicate evidence to other
agents. If some other agents already share this evidence, then this could reduce these costs
—hence, this evidence is likely to be disclosed first.

It is beyond the scope of this paper to provide a formal justification for the informal
arguments in the previous paragraph. But it is also not necessary. We do not claim that
Assumption (A) and (B) will always be satisfied. They are not standing assumptions in
our model, and they are not always satisfied in reality. They could easily be violated, as
shown in Examples (b) and (c) below. Even if they are satisfied, the agents themselves
might not know this, as in the discussion following Example (a). Our main results simply
say that if these assumptions are satisfied, then deliberation will lead to a good outcome.

3.1 The serial protocol

For any t ∈ N, let {sti}i∈I be the individuals’ opinions from formula (3B). Let It+ be the set
of agents with positive opinions at time t. Let It− be the set of agents with negative opinions
at time t. Let It0 be the set of agents with neutral opinions at time t. Let E0 :=

∑
c∈C0 yc

be the balance of public evidence at time zero. Suppose E0 6= 0; we will say there is initial
disagreement if at least one agent has an opinion different from sign(E0) at time 0. In
other words, if E0 > 0, then I0− t I00 6= ∅, whereas if E0 < 0, then I0+ t I00 6= ∅. During
each round of deliberation, exactly one dissenting agent will reveal exactly one piece of
evidence. To be precise, during round t, if Majt = 1, then exactly one (randomly chosen)
agent in It−∪It0 reveals one piece of negative evidence. Likewise, if Majt = −1, then exactly
one (randomly chosen) agent in It+ ∪ It0 reveals one piece of positive evidence. Finally, if
Majt = 0, then exactly one (randomly chosen) agent in It+∪It− reveals one piece of evidence
(either positive or negative). We have not specified the probability distributions by which
these dissenting agents are “randomly chosen”. If we specified these distributions, then we
could describe serial protocol deliberation as a stochastic process. But it turns out that
the precise probability distribution doesn’t matter.

Theorem 1 Assume (A) and (B), and suppose that either E0 = 0, or there is initial
disagreement. Then the serial protocol always reaches a deliberative equilibrium that is
full-disclosure equivalent.

11



The next three examples show why the hypotheses of Theorem 1 are needed.

Examples. (b) To see why Assumption (A) is required, suppose that I = {0, 1, 2, 3, 4}
and C0 = ∅ (so that E0 = 0). Suppose thatM0 = ∅ (so agent 0 is internally neutral, in ac-
cord with Assumption (B)), whileM1 = {⊕1,⊕′1,�12,�13,�14},M2 = {⊕2,⊕′2,�12,�23,�24},
M3 = {⊕3,⊕′3,�23,�13,�34}, and M4 = {⊕4,⊕′4,�14,�24,�34}, where the signals ⊕1,
⊕′1, ⊕2, ⊕′2, ⊕3, ⊕′3, ⊕4 and ⊕′4 are positive, while �12, �13, �14, �23, �24 and �34 are
negative. Thus, each of the four agents has three pieces of negative evidence and two pieces
of positive evidence, so each agent has a negative opinion overall. So there is a unanimous
negative consensus, and the group is already in deliberative equilibrium at time 0. How-
ever, there are eight pieces of positive evidence in total, and only six pieces of negative
evidence. So the consensus after full disclosure would have been positive.

(c) To see why Assumption (B) is required, suppose I = {i, j, k}, and Mi = {⊕i,⊕′i},
Mj = {⊕j}, Mk = {⊕k,�k,�′k}, where ⊕i, ⊕′i, ⊕j, and ⊕k are distinct positive signals,
while �k and �′k are negative. Thus, Assumption (A) is satisfied, but Assumption (B) is
violated. Also suppose C0 = ∅, so E0 = 0. Thus, s0i = s0j = 1 while s0k = −1, so that

Maj0 = 1. In Round 0, agent k dissents from this positive majority opinion, and discloses
one piece of negative evidence. We now have P1

i = {⊕i,⊕′i}, P1
j = {⊕j}, P1

k = {⊕k,�k},
and C1 = {�′k}; thus, s1i = 1, s1j = 0, and s1k = −1, so Maj1 = 0. Suppose that in Round 1,
agent i dissents from the now-neutral majority opinion, and discloses one piece of positive
evidence. We now have P2

i = {⊕i}, P2
j = {⊕j}, P2

k = {⊕k,�k}, and C2 = {�′k,⊕′i}; thus,

s2i = 1, s2j = 1, and s2k = 0, so Maj2 = 1. In Round 2, agent k dissents from the new positive
majority opinion, and discloses one piece of negative evidence. We now have P3

i = {⊕i},
P3
j = {⊕j}, P3

k = {⊕k}, and C3 = {�k,�′k,⊕′i}; thus, s3i = s3j = s3k = 0, so that Maj2 = 0.
In other words, the group is in deliberative equilibrium in round 3. However, there are four
pieces of positive evidence and only two pieces of negative evidence, so the full-disclosure
decision would have been positive. Thus, this equilibrium is not full-disclosure equivalent.11

To see how Assumption (B) solves this problem, suppose we add an internally neutral
agent n. In Round 0, agent k dissents and discloses negative evidence as before. Thus,
s1i = 1, s1j = 0, and s1k = −1, but now s1n = −1 also, so that Maj1 = −1. In Round 1,
agents i and j dissent from this majority, so one of them will disclose positive evidence.
This leads to two cases.

Case 1. If i discloses evidence in Round 1, then the majority opinion in Round 2 is
neutral, as before. Thus, in Round 2, agent k dissents again. Thus, as before we have
P3
i = {⊕i}, P3

j = {⊕j}, P3
k = {⊕k}, and C3 = {�k,�′k,⊕′i}; so that s3i = s3j = s3k = 0.

However, s3n = −1, because n’s opinion is determined by C3; thus, now Maj3 = −1. Since
i, j and k have neutral opinions, they dissent from this negative majority, and one of them
will disclose her remaining positive evidence. Suppose it is i who discloses. (The argument

11In Round 1, another possibility is that agent k dissents again, and discloses another piece of negative
evidence, leading to a negative majority in Round 2. In response, agent i dissents and discloses positive
evidence in Round 2, so that in Round 3 the situation is the same as what was described above.
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in the other two cases is very similar.) In this case, we have C4 = {�k,�′k,⊕i,⊕′i} and
P4
i = P4

n = ∅, while P4
j = {⊕j} and P4

k = {⊕k}. Thus, s4i = s4n = 0 while s4j = s4k = 1.

Thus, Maj4 = 1. Agents i and n dissent from this majority, but they have no evidence left
to disclose. Thus, the group reaches a deliberative equilibrium in Round 4.

Case 2. If j discloses evidence in Round 1, then s2i = 1, while s2j = s2k = s2n = 0, so that

Maj2 = 1. Thus, in Round 2, agent k once again dissents. We now have C3 = {�k,�′k,⊕j}
and P3

j = P3
n = ∅, while P3

i = {⊕i,⊕′i} and P3
k = {⊕k}. Thus, s3j = s3n = −1, while

s3i = 1 and s3k = 0, so that again, Maj3 = −1. Agents i and k dissent from this negative
majority, so one of them will disclose positive evidence. Suppose it is i (the argument
for k is similar). Then C4 = {�k,�′k,⊕j,⊕i} and P4

j = P4
n = ∅, while P4

i = {⊕′i} and

P4
k = {⊕k}. Thus, s4j = s4n = 0 while s4i = s4k = 1. Thus, Maj4 = 1. Agents j and n

dissent from this majority, but they have no evidence left to disclose. Once again, the
group reaches a deliberative equilibrium in Round 4.

In either case, the group reaches a deliberative equilibrium that is full-disclosure equiv-
alent. (Like Example (a), this shows that even a full-disclosure equivalent deliberative
equilibrium does not require unanimous consensus amongst the agents.)

(d) Suppose E0 6= 0 and there is no initial disagreement. Then deliberative equilibrium is
reached immediately, since there are no dissenting agents. But the resulting equilibrium is
not necessarily full-disclosure equivalent. For example, suppose that C0 consists of exactly
two pieces of positive evidence. Suppose I = {n} t I−, where n is internally neutral (so
that Assumption (B) is satisfied), while for all i ∈ I−, the set Mi consists of a single
piece of negative evidence (and these sets are disjoint, so Assumption (A) is satisfied.)
Then

∑
m∈Mn

ym +
∑

c∈C0 yc = 2 > 0 so that s0n = 1, while for all i ∈ I−, we have∑
m∈Mi

ym +
∑

c∈C0 yc = −1 + 2 > 0 so that s0i = 1. But if |I−| ≥ 3, then
∑

c∈C0 yc +∑
i∈I
∑

m∈Mi
ym ≤ 2 − 3 < 0, so full disclosure would yield a negative consensus opinion.

So the equilibrium is not full-disclosure equivalent in this example. ♦
Theorem 1 assumes that all pieces of evidence are equally informative —i.e. they are

all drawn from the same conditional probability distribution ρ, as explained at the start of
Section 3. If some pieces of evidence are more informative than others, then deliberative
equilibria might no longer be full-disclosure equivalent. Consider the following scenario.
For allm ∈M, let pm ∈ (1

2
, 1), and suppose that the signal ym is drawn from the conditional

distribution ρm, where ρm(x|x) = pm and ρm(−x|x) = 1 − pm, for both x ∈ {±1}. Thus,

more informative signals correspond to larger values of pm. Let wm = log
(

pm
1−pm

)
; then

using equations (2E) and (3A) and the common prior π = (1
2
, 1
2
), we obtain the following

generalization of equation (3B):

sti = sign

∑
p∈Pt

i

wp yp +
∑
c∈Ct

wc yc

 .

Now suppose
∑

c∈Ct wc yc = 0.5 for some t ≥ 1, and there are ten opinionated agents, each
with no remaining positive evidence, but each holding a piece of private negative evidence
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mi with wmi
= 0.2. (Also suppose that Assumption (B) is satisfied.) The total weight of all

this private negative evidence is −2. If all the private negative evidence was disclosed, then
we would have E = 0.5−2.0 = −1.5, and the group consensus would be negative. However,
individually each agent performs the mental computation 0.5−0.2 = 0.3, and ends up with
a positive personal opinion, so no one reveals any of their evidence, and the deliberative
equilibrium yields a positive consensus; hence it is not full-disclosure equivalent.

3.2 The parallel protocol

In the serial protocol of Section 3.1, only one agent could disclose evidence during each
round of deliberation. But in the parallel protocol, every agent can disclose evidence in
each round. However, an agent will disclose evidence only if she dissents from the majority.
For any t ∈ N, let N t := {i ∈ I;

∑
p∈Pt

i
yp = 0}. (Thus, N 0 is the set of internally neutral

agents who appear in Assumption (B).) We will require a third assumption.

(C) For all t ∈ N, no agent in N t discloses information in round t.

If P tn = ∅ for all n ∈ N t, or if Majt = sign
(∑

c∈Ct yc
)
, then Assumption (C) is trivially

satisfied at time t. Otherwise, it is a substantive behavioural assumption. In effect it says:
even if agents in N t disagree with the majority decision at time t, their opinions are not
strong enough to motivate them to disclose any further evidence. Let I∗ := I \N 0 be the
set of agents in I who are not internally neutral. Here is our second result.

Theorem 2 In the parallel protocol, there is a unique deliberative equilibrium. If Assump-
tions (A), (B) and (C) hold, E0 = 0, and |I∗| ≤ 4, then this equilibrium is full-disclosure
equivalent.

Scenarios similar to Examples (b)-(d) in Section 3.1 show why Assumptions (A) and (B)
and the hypothesis E0 = 0 are needed for the conclusion of Theorem 2. Assumption (C)
and the condition |I∗| ≤ 4 are necessary because otherwise the balance of public evidence
can lurch to an extreme negative or positive value, causing the group to get “stuck” in a
suboptimal equilibrium, as shown in the next two examples.

Examples. (e) To see why Assumption (C) is needed, let I = {j, `,m, n}, and sup-
pose that C0 = ∅ and Mj = {⊕j}, while Mi = {⊕i,�i} for each i ∈ {`,m, n}, where
⊕j,⊕`,⊕m,⊕n are positive signals and �`,�m,�n are negative. Thus, N 0 = {`,m, n}, and
Assumptions (A) and (B) are satisfied. At the beginning of deliberation, s0` = s0m = s0n = 0,
but Maj0 = 1 because s0j = 1. Since `, m and n are neutral, they dissent from this major-
ity opinion. Suppose that, in contradiction to Assumption (C), they all disclose negative
evidence in Round 0. Thus, C1 = {�`,�m,�n}, P1

j = {⊕j}, and P1
i = {⊕i} for each

i ∈ {`,m, n}. Thus, s1j = s1` = s1m = s1n = −1, so that Maj1 = −1, and a unanimous delib-
erative equilibrium is reached in Round 1. But this equilibrium is clearly not full-disclosure
equivalent, because the group has four pieces of positive evidence and only three pieces of
negative evidence, so the full-disclosure majority decision would have been positive.
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(f) To see why the condition |I∗| ≤ 4 is needed, suppose I = I+ t I− t N , where N is
the set of internally neutral agents, while agents in I+ (resp. I−) initially have positive
(resp. negative) opinions. Suppose |I+| = 3, |I−| = 2 (so that |I∗| = 5) and |N | = 2
(so Assumption (B) is satisfied). Suppose that C0 = ∅, and for all three i ∈ I+, suppose
|Mi| = 2 and ym = +1 for both m ∈ Mi. Meanwhile, for both i ∈ I−, suppose |Mi| = 3
and ym = −1 for all three m ∈Mi. Finally, suppose the setsMi (for i ∈ I) are all disjoint
(so Assumption (A) is also satisfied). Thus,∑

i∈I

∑
m∈Mi

ym =
∑
i∈I+

∑
m∈Mi

ym +
∑
i∈I−

∑
m∈Mi

ym = 3× 2 + 2× (−3) = 0,

so that the consensus opinion after full disclosure would be neutral.
Now, |I+| = 3 > 2 = |I−|, so Maj0 = 1. In the parallel protocol, both agents in I−

dissent in period 0, and each discloses one piece of negative evidence. So at the start of

period 1,
∑
c∈C1

yc = −2. Thus, s1n = −1 for both n ∈ N . At this point, we have

∑
p∈Pi

1

yp +
∑
c∈C1

yc = 2− 2 = 0 so that s1i = 0 for all three i ∈ I+, while

∑
p∈Pi

1

yp +
∑
c∈C1

yc = −2− 2 = −4 so that s1i = −1 for both i ∈ I−.

Thus, all agents in I+ have neutral opinions at the start of period 1, but both agents in I−
retain their negative opinions. Meanwhile, s1n = −1 for both n ∈ N , so that Maj1 = −1.
Thus, during period 1, the three (now neutral) agents in I+ dissent, and each discloses one

piece of positive evidence, so that
∑
c∈C2

yc = −2 + 3 = 1. Thus, s2n = 1, for both n ∈ N . At

this point, we have∑
p∈Pi

2

yp +
∑
c∈C2

yc = 1 + 1 = 2 so that s2i = 1 for all three i ∈ I+, while

∑
p∈Pi

2

yp +
∑
c∈C2

yc = −2 + 1 = −1 so that s2i = −1 for both i ∈ I−.

Thus, all agents in I∗ have the same opinions at the start of round 2 as in round 0. But
s2n = 1 for both n ∈ N so that Maj2 = 1. Thus, the two negative agents again dissent, so

they disclose information during round 2. Thus,
∑
c∈C3

yc = 1− 2 = −1, so that s3n = −1 for

both n ∈ N . Meanwhile,∑
p∈Pi

3

yp +
∑
c∈C3

yc = 1− 1 = 0 so that s3i = 0 for all three i ∈ I+, while

∑
p∈Pi

3

yp +
∑
c∈C3

yc = −1− 1 = −2 so that s3i = −1 for both i ∈ I−.
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So the two agents in I− remain negative at the start of round 3, but the three agents in I+
are now neutral, so that Maj3 = −1. Thus, the three (now neutral) agents in I+ dissent, so

they disclose their remaining positive evidence during round 3. Thus,
∑
c∈C4

yc = −1+3 = 2,

so that s4n = 1 for both n ∈ N . Meanwhile,∑
p∈Pi

4

yp +
∑
c∈C4

yc = 0 + 2 = 2 so that s4i = 1 for all three i ∈ I+, while

∑
p∈Pi

4

yp +
∑
c∈C4

yc = −1 + 2 = 1 so that s4i = 1 for both i ∈ I−.

Thus, at the end of round 4, all agents have positive opinions, so deliberative equilib-
rium has been reached with a positive consensus opinion. This is not the same as the
neutral consensus opinion which would have been reached with full disclosure. Thus, the
deliberative equilibrium is not full-disclosure equivalent. ♦

Remark. Note that the conditions of Theorems 1 and 2 are sufficient but not necessary
for full-disclosure equivalence. For example, if all agents begin with the same information
(i.e. Mi = M for all i ∈ I), then the group immediately reaches a full-disclosure equiv-
alent deliberative equilibrium, whether or not Assumptions (A), (B) or (C) or the other
hypotheses of Theorems 1 and 2 are satisfied. We do not yet know of conditions which are
both necessary and sufficient for full-disclosure equivalence.

3.3 Advisory councils

So far, we have considered deliberation among informed agents who themselves will vote
on the final decision. But in many deliberative situations, the informed agents cannot vote,
but can only advise a decision-maker. This is the case, for example, in “advisory councils”
of scientific experts. For brevity, we will refer to the informed agents as advisors, and refer
to the decision-maker as the President. We will assume that the President is internally
neutral as in Assumption (B), and she acts in “good faith” —she just wants to make the
correct decision.12 Thus, her decision Dt at time t is entirely determined by the balance of
publicly disclosed evidence at time t:

Dt = sign

(∑
c∈Ct

yc

)
. (3D)

Each advisor will disclose evidence to sway the President’s opinion towards whatever she
currently believes to be the correct answer. As before, we assume that advisors only
disclose evidence when they dissent from the President’s current decision. However, as
evidence is revealed, the advisors themselves may change their opinions. Again, we can

12The decision-maker could also be a group (e.g. a legislative body). In this case, we assume all members
of this group satisfy these assumptions.
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consider two deliberation protocols; in the serial advisory protocol, only one new piece of
evidence is disclosed during each round of deliberation, whereas in the parallel advisory
protocol, all dissenting advisors can disclose evidence during each round. The group reaches
deliberative equilibrium when every advisor stops disclosing evidence —either because she
agrees with the President’s current opinion, or because she has no countervailing evidence
left to disclose. In contrast to Examples (a) and (c), such a deliberative equilibrium must
always involve unanimous consensus. To see this, suppose by contradiction that advisor i
disagreed with the President at time t —say, Dt = 1 while sti ≤ 0. Comparing formulae
(3B) and (3D), we deduce that

∑
p∈Pt

i
yp < 0 —in other words, i has undisclosed negative

evidence. But in this case, she would disclose it, which means we could not yet be in
equilibrium.13

A deliberative equilibrium is full-disclosure equivalent if the President’s decision (3D)
is the same as it would have been if all private evidence had been disclosed. Versions of
Theorems 1 and 2 continue to be true in this setting. But the presence of an external,
neutral President means that we can eliminate Assumptions (B) and (C).

Theorem 3 Assume (A), and suppose that either E0 = 0, or there is initial disagreement.
Then the serial advisory protocol always reaches a deliberative equilibrium that is full-
disclosure equivalent.

Theorem 4 Assume (A), and suppose E0 = 0, and |I∗| ≤ 4. Then the parallel advisory
protocol always reaches a deliberative equilibrium that is full-disclosure equivalent.

Scenarios similar to Example (b), (d) and (f) in Sections 3.1 and 3.2 show why the
remaining hypotheses of Theorems 3 and 4 are still required.

4 Deliberating probabilistic beliefs

In Section 3, we assumed that there were only two possible states of the world (i.e. |X | = 2).
We will now suppose there are many possible states of the world (i.e. X is any finite set).
Recall from Section 2 that Y is the set of possible signal-values. Unlike Section 3, we
now allow Y to have any size (even infinite). For all i ∈ I, Mi is the set of independent
Y-valued random variables (“evidence”) observed by i. For all t ∈ N, recall that agent i’s
probabilistic beliefs at time t are given by the function Bt

i defined in formula (2E), where
πi is i’s prior probability distribution, P ti is her undisclosed evidence, and Ct is the set of
publicly available evidence at time t.

In Section 3, we assumed that each agent could only communicate her binary opinion
(as defined by formula (3A)) to other agents, and the group used majority vote (3C) to
aggregate these opinions. But if |X | ≥ 3 then there is no canonical way to convert a
probabilistic belief B over X into an X -valued “opinion” analogous to formula (3A).14

13The internal neutrality of the President is crucial for this argument.
14If X was an ordered set or a metric space, then we could map B to its median point. If X was a subset

of RN , then we could map B to the point closest to its mean. If X was just an abstract set, then we could
map B to its mode, as in formula (3A). In general, these three values will disagree.
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Therefore, we will no longer suppose that the group tries to aggregate the opinions of its
members about X —instead, the group directly aggregates their probabilistic beliefs.

Formally, at each time t, we suppose the agents aggregate their provisional beliefs
(Bt

i)i∈I using a probability aggregation rule F : ∆(X )I−→∆(X ), so that the provisional
collective belief at time t is given by F ((Bt

i)i∈I). Assume that F satisfies the unanimity
property that F (B,B, · · · , B) = B for any belief B ∈ ∆(X ).15 We say that deliberative
equilibrium is obtained at time T if all agents agree with the collective belief —i.e. BT

j =

F
(
(BT

i )i∈I
)

for all j ∈ I. It is easy to see that such an equilibrium occurs if and only if
all agents have the same beliefs at time T —that is, if BT

i = BT
j for all i, j ∈ I.

One question is whether such equilibria even exist. Another is whether they have
desirable epistemic properties. We will answer these questions shortly.

We will suppose that agents disclose evidence according to some protocol. But unlike
Section 3, we will not model this protocol in detail. For any x ∈ X , let

α(x) :=
∏
m∈M

ρx(ym). (4A)

This is the likelihood function that would be used for Bayesian updating by someone who
knew all the evidence. We will say that full information pooling occurs at time t if∏

c∈Ct
ρx(yc) = α(x), for all x ∈ X . (4B)

In other words, given the evidence which is publicly available at time t, an agent who starts
with no private information will reach the same beliefs that she would have reached if all
evidence had been disclosed. Note that this does not mean that Ct = M. Clearly, the
equality Ct = M would be sufficient to obtain (4B), but it is not necessary; in practice,
a small but suitably selected subset of M could achieve full information pooling. We say
the agents have a common prior if πi = πj for all i, j ∈ I.

Proposition 4.1 If the agents have a common prior, then there always exists a deliberative
equilibrium with full information pooling.

The proof of Proposition 4.1 is quite simple: suppose that every agent reveals all of her
evidence. Then there is full information pooling, and it can be checked that all agents end
up with the same beliefs; hence they are in equilibrium. (See Appendix B for details.)

Thus, if agents have a common prior, then there is at least one “good” equilibrium.
But this equilibrium is not very interesting, since it supposes that the agents have revealed
all their information, which seems unlikely or even impossible in many real deliberation
contexts. Furthermore, there could also be many other deliberative equilibria where there is
not full information pooling. Indeed, it might not even be possible to reach the equilibrium
described in Proposition 4.1, because every possible “deliberation path” might get stuck

15For example, linear pooling rules and geometric pooling rules both satisfy this axiom (Genest and
Zidek, 1986; Dietrich and List, 2016).
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in one of these bad equilibria before it can get to the good equilibrium in Proposition 4.1.
So we will now turn our attention to the other equilibria.

We will focus on deliberative groups that have one or more internally neutral agents.
We will say that an agent n is internally neutral if there is some constant C > 0 such that∏

m∈Mn

ρx(ym) = C, for all x ∈ X . (4C)

In other words, n’s initial private information does not predispose her to believe any state
is any more likely than any other state. For example, this would be the case if Mn = ∅
—i.e. n started with no private information at all. We will use the following generalization
of Assumption (B) from Section 3:

(B′) There is some agent n ∈ I who is internally neutral as in formula (4C).

(Assumption (B) is the special case of Assumption (B′) when X = Y = {±1} with ρ(x|x) =
p > 1

2
and ρ(−x|x) = 1 − p, for both x ∈ X .) If n is internally neutral, with prior beliefs

given by the probability measure ν ∈ ∆∗(X ), and Bt
n is her beliefs at time t as in formula

(2E), then Bt
n is entirely determined by the publicly available evidence at time t:

Bt
n(x) =

ν(x)

(SNC)

∏
c∈Ct

ρx(yc), for all x ∈ X . (4D)

In Section 3, just before Subsection 3.1, we introduced Assumption (A), which posited
some time t such that for all i 6= j, any evidence in Mi ∩Mj has been disclosed at or
before time t. (Evidence known by only one agent may remain undisclosed.) In particular,
if the evidence sets {Mi}i∈I are disjoint, then this condition is trivially satisfied. Here is
the main result of this section.

Theorem 5 If all agents start with a common prior ν, then a deliberative equilibrium
exists. If the group satisfies Assumption (B′), and the equilibrium satisfies Assumption
(A), then there is full information pooling, and all agents have beliefs given by B(x) =
α(x) ν(x)/(SNC) for all x ∈ X , where α is as in formula (4A).

In this result, the existence of an equilibrium follows from Proposition 4.1. Theorem
5 does not say that this equilibrium is unique —it just says that in any such equilibrium,
the configuration Ct of publicly revealed evidence satisfies the full information pooling
condition (4B), and thus yields a “maximally informed” decision. Also, Theorem 5 does
not tell us the path the group takes to reach equilibrium. We have not modelled the way
the deliberation unfolds, the order in which people speak, or what evidence they disclose.

Theorem 5 might not seem too surprising in light of Aumann’s (1976) Agreement
Theorem. But the models are quite different. Aumann supposes that each agent obtains
information through her own personal partition of the state space. Her information is
private knowledge, but her information-partition is common knowledge. So other agents
do not know what she knows, but they know what she can know, in principle. They
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do not directly communicate their private information, but they can deduce one another’s
information by observing the discrepancies between their posterior beliefs. Hence “common
knowledge of disagreement” is logically impossible between Bayesian agents in his model.
In contrast, in our model, agents do not know one another’s information partitions. But
they are able to selectively reveal parts of their private information through communication.

Theorem 5 is actually a special case of a more general result, which does not assume
a common prior. Suppose the agents have arbitrary prior beliefs {πi}i∈I in ∆∗(X ), and
among them there is an internally neutral agent with prior ν. For all other i ∈ I, define
the function dπi

dν
: X−→R+ by

dπi
dν

(x) :=
πi(x)

ν(x)
, for all x ∈ X .

This measures the deviation between πi and ν.16 In particular, if πi = ν, then dπi
dν

= 1. If

ν is the uniform measure (i.e. ν(x) = 1/|X | for all x ∈ X ) then dπi
dν

= |X | · πi for all i ∈ I.
Let µ be the result of applying the multiplicative pooling rule17 to the beliefs {πi}i∈I ,

with respect to the reference measure ν. That is, for all x ∈ X ,

µ(x) :=
ν(x)

(SNC)

∏
i∈I

dπi
dν

(x). (4E)

Two special cases are of interest. First, if πi = ν for all i ∈ I (as in Theorem 5), then µ = ν

also. Second, if ν is the uniform measure, then µ(x) =
1

(SNC)

∏
i∈I

πi(x) for all x ∈ X .

Theorem 6 Suppose the group satisfies Assumption (B′). In any deliberative equilibrium
satisfying Assumption (A), all agents have beliefs given by B(x) = α(x)µ(x)/(SNC) for
all x ∈ X , where α and µ are as in formulae (4A) and (4E).

In other words, in deliberative equilibrium, the consensus belief is as if the agents first
generated a “synthetic prior” µ via multiplicative pooling (4E), and then shared all of their
private evidence. In particular, if ν is the uniform measure, then the consensus belief is

B(x) =
1

(SNC)

∏
m∈M

ρx(ym) ·
∏
i∈I

πi(x), for all x ∈ X .

Alternately, if πi = ν for all i ∈ I, then Theorem 6 yields the outcome of Theorem 5.
Note that Theorem 6 does not say that a deliberative equilibrium exists. In general,

there might not be any equilibrium. To see why, recall that in any deliberative equilibrium,
all agents must agree. But suppose that the priors {πi}i∈I are quite far apart —in other
words, some agents have quite extreme pre-existing biases in their beliefs (“prejudices”),
which are not justified by their private information. These agents will try to move other

16In fact, dπi

dν is the Radon-Nikodym derivative of πi with respect to ν. But this is not important here.
17See Dietrich (2010, 2019) and Dietrich and List (2016).
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agents closer to their point of view by selectively disclosing evidence that “supports” their
prejudices, but they might simply run out of such evidence before agreement is achieved.
In this case, deliberative equilibrium is obviously impossible.

Even if {πi}i∈I are quite close, an equilibrium might not exist. The problem is that
the information in {ym}m∈M comes in discrete “chunks”, so it changes the agents’ beliefs
by discrete amounts. There might be no way to choose a subset of this evidence that
exactly cancels the difference between {πi}i∈I . In this case, the best we can hope for is an
“approximate” equilibrium, where agents minimize the distance between their beliefs.

We could formally define a general notion of deliberative equilibrium in terms of such
distance-minimization —in effect, it would be a pure-strategy Nash equilibrium where each
agent’s utility function is a decreasing function of the distance between her beliefs and the
collective beliefs defined by F . But we will not pursue this for two reasons. First, it is not
clear what is the right notion of distance to use. Second, in the resulting game, it would be
nontrivial to prove the uniqueness —or even existence —of pure strategy Nash equilibria.
So we will leave this as a topic for future research.

A weakness of Theorems 5 and 6 is their need for an internally neutral agent. What if
we relax this requirement?

Proposition 4.2 Suppose that all agents start with a common prior π (not necessarily
uniform). Consider any deliberative equilibrium satisfying Assumption (A). Then there is
a probability distribution η (not necessarily π) such that, in this deliberative equilibrium,
all agents have the beliefs α · η/(SNC), where α is as in formula (4A).

This says that the beliefs in any deliberative equilibrium will be as if full information
pooling occurred, but all agents began with a common prior η, which is not necessarily the
same as π. This does not contradict Proposition 4.1, because that result simply describes
a particular equilibrium in which η = π. Unfortunately, there might also be other deliber-
ative equilibria where η 6= π; indeed, each equilibrium could have a different choice of η.
Furthermore these η do not have any obvious normatively appealing interpretation.

5 Related literature

To our knowledge, Klevorick et al. (1984) was the first paper to propose a mathematical
model of jury deliberations as an enhancement of the Condorcet Jury Theorem. But the
paper by Klevorick et al. is atypical in two ways: first, unlike most of the later literature,
it neglects strategic considerations and simply assumes that full information revelation will
occur; second, it assumes that the information of each voter takes the form of a continuous
(normally distributed) random variable.

Most other models of deliberative democratic decision-making involve discrete informa-
tion, and emphasize how strategic behaviour can interfere with full information disclosure.
For example, in response to earlier results by Austen-Smith and Banks (1996) and Fedder-
sen and Pesendorfer (1996, 1997, 1998, 1999) concerning strategic voting in the setting of
the Condorcet Jury Theorem, Coughlan (2000) proposed a cheap-talk model of strategic
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deliberation between jurors prior to voting. He showed that, as long as all jurors have
similar preferences, they will reveal their private information during deliberation. But
if their preferences are too heterogeneous, then they may still lie. Since then, several
other papers have modelled strategic deliberation as cheap talk (Doraszelski et al., 2003;
Austen-Smith and Feddersen, 2006; Meirowitz, 2007; Gerardi and Yariv, 2007; Hummel,
2012; Le Quement, 2013; Le Quement and Yokeeswaran, 2015; Deimen et al., 2015; Rivas
and Rodŕıguez-Álvarez, 2017) or cheap talk mixed with verifiable information (Mathis,
2011). See Landa and Meirowitz (2009) and List (2018,§5.3) for reviews.

Schulte (2010) and Hagenbach et al. (2014) depart from the cheap talk setting, and
instead assume that agents cannot lie, but can conceal evidence; this is similar to our
model.18 Schulte (2010) examines a setting where agents may withhold information. But
each agent can deduce any information withheld by other agents, because they cannot lie
and they are facing a binary state. So when an agent does not reveal her information, this
shows that she has information she does not want to reveal, which inadvertently reveals
the information itself. Our model has little overlap with Schulte’s, because our individuals
can credibly withhold information.

Hagenbach et al. (2014, §6.3) study an epistemic voting game, in which each voter
receives a noisy private signal about the true state, which she may or may not reveal
during the initial deliberation stage. They provide necessary and sufficient conditions for
an equilibrium in which all voters reveal their private signals. This is an application of their
much more general analysis of sequential equilibria in two-period Bayesian games where
players can publicly make certifiable statements about their type during the first period.
Unlike our model, the agents in the model of Hagenbach et al. form beliefs about one
another’s private information. Hagenbach et al. assume that each voter receives exactly
one private signal, whereas in our model each voter could receive any number of private
signals. Furthermore, in the model of Hagenbach et al., other voters know when a voter i
has not fully revealed her private information, and in this case they all assign probability
1 to a particular private signal for voter i. (This follows from their assumption of extremal
beliefs, along with the strong belief consistency which is a defining property of sequential
equilibria.) From this it follows that under fairly general conditions, all voters reveal their
private signals in equilibria.

A key element of our model is the presence of “internally neutral” agents who are
influenced by the strategic information disclosure of “informed” agents. Some recent papers
consider similar scenarios. For example Schnakenberg (2015, 2017) and Jeong (2019) model
lobbying as cheap talk by experts whose preferences differ from those of the voters they
seek to influence. Jackson and Tan (2013) considers deliberation with hard evidence. In
their model, deliberation is followed by a vote; there is a population of experts who may or
may not reveal their private verifiable information, and also a group of uninformed voters
who may or may not be convinced by these experts. The model differs from the cheap
talk settings in that experts’ signals are verifiable and the experts simply choose whether

18Earlier, Milgrom and Roberts (1986) and Shin (1994) introduced models where agents can either
provide verifiable information to a principal or withhold the information. But these models do not involve
deliberation or voting.
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or not to reveal their signal. But experts and voters may have different preferences, so
the experts may behave strategically. In contrast, in our model, everyone has the same
preferences (i.e., to find the truth), but beliefs are heterogeneous.

The literature described above assumes all deliberation takes place during a single
round of communication. But in some models, the time structure of information revelation
is important. For example, time plays a role in models of herding and information cascades
(Banerjee, 1992; Bikhchandani et al., 1992, 1998) and rational learning in social networks
(Gale and Kariv, 2003; Acemoğlu et al., 2011; Mueller-Frank, 2013; Mossel et al., 2014b;
Lobel and Sadler, 2015, 2016). Imbert et al. (2019) introduce a dynamic deliberation model
where agents may lie because of conformism. In another example, Ottaviani and Sørensen
(2001, 2006) propose models where heterogeneous experts reveal information, but the order
of speech is strategically significant. (In the first paper, experts receive a noisy binary signal
about a binary state of the world; in the second, they receive a noisy continuous signal
about a continuous state of the world.) The experts want to preserve their reputations by
not making wrong forecasts; this can lead to a herding phenomena similar to information
cascades.19 Unlike Ottaviani and Sørensen, we do not consider reputational incentives.

Geanakoplos and Polemarchakis (1982) and Cave (1983) described “communication
protocols” by which two Bayesian agents with initially heterogeneous beliefs could reach
the agreement of beliefs predicted by Aumann (1976); furthermore, this consensus would
be common knowledge. This result was generalized by Bacharach (1985) to any finite set
of agents, assuming all-to-all communication. Parikh and Krasucki (1990) and Krasucki
(1996) showed that these results partially generalize even without all-to-all communication:
given a network of agents linked by unidirectional communication channels, their beliefs
can converge to a consensus (assuming sufficient network connectivity), but not common
knowledge. This was further extended by Houy and Ménager (2008), who considered the
influence of speech order by comparing different communications protocols.

Importantly, in the models of Ottaviani, Sørensen, Parikh, Krasucki, Houy and Ménager,
the order of speech is exogenous, while in Imbert et al. (2019), it is random. But in the
models in Section 3 of this paper, speech order is endogenous.

As the Aumann-inspired literature shows, not all deliberation models involve strategic
dissimulation. For example, Hafer and Landa (2007) consider agents who lack logical om-
niscience; deliberation consists of exchanging reasons to induce other voters to recognize
certain truths. Unlike us, they propose a (non-Bayesian) game-theoretic model. Sethi and
Yildiz (2012) suppose individuals first form beliefs after receiving signals, and then delib-
erate in a sequence of rounds. In each round, individuals truthfully and simultaneously
announce their current beliefs to the public (rather than their signals as in our model).
They then update their beliefs based on each other’s announcements. This continues until
an equilibrium at which no further belief revision occurs, somewhat analogous to our notion
of deliberative equilibrium. The social psychology literature on deliberation also typically
assumes agents are honest and do not strategically withhold information (Adamowicz et al.,
2005; Kerr and Tindale, 2004; Tindale and Kluwe, 2015). Recent experimental investiga-

19Visser and Swank (2007) also present a model of deliberation with reputational incentives, but in their
model the disclosure of private information is simultaneous.
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tion of deliberation in laboratory settings shows that agents publicly and truthfully reveal
their private information at a much higher rate than what is predicted by the models of
strategic deliberation described above (Goeree and Yariv, 2011; Le Quement and Marcin,
2019); this is consistent with our assumption that agents deliberate in “good faith”. In the
experimental design of Dickson et al. (2008), agents exchange reasons rather than infor-
mation (similar to the model of Hafer and Landa (2007)). These attempts at persuasion
may backfire, so the optimal strategy is sometimes to remain silent. But experimentally,
agents are much more candid than the optimal strategy recommends.20

Hartmann and Rafiee Rad (2017) analyzed the anchoring effect in non-strategic de-
liberation. Deliberation proceeds in a sequence of rounds and during each round, group
members speak in a fixed order. More recently, Hartmann and Rafiee Rad (2018) presented
a Bayesian model for non-strategic rational deliberation, somewhat different than the one
in Section 4 of this paper. Their agents have partial beliefs. In the course of delibera-
tion, they cast a vote which is based on their beliefs, then they update their beliefs using
Bayesian updating rules and the previous votes of the other group members. They have
found the conditions under which deliberation results in a consensus and correctly tracks
the true state better than the simple voting procedure of the Condorcet Jury Theorem.

There is also an interesting experimental literature on deliberation. Empirically, infor-
mation that is held by only one member is often omitted from discussion (Stasser et al.,
1989). Thus, groups with diverse members often fail to fully exploit their informational
diversity (Stasser and Titus, 1985, 1987). Stasser et al. (1995a) and Stewart and Stasser
(1995b) conducted deliberation experiments in which some deliberators were assigned the
role of “expert” analogous to the “informed” agents of Section 3. We have already men-
tioned the papers by Dickson et al. (2008, 2015), Goeree and Yariv (2011) and Le Quement
and Marcin (2019). Finally, Van Dijk et al. (2014) present an experimental study of judi-
cial decision-making in small groups, which shows that aggregation and deliberation both
improve the reliability of group decisions —especially in difficult borderline cases.

The present paper also has common elements with the literature on opinion dynamics
in social networks.21 Like this paper, most of that literature assumes that communication
is nonstrategic.22 Much of it also assumes that agents are Bayesian; this includes the
literatures on Aumann’s (1976) Agreement Theorem, on information cascades, and on
rational learning cited above, but also includes some papers which do not fit neatly in any
of these categories, such as Rosenberg et al. (2009) or Jiménez-Mart́ınez (2015). Other
models are “quasi-Bayesian”: agents aspire to be Bayesian, but make systematic mistakes
– for example, failing to account for correlations between other agents (Bala and Goyal,
1998, 2001; DeMarzo et al., 2003; Neilson and Winter, 2008), or mixing Bayesian and
non-Bayesian inference rules (Jadbabaie et al., 2012).

But there are also important differences. We suppose that agents disclose evidence,

20The experimental design of Dickson et al. (2015) is similar, but it involves two opposed speakers
attempting to persuade an audience through public debate, and investigates the consequences of different
debate formats on the candour of the debaters.

21Castellano et al. (2009), Acemoğlu and Ozdaglar (2011) and Mossel and Tamuz (2017) each survey
parts of this literature.

22Exceptions include Rosenberg et al. (2009) and Mossel et al. (2015).
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whereas in opinion dynamics models they just reveal beliefs —either explicitly through
communication, or implicitly through their strategic behaviour. In opinion dynamics mod-
els, agents only learn from their peers, whereas in our model, they also seek to persuade
their peers. Most opinion dynamics models assume agents communicate through a social
network; the topology of this network often has important implications for convergence
to a social consensus. In contrast, we assume everyone communicates directly with every-
one else. Relatedly, much of the opinion dynamics literature focuses on the asymptotic
properties of very large societies, whereas we are interested mainly in small groups.

6 Discussion

Our results depend on several assumptions. First and most obviously, we assume that the
agents deliberate in good faith: they only wish for the group decision to be correct, and
do not seek to promote a particular ideology or other agenda. This contrasts with the
literature on strategic deliberation reviewed at the start of Section 5. This assumption is
obviously not plausible in parliamentary debates, internet chat forums, or other politically
polarized discussions. But it may be a good approximation for some juries and scientific
committees. As already noted at the end of Section 5, nonstrategic communication is
also assumed in most of the literature on opinion dynamics and rational learning in social
networks, and most of the social psychology literature on deliberation, and confirmed by
the experimental results of Goeree and Yariv (2011) and Le Quement and Marcin (2019).

Second and relatedly, it may seem that we have implicitly assumed that all evidence is
verifiable: agents cannot lie. But we do not need this assumption. Since they deliberate
in “good faith”, agents have no incentive to lie. So we do not need information to be
verifiable. Nevertheless, such a verifiability assumption is common in the aforementioned
literature, and would be appropriate in the sort of deliberative contexts we have in mind.

Third, we have assumed that agents are Bayesian. This assumption is ubiquitous in
the literatures on Aumann’s Agreement Theorem, information cascades, rational learning
and other opinion dynamics models discussed in Section 5. But it might be an overly
sophisticated model of human cognition. This has motivated the development of “non-
Bayesian” models of opinion dynamics, in which an agent adopts a weighted average of
her peers’ beliefs (DeGroot, 1974; DeMarzo et al., 2003; Neilson and Winter, 2008; Golub
and Jackson, 2010; Acemoğlu et al., 2010; Friedkin and Johnsen, 2011; Acemoğlu et al.,
2013; Mueller-Frank, 2014), conforms to the majority opinion of her peers (Mossel et al.,
2014a; Tamuz and Tessler, 2015), or computes a maximum likelihood estimator (Mossel
and Tamuz, 2010).

Fourth, although our agents are Bayesian, they are “myopic” in the sense that each
agent always believes her current beliefs are correct. Shouldn’t each agent interpret the
disagreement of other agents as prima facie evidence that there are things she doesn’t
know? This is the logic of Aumann’s (1976) Agreement Theorem and the ensuing literature
(reviewed in Section 5). But Aumann’s model assumes that each agent has a complete
understanding of the epistemic capacities of the other agents: she might not know what
they know, but she knows what they could know. We do not make this assumption. If
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agents i and j disagree, then i does not know if this is because she knows things that j does
not know, or j knows things that she doesn’t know, or both. As explained after Example
(a) in Section 3, i does not even know how much j knows —does j have only one piece of
undisclosed evidence, or one hundred? The only way to discover is through deliberation.

This myopia may also arise from bounded rationality. For example, Eyster and Rabin
(2005,§5) and Elbittar et al. (2016) consider Condorcet Jury models with boundedly ratio-
nal voters who ignore the informational content implicit in the behaviour of other voters;
the former apply their theory of cursed equilibria, while the latter introduce subjective be-
liefs equilibria.23 It is beyond the scope of this paper to microfound the myopic behaviour
of our deliberating agents using the equilibrium concepts of Eyster and Rabin (2005) or
Elbittar et al. (2016). But this would be an interesting direction for future research.

This myopia also explains another feature of our model. If an agent really wants the
group to find the truth, then why does she seek to persuade other agents of her current
beliefs, when she knows that these beliefs may change, and hence are probably incorrect?
Such tendentiousness seems like hubris. The reason is simple: although a rational agent
knows her current beliefs might not be correct, her current beliefs are nevertheless her
current best guess about the beliefs she will have in the future after receiving more infor-
mation.24 So the best she can do given her current information is to advocate her current
beliefs.

The Nash equilibrium described in Appendix C provides another justification for these
behavioural assumptions. Suppose one agent was actually far-sighted and fully aware of
her own fallibility. If she expects other agents to exhibit myopia and hubris as in the
previous two paragraphs, then the analysis of Appendix C says it is her best response to
behave in a similar manner, because the outcome will be full-disclosure equivalent.

Why must agents advocate any position at all? Why do they not just exchange infor-
mation in a neutral and unbiased manner, without taking sides? Better yet, why don’t
they just dump all of their evidence on the table, and let the group sort it out? The reason
goes to the heart of our model: clearly and credibly communicating evidence —especially
complex evidence —is costly in both time and effort, for both the speaker and the listeners.
So agents in our model are constrained in how much information they can communicate,
as in the models of Glazer and Rubinstein (2001, 2004). Each agent’s beliefs might arise
from a very large amount of undisclosed evidence (the accumulation of years of formal
education, professional practice, academic research, or even life experience in general), and
she can feasibly disclose only a small fraction of it. By what criterion can she choose what
to disclose? Her only criterion is her current beliefs.

It is also worth commenting on the striking difference between the results in Section 3
and those in Section 4. Theorems 1 and 3 achieves a positive conclusion (full-disclosure
equivalence), but only under rather restrictive hypotheses. Those of Theorem 2 and 4 are
even more restrictive. Theorems 5 and 6 are sweepingly general by comparison. Why is

23Szembrot (2017) and Demange and Van Der Straeten (2017) have also proposed models of boundedly
rational voting behaviour based on cursed equilibria.

24This is a simple consistency requirement: if i’s current beliefs were X, but she believed that in the
future she would have beliefs Y , then rationally she should change her beliefs from X to Y immediately.
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this? The difference arises from two differing notions of “deliberative equilibrium”, which
in turn reflect two different interpretations of “good faith” deliberation. In Section 3,
agents do not care whether other agents have the correct beliefs, as long as the majority
vote is correct. Each agent only cares that a majority agrees with her (binary) opinion.
So deliberative equilibrium is relatively easy to achieve. But by the same token, such an
equilibrium might fail to be full-disclosure equivalent; as the counterexamples in Section 3
demonstrate, it could involve double-counting of evidence or other forms of “groupthink”.

In contrast, in Section 4, it is not enough for an agent that the group makes the
correct decision —she is not satisfied until all other agents exactly share her (probabilistic)
beliefs. This makes deliberative equilibrium harder to achieve, but it ensures that in any
such equilibrium, there is full information pooling. Since the agents set a more exacting
epistemic standard, they are less likely to fall into groupthink.

This also illustrates the importance of the collective decision rule. In Section 3, the
decision rule was a majority vote. But in Section 4, the group seeks to aggregate their
probabilistic beliefs. This changes the incentives of each agent, and thus changes the
dynamics of the deliberation. To see another example, suppose that instead of a majority in
Section 3, the group decision required unanimity (as in legal juries). It might seem that this
should make no difference, since deliberative equilibria result in unanimity anyways. But
the difference is significant. In Section 3, only “dissenting” agents (those in the minority)
had an incentive to disclose information; agents on the majority side remained silent. But
under a unanimity rule, all agents would have an incentive to disclose information, until
unanimous consensus is achieved. Paradoxically, this gives more deliberative influence to
agents currently in the majority, so that majorities tend to grow larger over time, until
they become unanimous. The outcome is often not full-disclosure equivalent; Theorems 1
and 2 do not hold under a unanimous decision rule.

There are many avenues for future exploration. People are neither sophisticated Bayesians
nor simple-minded averagers or conformists. A more realistic model of deliberation re-
quires a more realistic model of human cognition —both epistemic cognition (about the
facts themselves) and social cognition (about other people). Even scientists who aspire to
perfect rationality and objectivity and who claim to deliberate in “good faith” have biases
and prejudices, and have careers (or egos) invested in particular theories. Perhaps this can
be partly captured by relaxing the common-priors assumption made in most of our results,
but perhaps it will require a more radical departure.

In important part of deliberation is not the exchange of information, but the exchange
of understanding. Humans are not logically omniscient, and they often fail to see the
implications of the evidence in front of them. Deliberation can help them overcome this
limitation (Hafer and Landa, 2007; Maciejovsky and Budescu, 2007). A realistic model of
deliberation would also incorporate this phenomenon.
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Appendices

A Proofs from Section 3

Proof of the Proposition. The Condorcet Jury Theorem says that the most reliable
decision rule is obtained by applying majority rule directly to the signals {ym}m∈M.

The outcome is sign

( ∑
m∈M

ym

)
. For all i ∈ I, if Mi =M then formula (3B) says that

sti = sign

( ∑
m∈M

ym

)
, so that i’s vote already matches the most reliable group decision.

If this holds for all i ∈ I, then the majority decision will be the optimal decision. 2

All four theorems in Section 3 invoke Assumption (A): there is some t0 ∈ N such that
P t0i ∩P

t0
j = ∅ for all distinct i, j ∈ I. For notational simplicity, we will assume throughout

Appendix A that t0 = 0 —in other words, we will assume that

Mi ∩Mj = ∅, for all distinct i, j ∈ I. (A1)

This is without loss of generality, because we can “reset the clock” at the first t such that
P ti ∩ P tj = ∅ for all distinct i, j ∈ I, to ensure that (A1) is satisfied. For all t ∈ N, let

Et :=
∑
c∈Ct

yc

be the balance of publicly available evidence at time t. For all i ∈ I, let

P t
i :=

∑
p∈Pt

i

yp

be the balance of i’s undisclosed private evidence at time t. The next lemma will be used
repeatedly in the proofs of Theorems 1 to 4.

Lemma A1 Assume statement (A1) is satisfied. Then

(a)
∑

m∈M\C0
ym =

∑
i∈I

∑
m∈Mi

ym.

(b)
∑
m∈M

ym = Et +
∑
i∈I

P t
i , for all t ∈ N.

Proof: Part (a) follows immediately from statement (A1). Meanwhile, at any time t in
deliberation (in either the serial or parallel protocols), statement (A1) implies that

Et +
∑
i∈I

P t
i =

∑
c∈C0

yc +
∑
i∈I

∑
m∈Mi

ym, (A2)

because every time a piece of evidence is added to the common pool Ct, it is removed
from the private evidence set of exactly one agent. Combining equation (A2) with part
(a), we obtain part (b) of the lemma. 2
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Proof of Theorem 1. Suppose the group reaches deliberative equilibrium at time t. There
are two cases: either Majt = 0 or Majt = ±1.

Case 1. Suppose Majt = 0.

Claim 1: sti = 0 for all i ∈ I.

Proof: (by contradiction) If Majt = 0, then |It+| = |It−|. Thus, |It+| > 0 if and only if
|It−| > 0. Suppose |It+| > 0 and |It−| > 0. There are now two cases:

• If Et ≤ 0, then P t
i > 0 for all i ∈ It+. Thus, voters in It+ have undisclosed positive

evidence, and dissent from the (neutral) majority opinion, contradicting the fact
that we are in deliberative equilibrium.

• If Et ≥ 0, then P t
i < 0 for all i ∈ It−. Thus, voters in It− have undisclosed negative

evidence, and dissent from the (neutral) majority opinion, contradicting the fact
that we are in deliberative equilibrium.

Either way, there is a contradiction. To avoid this, we must have |It+| = |It−| = 0.
3 Claim 1

Claim 2: Et = 0, and P t
i = 0 for all i ∈ I.

Proof: (by contradiction) Suppose that Et 6= 0. Then Claim 1 implies that P t
i = −Et for

all i ∈ I. This contradicts Assumption (B) (which says there is at least one internally
neutral voter). To avoid this contradiction, we must have Et = 0. Then Claim 1
implies that P t

i = 0 for all i ∈ I. 3 Claim 2

Since Majt = 0, Claim 2 and Lemma A1(b) imply that the equilibrium is full-disclosure
equivalent.

Case 2. Suppose Majt = 1. (The argument when Majt = −1 is very similar.)

Claim 3: If Et > 0, then for all i ∈ I, we must have sti = 1.

Proof: (by contradiction) Suppose that sti ≤ 0 for some i ∈ I. Then we must have
P t
i < 0 (because Et > 0), which means i has undisclosed negative evidence. But since

she dissents from the (positive) majority decision, she would disclose this evidence,
contradicting the fact that we are in equilibrium. 3 Claim 3

Claim 4: Et ≤ 0.

Proof: (by contradiction) Suppose that Et > 0. Each round of deliberation involves
disclosure of exactly one piece of evidence, so we must have Et = Et−1 ± 1. Suppose
Et = Et−1− 1. Then during round t− 1 of deliberation, someone disclosed a negative
signal —say, agent j. Thus, st−1j = stj, since agents do not change their own opinion
when they disclose information. But stj = 1 by Claim 3, so j would have no reason to
disclose negative information during round t− 1 . So this is impossible.
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It follows that we must have Et = Et−1 + 1, which means someone must have
disclosed positive information during round t− 1 —again, say it is agent j. The only
reason for j to do this would be to dissent from a neutral or negative majority decision.
Thus, either Majt−1 = 0 and st−1j = 1, or Majt−1 = −1 and st−1j = 0 or 1.

If Majt−1 = −1, then It−1− 6= ∅. On the other hand, if Majt−1 = 0 and st−1j = 1, then

It−1+ 6= ∅ (because j ∈ It−1+ ). Thus, we must also have It−1− 6= ∅ (because otherwise
we could not have Majt−1 = 0). Either way, It−1− 6= ∅.

For all i ∈ It−1− , we must have P t−1
i ≤ −Et−1 − 1 = −Et. But P t

i = P t−1
i , because

i did not disclose any information during round t− 1 (j did). Thus, P t
i ≤ −Et. But

then we would have sti ≤ 0, contradicting Claim 3. To avoid this contradiction, we
must have Et ≤ 0. 3 Claim 4

Claim 5: If Et ≤ 0, then P t
i ≥ 0 for all i ∈ I, and P t

j > |Et| for some j ∈ I.

Proof: (by contradiction) Suppose P t
i < 0 for some i ∈ I. Then i has undisclosed nega-

tive evidence. Furthermore sti = −1 (because Et ≤ 0), so i dissents from the (positive)
majority decision, so she will disclose some of her negative evidence, contradicting the
fact that we are in deliberative equilibrium. This proves the first statement.

To prove the second statement, note that if Majt = 1, then we must have stj = 1 for
at least some j ∈ I. But if stj = 1, then P t

j + Et > 0, hence P t
j > |Et|. 3 Claim 5

Claim 4 says that Et ≤ 0. Thus, for all i ∈ I, Claim 5 implies that P t
i ≥ 0, and P t

j > |Et|
for some j ∈ I. Thus,∑

m∈M

ym (�)
Et +

∑
i∈I

P t
i = Et + P t

j +
∑

i∈I\{j}

P t
i >

(∗)
0 +

∑
i∈I\{j}

P t
i ≥

(†)
0,

where (�) is by the Lemma A1(b), (∗) is because P t
j > |Et|, and (†) is because P t

i ≥ 0
for all i ∈ I. Thus, the equilibrium is full-disclosure equivalent, because Majt = 1. 2

Proof of Theorem 2. The parallel protocol converges to a unique equilibrium because it
is deterministic, and must end in finite time because I is finite and Mi is finite for all
i ∈ I. Now assume (A), (B), (C), and E0 = 0. As explained at the start of Appendix
A, we can assume without loss of generality that Assumption (A) is satisfied in the form
of statement (A1), hence invoke Lemma A1. Let I∗ = I+ t I−, where agents in I+
(resp. I−) initially have positive (resp. negative) opinions. If I∗ = ∅, then deliberative
equilibrium is reached immediately with a neutral consensus, which is obviously full-
disclosure equivalent. So we will assume that I∗ 6= ∅; hence I+ 6= ∅ or I− 6= ∅. Let
N be the set of internally neutral agents; thus, |N | ≥ 1 by Assumption (B). There are
eleven cases to consider.

Case (i). Suppose |I−| = 0. Then Maj0 = 1 because s0i = 1 for all i ∈ I+ and s0n = 0
for all n ∈ N . Agents in N do not disclose any evidence, by Assumption (C). Thus, the
group is immediately in deliberative equilibrium that is full-disclosure equivalent.
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Case (ii). If |I+| = 0, then we have a full-disclosure equivalent equilibrium, by a
similar argument to Case 1.

Case (iii). Suppose |I+| = |I−| = 1. Let I+ = {j} and I− = {k}. Let j′ be a fictional
agent such that Mj′ contains no negative evidence and P 0

j pieces of positive evidence.
Let k′ be a fictional agent such thatMk′ contains no positive evidence and |P 0

k | pieces of
negative evidence. For all n ∈ N , let n′ be a fictional agent withMn′ = ∅. Let I ′ := {i′;
i ∈ I}. Note that the total balance of evidence for I ′ is the same as it was for I, so the
full-disclosure decision for the two groups is the same. Deliberation amongst the agents
of I ′ in the serial protocol is identical to deliberation amongst the agents of I in the
parallel protocol with Assumption (C).25 Theorem 1 says that I ′ reaches a full-disclosure
equivalent equilibrium in the serial protocol. Thus, I reaches a full-disclosure equivalent
equilibrium in the parallel protocol with Assumption (C).

Case (iv). Suppose |I+| = 2, |I−| = 1, and |N | = 1. Let N = {n}, let I− = {i}, let
I+ = {j, k} and suppose that P 0

j ≤ P 0
k . Deliberation unfolds as follows.

Round 0. Maj0 = 1, so i dissents and discloses negative evidence. (Agent n does not
disclose anything, by Assumption (C).) Thus, E1 = −1.

Round 1. E1 = −1, so s1i = s1n = −1, while s1j ≥ 0 and s1k ≥ 0. There are two cases.

• If s1j = 0 or s1k = 0, then Maj1 = −1. Both j and k dissent and disclose positive
evidence. Thus, E2 = E1 + 2 = 1 by statement (A1). Go to Round 2.

• If s1j = s1k = 1, then Maj1 = 0. Again, j and k dissent and disclose positive
evidence. But now i also dissents. If P 1

i = 0, then i has no evidence left to
disclose, so E2 = E1 + 2 = 1 by statement (A1); go to Round 2. However,
if P 1

i ≤ −1, then i discloses negative evidence, so E2 = E1 + 2 − 1 = 0 by
statement (A1). In this case, skip Round 2 and go to Round 3.

Round 2. E2 = 1. Thus, s2n = s2j = s2k = 1, so Maj2 = 1. There are two cases:

• If P 2
i = 0, then s2i = 1, so we reach a deliberative equilibrium that is full-

disclosure equivalent.

• If P 2
i ≤ −1, then i dissents and discloses negative evidence. Thus, E3 =

E2 − 1 = 0, so go to Round 3.

Round 3. We now have E3 = 0, just as in Round 0. There are five possible scenarios.

• If P 3
i , P 3

j , and P 3
k are all nonzero, then return to Round 0 and repeat the

argument found there.

• If P 3
i = 0 while P 3

j or P 3
k are nonzero, then we have entered the situation

described in Case (i) above, so apply the argument provided there.

• Likewise, if P 3
i is nonzero while P 3

j = P 3
k = 0, then we have entered Case (ii).

• If P 3
k = 0 while P 3

i and P 3
j are nonzero (or if P 3

j = 0 while P 3
i and P 3

k are
nonzero), then we have entered Case (iii).

25We replaced each i in I with the corresponding i′ in I ′ to replicate the effect of Assumption (C).
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• If P 3
i = P 3

i = P 3
j = 0, then Maj3 = 0. This is a full-disclosure equivalent

equilibrium.

The process described above eventually terminates when one or more agents runs out of
evidence. In all terminal states, the deliberative equilibrium is full-disclosure equivalent.

Case (v). Suppose |I+| = 2, |I−| = 1, and |N | ≥ 2. Let I− = {i} and I+ = {j, k}.
At any time, the deliberating group can be in one of several “states” (defined below).
Deliberation starts in the state Start. The rules determining transition from one state
to another are described below. This state-transition process eventually terminates in
some equilibrium, because the agents eventually deplete their evidence. We must show
that all these equilibria are full-disclosure equivalent. Here are the possible states.

Start. E0 = 0, so that s0n = 0 for all n ∈ N . Meanwhile P 0
i ≤ −1, P 0

j ≥ 1 and P 0
k ≥ 1,

so that s0i = −1 while s0j = s0k = 1; thus, Maj0 = 1. Agent i dissents and discloses
negative evidence. (The agents in N do not disclose anything, by Assumption (C).)
Thus, E1 = E0 − 1 = −1, so go to State -1.

State -1. Et = −1, so that stn = −1 for all n ∈ N , and sti = −1, so that Majt = −1.
Meanwhile, P t

j ≥ 1 and P t
k ≥ 1, so that stj ≥ 0 and stk ≥ 0. So j and k dissent and

disclose positive evidence. Thus, Et+1 = Et + 2 = 1 by statement (A1), so go to
State 1.

State 1. Et = 1, so that stj = stk = 1 and stn = 1 for all n ∈ N . Thus, Majt = 1. There
are two subcases: either P t

i = 0 or P t
i ≤ −1.

• If P t
i = 0, then sti = 1, so the group is in deliberative equilibrium. Since P 3

j ≥ 0
and P 3

k ≥ 0 while P t
i = 0, the majority decision is full-disclosure equivalent.

• If P t
i = −1, then sti = 0, while if P t

i ≤ −2, then sti = −1. Either way, i dissents
and discloses negative evidence. Thus, Et+1 = Et − 1 = 0, so go to State 0.

State 0. Et = 0, so that stn = 0 for all n ∈ N . There are now four subcases.

• If P t
i = 0 then go to Case (i).

• If P t
i ≤ −1 and P t

j = P t
k = 0, then go to Case (ii).

• If P t
i ≤ −1, while P t

j = 0 and P t
k ≥ 1 (or vice versa), then go to Case (iii).

• If P t
i ≤ −1, P t

j ≥ 1 and P t
k ≥ 1, then go back to the state Start.

In all equilibria of this state-transition system, the decision is full-disclosure equivalent.

Case (vi). Suppose |I+| = |I−| = 2. During the initial rounds of deliberation, both
agents in I+ disclose positive evidence, and both agents in I− disclose negative evidence,
but the balance of public evidence remains neutral. This continues until at least one of
the agents in I± runs out of evidence, and we enter one of Cases (i)-(v) above.

Case (vii). Suppose |I+| = 3, |I−| = 1, and |N | = 1. Let I− = {i}, let I+ = {j, k, `},
and let N = {n}. At the start of deliberation, Maj0 = 1, so i dissents and discloses a
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piece of negative evidence. There is then a back-and-forth exchange of evidence between
i and the three agents in I+, until either one side persuades the other, or at least one
of these four agents runs out of private evidence. (Agent n never discloses anything, by
Assumption (C).) There are four scenarios, depending on who (if anyone) runs out of
private evidence first.

Scenario 1. Suppose that the last agent amongst j, k and ` runs out of evidence in the
same round as i does. Thus, there is some time t such that Et = P 0

j +P 0
k +P 0

` +P 0
i ,

because all four agents have disclosed all their evidence, and these evidence sets are
disjoint by statement (A1). Since no agent has any private evidence remaining, all
of their opinions are determined by the public evidence: we have sti = stn = stj =
stk = st` = sign(Et). Thus, the group reaches a unanimous, full-disclosure equivalent
deliberative equilibrium at time t.

Scenario 2. Suppose that j, k and ` all run out of evidence before i does. Thus,
there is some time t such that Et = P 0

j + P 0
k + P 0

` − Qi for some Qi < |P 0
i |,

because j (resp. k, `) has disclosed all of her P 0
j (resp. P 0

k , P 0
` ) pieces of positive

evidence, while i has disclosed only Qi pieces of negative evidence. (Again, these
evidence sets are disjoint by statement (A1).) Thus, P t

i = P 0
i + Qi, and P t

i < 0.
Note that Et + P t

i = (P 0
j + P 0

k + P 0
` − Qi) + (P 0

i + Qi) = P 0
j + P 0

k + P 0
` + P 0

i

—that is, the total balance of all evidence. Meanwhile, P t
j = P t

k = P t
` = 0, so

st
′
j = st

′

k = st
′

` = st
′
n = sign(Et′) for all t′ ≥ t. Now one of three things happens.

• If Et + P t
i > 0, then sti = 1. But this can only happen if Et > 0, so that

stn = stj = stk = st` = 1. Thus, we are in a unanimous positive deliberative
equilibrium. But Et + P t

i > 0 if and only if P 0
j + P 0

k + P 0
` + P 0

i > 0, so this
equilibrium is full-disclosure equivalent.

• If P t
i + Et = 0, then sti = 0, and Et = |P t

i |. Again this implies Et > 0, so
that stn = stj = stk = st` = 1. In this case, i will disclose Et further pieces of
negative evidence, after which time all agents switch to neutral opinions, and
we reach a neutral deliberative equilibrium. But P t

i + Et = 0 if and only if
P 0
j + P 0

k + P 0
` + P 0

i = 0, so this equilibrium is full-disclosure equivalent.

• If P t
i + Et < 0, then sti = −1, and Et < |P t

i |. If Et < 0, then stj = stk = st` =
stn = −1, so the group is immediately in a negative deliberative equilibrium.
On the other hand, if Et ≥ 0, then stn = stj = stk = st` ≥ 0. In this case, i
will disclose Et + 1 further pieces of negative evidence, after which time all
agents switch to negative opinions, and we again reach a negative deliberative
equilibrium. But P t

i +Et < 0 if and only if P 0
j +P 0

k +P 0
` +P 0

i < 0, so in either
case, the negative equilibrium is full-disclosure equivalent.

Scenario 3. Suppose i runs out of private evidence before j, k and ` all run out of their
evidence. Suppose this happens in round t. Then we must have P t−1

i = −1 (i.e.
i only had one remaining piece of evidence at time t − 1), and st−1i < Majt−1 (so
that i dissented, and disclosed this evidence). There are two possibilities: either
(a) st−1i = 0 and Majt−1 = 1, or (b) st−1i = −1 and Majt−1 ≥ 0.
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State sti stn stj stk st` Majt Disclosers Et+1 =? Go to state...

A −1 −1 −1 −1 −1 −1 ∅ Et equilibrium
B −1 −1 −1 −1 0 −1 ` Et + 1 B,D or F
C −1 −1 −1 −1 1 −1 ` Et + 1 C,E or G
D −1 −1 −1 0 0 −1 k, ` Et + 2 H, I, J,K,L or M
E −1 −1 −1 0 1 −1 k, ` Et + 2 H, I, J,K,L or M
F −1 −1 0 0 0 −1 j, k, ` Et + 3 J,K,L,M or N
G −1 −1 0 0 1 −1 j, k, ` Et + 3 J,K,L,M or N
H −1 −1 −1 1 1 −1 k, ` Et + 2 H, I, J,K,L or M
I −1 −1 0 1 1 0 i; k, ` Et + 1 J or K
J −1 −1 1 1 1 1 i Et − 1 F,G, I or J
K −1 0 1 1 1 1 i Et − 1 F,G, I or J
L −1 1 1 1 1 1 i Et − 1 K or L
M 0 1 1 1 1 1 i Et − 1 M∗

N 1 1 1 1 1 1 ∅ Et equilibrium

Table 1: The proof of Case (vii), Scenario 4.

(a) If st−1i = 0 (and Majt−1 = 1), then Et−1 = 1. After i discloses her last piece of
evidence, we have Et = 0 and sti = 0; go to Case (i).

(b) If st−1i = −1 (and Majt−1 ≥ 0), then Et−1 = 0. Since (by hypothesis), at least
one of j, k and ` still has private evidence, we must have st−1j = 1, st−1k = 1 or

st−1` = 1. In round t, after i has disclosed her last piece of negative evidence,
we have Et = −1, while stj ≥ 0, stk ≥ 0, or st` ≥ 0. Meanwhile, sti = stn = −1.
There are now three subcases.

(b1) If Majt = 1, then we must have stj = stk = st` = 1, and this is a deliberative
equilibrium. Since Et = −1, this can only occur if P t

j ≥ 2, P t
k ≥ 2 and

P t
` ≥ 2, so this equilibrium is full-disclosure equivalent.

(b2) If Majt = 0, then we must have stj = 0, while stk = st` = 1 (for some
permutation of j, k and `). Then k and ` dissent, so that Et+1 = Et+2 = 1
by statement (A1), so st+1

i = st+1
n = st+1

j = st+1
k = st+1

` = 1, which is a
deliberative equilibrium. Since Et = −1, subcase (b2) can only occur if
P t
j ≥ 1, P t

k ≥ 2 and P t
` ≥ 2, so this equilibrium is full-disclosure equivalent.

(b3) Suppose Majt = −1. As already noted, stj ≥ 0, stk ≥ 0, or st` ≥ 0, so at
least one of these agents will dissent and disclose positive evidence. If only
one dissents, then we get Et+1 = 0 and st+1

i = 0, so we once again go to
Case (i). If two or more dissent, then Et+1 ≥ Et+2 = 1 by statement (A1),
so we reach a unanimously positive, full-disclosure equivalent deliberative
equilibrium by the same logic as case (b2).

Scenario 4. Suppose that nobody ever runs out of private evidence during deliberation.
In that case, as the agents disclose information, the group moves around between
the states {A,B,C, . . . , N} shown in Table 1. Each “state” in this table describes
a configuration of opinions, based on the assumption that sti ≤ stn ≤ stj ≤ stk ≤ st`
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(which is always true for a suitable permutation of j, k, and `). Note that stn = 0
if and only if Et = 0, in which case we must have sti = −1 and stj = stk = st` = 1
(since we assume no one ever runs out of evidence). Thus, aside from state K, we
have stn 6= 0 in all states.

In each state, the majority opinion determines who will dissent. Since we assume
that no agents ever run out of evidence, all dissenting agents always have evidence
to disclose. (Except n, who never discloses anything, by Assumption (C).) Depend-
ing upon how this newly disclosed evidence interacts with the undisclosed private
information of other agents, the group could transition into several different states
from a given state. State transitions involving disclosure by only one agent must
obey three principles:

(i) A single new piece of positive evidence will switch any zero opinion to positive,
and it may or may not switch a negative opinion to zero. But it cannot switch
a negative opinion to a positive opinion.

(ii) Likewise, a single new piece of negative evidence will switch any zero opinion
to negative, and it may or may not switch a positive opinion to zero. But it
cannot switch a positive opinion to a negative opinion.

(iii) If only a single agent discloses evidence, this may change other agents’ opin-
ions, but it cannot change her own opinion.

For example, in State B, agent ` discloses one piece of positive evidence. This
could change the opinions of j or k from −1 to 0, but not to 1 (by principle (i)). In
particular, it is impossible to move to state K. Since K is the only state in which
stn = 0, this means that ` cannot change n’s opinion from −1 to 0. Finally, `’s
disclosure cannot change `’s own opinion from 0 to 1 (by principle (iii)). Thus, the
group will either remain in state B, or move to D or F .

However, if two or more agents disclose positive evidence simultaneously, then it
is possible for them to switch even a negative opinion to a positive opinion, and if
either of them had a neutral opinion, then it will switch to a positive opinion due to
the other agent’s newly disclosed evidence. For example, in State D, agents k and
` are both neutral, and both disclose positive evidence. Thus, they both switch to
positive opinions, and also potentially move agents n and j to a neutral or positive
opinion, and perhaps move i to a neutral opinion. (However, it is not possible that
i moves to a positive opinion. This could only occur if Et = −1 so that Et+1 = 1,
while P t

i = 0, violating the assumption that agents never run out of evidence.)
Thus, the group can go to states H, I, J , K, L, or M .

Note that state M is special, since by principle (iii), the only possible transition
from M is back into M itself. To understand why this does not lead to an infinite
loop, note that the combination of sti = 0 and stn = 1 can only occur if Et > 0 and
P t
i = −Et. Thus, agent i will disclose one piece of negative evidence in each of the

next Et rounds until she runs out of evidence, which means we are back in Case (a)
of Scenario 3. (Thus, since Scenario 4 assumes no agent ever runs out of evidence,
state M is actually impossible under this scenario. But we include it in Table 1
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anyways, since this impossibility is not immediately obvious.)

Table 1 contains two possible equilibria: States A and N . But an inspection of
Table 1 reveals that State A is unreachable from any other state. Thus, only N
can occur as a terminal equilibrium of the deliberation. If N occurs at time t, then
Et + P t

i > 0 (because sti = 1). Meanwhile, P t
j , P

t
k, and P t

` are all non-negative.
Thus, Et + P t

i + P t
j + P t

k + P t
` > 0, so the equilibrium is full-disclosure equivalent.

Case (viii). Suppose |I+| = 3, |I−| = 1, and |N | = 2. Let I− = {i}, let I+ = {j, k, `},
and let N = {n,m}. The argument is like Case (iv). Deliberation unfolds as follows.

Round 0. Maj0 = −1, so i dissents and discloses negative evidence, so E1 = −1. (The
agents in N do not disclose anything, by Assumption (C).)

Round 1. E1 = −1. Thus, s1i = s1n = s1m = −1, while s1j ≥ 0, s1k ≥ 0 and s1` ≥ 0.
There are two cases.

• If one of s1j , s
1
k, or s1k is zero, then Maj1 = −1. In this case, j, k and ` all

dissent and disclose positive evidence, so E2 = E1 + 3 = 2 by statement (A1);
go to Round 2 below.

• If s1j = s1k = s1k = 1, then Maj1 = 0. Once again, j, k and ` all dissent and
disclose positive evidence. But now i also dissents. If P 1

i = 0, then i has
no evidence left to disclose, so E2 = E1 + 3 = 2 by statement (A1); go to
Round 2. However, if P 1

i ≤ −1, then i discloses negative evidence, so that
E2 = E1 + 3− 1 = 1 by statement (A1). In this case, skip Round 2 and go to
Round 3 below.

Round 2. E2 = 2, so s2n = s2m = s2j = s2k = s2` = 1, so Maj2 = 1. There are two cases:

• If P 2
i ≥ −1, then s2i = 1, so we reach a deliberative equilibrium that is full-

disclosure equivalent.

• If P 2
i ≤ −2, then s2i = 0 or −1, so i dissents and discloses negative evidence,

so E3 = E2 − 1 = 1. Go to Round 3.

Round 3. E3 = 1, so s3n = s3m = s3j = s3k = s3` = 1, so Maj3 = 1. There are two cases:

• If P 3
i = 0, then s3i = 1, so we reach a deliberative equilibrium that is full-

disclosure equivalent.

• If P 3
i ≤ −1, then i dissents and discloses negative evidence, so E4 = E3−1 = 0.

Go to Round 4.

Round 4. We now have E4 = 0, just as in Round 0. There are six possible scenarios.

• If P 4
i , P 4

j , P 4
k and P 4

` are all nonzero, then return to Round 0 and repeat the
argument found there.

• If P 4
i = 0 while at least one of P 4

j , P 4
k or P 4

` is nonzero, then we have entered
Case (i) above.

• If P 4
i ≤ −1 while P 4

j = P 4
k = P 4

` = 0, then we have entered Case (ii) above.

• If P 4
k = P 4

` = 0 while P 4
i and P 4

j are nonzero (for some permutation of j, k, `),
then we have entered Case (iii) above.
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• If P 4
` = 0 while P 4

i , P 4
j and P 4

k are nonzero (for some permutation of j, k, `),
then we have entered Case (v) above.

• If P 4
i = P 4

j = P 4
k = P 4

` = 0, then Maj4 = 0, and this is a full-disclosure
equivalent equilibrium.

The process described above eventually terminates when one or more agents runs out of
evidence. In all terminal states, the deliberative equilibrium is full-disclosure equivalent.

Case (ix). Suppose |I+| = 3, |I−| = 1, and |N | ≥ 3. Let I− = {i} and I+ = {j, k, `}.
The argument is somewhat similar to Case (v); we model the deliberation as a state-
transition system. Here are the possible states.

Start. E0 = 0, so that s0n = 0 for all n ∈ N . Meanwhile P 0
i ≤ −1, P 0

j ≥ 1, P 0
k ≥ 1

and P 0
` ≥ 1, so that s0i = −1 while s0j = s0k = s0` = 1; thus, Maj0 = 1. Agent i

dissents from the majority, and discloses a piece of negative evidence. (The agents
in N do not disclose anything, by Assumption (C).) Thus, E1 = E0 − 1 = −1, so
go to State -1.

State -1. Et = −1, so that stn = −1 for all n ∈ N , and sti = −1, so that Majt = −1.
Meanwhile, P t

j ≥ 1, P t
k ≥ 1, and P 0

` ≥ 1, so that stj ≥ 0, stk ≥ 0, and st` ≥ 0.
So j, k and ` dissent from the majority and disclose positive evidence. Thus,
Et+1 = Et + 3 = 2 by statement (A1), so go to State 2.

State 2. Et = 2, so stj = stk = st` = 1 and stn = 1 for all n ∈ N ; thus Majt = 1. There
are two subcases: either P t

i ≥ −1, or P t
i ≤ −2.

• If P t
i ≥ −1, then sti = 1 (because Et + P t

i ≥ 1). Thus, the group reaches
unanimous deliberative equilibrium. Since Et + P t

i ≥ 1, while P t
j ≥ 0, P t

k ≥ 0
and P t

` ≥ 0, this equilibrium is full-disclosure equivalent.

• If P t
i ≤ −2, then sti = 0 or −1, so i dissents from the majority and discloses

negative evidence. Thus, Et+1 = Et − 1 = 1, so go to State 1.

State 1. Et = 1, so stj = stk = st` = 1 and stn = 1 for all n ∈ N ; thus Majt = 1. There
are two subcases: either P t

i = 0, or P t
i ≤ −1.

• If P t
i = 0, then sti = 1. Thus, the group reaches unanimous deliberative

equilibrium. Since Et + P t
i = 1, while P t

j ≥ 0, P t
k ≥ 0 and P t

` ≥ 0, this
equilibrium is full-disclosure equivalent.

• If P t
i ≤ −1, then sti = 0 or −1, so i dissents from the majority and discloses

negative evidence. Thus, Et+1 = Et − 1 = 0. Go to State 0.

State 0. Et = 0, so stj, s
t
k, s

t
` ≥ 0, while stn = 0 for all n ∈ N . There are five sub-cases.

• If P t
i = 0, then go to Case (i).

• If P t
i ≤ −1 while P t

j = P t
k = P t

` = 0, then go to Case (ii).

• If P t
i ≤ −1 and P t

j ≥ 1, while P t
k = P t

` = 0 (for some permutation of j, k, `),
then go to Case (iii).
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• If P t
i ≤ −1, P t

j ≥ 1 and P t
k ≥ 1, while P t

` = 0 (for some permutation of j, k, `),
then go to Case (v).

• If P t
i ≤ −1, P t

j ≥ 1, P t
k ≥ 1, and P t

` ≥ 1, then go back to Start.

In all equilibria of this state-transition system, the decision is full-disclosure equivalent.

Case (x). If |I−| = 2 and |I+| = 1, then the analysis is similar to Cases (iv) and (v),
depending on whether |N | = 1 or |N | ≥ 2.

Case (xi). If |I−| = 3 and |I+| = 1, then the analysis is similar to Cases (vii), (viii)
and (ix), depending on whether |N | = 1 , |N | = 2, or |N | ≥ 3. 2

Proof of Theorem 3. Case 1. Suppose that E0 = 0. There are four subcases.

Case 1(a) Suppose I00 = I. Then all agents already agree with the decision D0 = 0 from
formula (3D), so deliberative equilibrium is reached immediately. But∑

m∈M

ym (∗)

∑
m∈M\C0

ym (†)

∑
i∈I00

∑
m∈Mi

ym =
∑
i∈I00

0 = 0,

where (∗) is because E0 = 0, and (†) is by substituting I = I00 into Lemma A1(a).
Thus, this neutral decision is the same decision that would have been reached with full
disclosure; hence the equilibrium is full-disclosure equivalent.

Case 1(b) Suppose I0− = ∅ while I0+ 6= ∅. Then someone in I0+ will disclose a piece of
positive evidence during the first round of deliberation. At this point, all agents in I
will agree with the decision D1 = 1 from formula (3D). Thus, deliberative equilibrium
is reached in Round 1. But∑

m∈M

ym (∗)

∑
m∈M\C0

ym (†)

∑
i∈I0+

∑
m∈Mi

ym > 0,

where (∗) is because E0 = 0, and (†) is by substituting I = I0+ ∪ I00 into Lemma A1(a).
Thus, this positive decision is the same decision that would have been reached with full
disclosure; hence the equilibrium is full-disclosure equivalent.

Case 1(c) Likewise, if I0+ = ∅ while I0− 6= ∅, then the group will converge to equilibrium
with D1 = −1 after one round of deliberation, and this is full-disclosure equivalent.

Case 1(d) Finally, suppose I0+ 6= ∅ and I0− 6= ∅. During the first round of deliberation,
either someone in I0+ will disclose a piece of positive evidence, or someone in I− will
disclose a piece of negative evidence. At this point, E1 6= 0, so starting in round 2, we
can invoke the argument from Case 2. below.
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Case 2. Suppose that E0 6= 0. Without loss of generality, suppose E0 < 0 (the other
case is similar). By hypothesis, there is initial disagreement; thus, I0+ ∪ I00 6= ∅. But if i
in I0+ ∪ I00 , then

P 0
i + E0 ≥ 0. (A3)

Agent i dissents from the (negative) opinion derived from the publicly available evidence
C0. So during the first round, she will disclose a piece of (positive) evidence. As a result,
E1 = E0 + 1, while P 1

i = P 0
i − 1. Thus, from inequality (A3) we obtain

P 1
i + E1 ≥ 0. (A4)

Thus, i’s opinion remains non-negative. Furthermore, inequality (A4) clearly holds for
all of the other members of I0+ ∪ I00 ; thus we have I0+ ∪ I00 ⊆ I1+ ∪ I10 .

Now, if E1 < 0, then during the second round of deliberation, some member j of
I1+ ∪ I10 will disclose another piece of positive evidence, so that E2 = E1 + 1, while
P 2
j = P 1

j − 1. Thus,

P 2
k + E2 ≥ 0 for all k ∈ I1+ ∪ I10 , and hence I1+ ∪ I10 ⊆ I2+ ∪ I20 .

Let T0 := |E0|. By inductively repeating the above argument for each of rounds t =
1, 2, . . . , T0, we see that during each round, one of the dissenting agents in It+ ∪ It0 will
discloses a piece of positive evidence, after which time

P t+1
i + Et+1 ≥ 0 for all i ∈ It+ ∪ It0, and hence It+ ∪ It0 ⊆ It+1

+ ∪ It+1
0 .

This process will continue until round T0, at which point ET0 = 0.

Now, let t ≥ T0. There are three possible disequilibrium scenarios at time t.

• If Et = 0, then go back to Case 1.

• Suppose Et = 1. If It0 ∪ It− 6= ∅, then someone in It0 ∪ It− will disclose negative
evidence, so that Et+1 = 0.

• Suppose Et = −1. If It0 ∪ It+ 6= ∅, then someone in It0 ∪ It+ will disclose positive
evidence, so that Et+1 = 0.

Note that for all t ≥ T0, we have Et ∈ {−1, 0, 1}. This process will continue until a time
T ≥ T0 when deliberative equilibrium is reached. There are then three subcases.

Case 2(a). If ET = 0, then we must have IT+ ∪ IT− = ∅. In other words I = IT0 , so the
consensus opinion is neutral. Equation (3B) yields P T

i = 0 for all i ∈ I; thus

ET +
∑
i∈I

P T
i = 0, (A5)

because each of the summands is zero. Combining equation (A5) with Lemma A1(b),

we conclude that
∑
m∈M

ym = 0. Thus, this equilibrium is full-disclosure equivalent.
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Case 2(b). If ET = 1, then we must have IT0 ∪ IT− = ∅. In other words I = IT+, so the
consensus opinion is positive. Equation (3B) yields P T

i ≥ 0 for all i ∈ I. Thus,

ET +
∑
i∈I

P T
i > 0, (A6)

because each of the summands is non-negative, and ET > 0. Combining equation (A6)

with Lemma A1(b) yields
∑
m∈M

ym > 0. So this equilibrium is full-disclosure equivalent.

Case 2(c). Likewise, if ET = −1, then IT0 ∪IT+ = ∅; hence I = IT−, so that the consensus
opinion is negative. Equation (3B) yields P T

i ≤ 0 for all i ∈ I. Thus,

ET +
∑
i∈I

P T
i < 0, (A7)

because each of the summands is non-positive, and ET < 0. Combining equation (A7)

with Lemma A1(b) yields
∑
m∈M

ym < 0. So this equilibrium is full-disclosure equivalent.

2

The proof of Theorem 4 depends on three lemmas. For any t ∈ N, let N t := {i ∈ I;
P t
i = 0}. (Thus, N 0 is the set of internally neutral agents.)

Lemma A2 For any t ∈ N and i ∈ N t, i never discloses any further evidence after time
t, in either the serial or parallel advisory protocols. Thus, P t′i = P ti for all t′ ≥ t. It follows
that N 0 ⊆ N 1 ⊆ N 2 ⊆ · · · .

Proof: For all i ∈ N t, we have sti (∗)
sign(Et)

(†)
Dt, where (∗) is by formula (3B) and (†)

is by formula (3D). Thus i has no incentive to disclose any further information. Thus,
P t+1
i = P ti , so that i ∈ N t+1. Inductively, P t′i = P ti , and hence i ∈ N t′ for all t′ ≥ t. 2

Lemma A3 Suppose there exists some t ∈ N such that Et = 0, and either |It+| = 1
or |It−| = 1. Then in the parallel advisory protocol, the deliberative equilibrium is full-
disclosure equivalent.

Proof: Since Et = 0, we have It0 = N t. Thus, Lemma A2 says that agents in It0 will never
disclose any further evidence after time t.

Suppose that |It+| = 1. (The argument when |It−| = 1 is similar.) Let It+ = {j}.
Suppose we reach deliberative equilibrium in some round T ≥ t. Observe that

ET = Et + P −N = P −N, (A8)

where P is the total positive evidence disclosed by j after round t, and N is the total
negative evidence disclosed by everyone in It− after round t. (As already noted, agents
in It0 will never disclose any evidence after round t.) There are now three cases.
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Case 1. If DT = 1, then all agents in It− must have exhausted their negative evidence.

Thus, we must have N =
∑
i∈It−

|P t
i |, while P ≤ P t

j . Thus,

∑
m∈M

ym (∗)
Et +

∑
i∈I

P t
i = 0 + P t

j +
∑
i∈It−

P t
i +

∑
i∈It0

P t
i

= P t
j +

∑
i∈It−

P t
i +

∑
i∈It0

0 ≥ P −N
(†)

ET >
(�)

0,

where (∗) is by Lemma A1(b), (†) is by equation (A8), and (�) is by equation (3D),
because DT = 1. Thus, the decision with full disclosure would also have been positive,
so the equilibrium is full-disclosure equivalent.

Case 2. If DT = −1, then j must have exhausted her positive evidence. Thus, we must

have P = P t
j , while N ≤

∑
i∈It−

|P t
i |. Equivalently, −N ≥

∑
i∈It−

P t
i . Thus,

∑
m∈M

ym (∗)
Et +

∑
i∈I

P t
i = 0 + P t

j +
∑
i∈It−

P t
i +

∑
i∈It0

P t
i

= P t
j +

∑
i∈It−

P t
i +

∑
i∈It0

0 ≤ P −N
(†)

ET <
(�)

0,

where (∗) is by Lemma A1(b), (†) is by equation (A8), and (�) is by equation (3D),
because DT = −1. Thus, the decision with full disclosure would also have been negative,
so the equilibrium is full-disclosure equivalent.

Case 3. If DT = 0, then both sides must have exhausted their evidence. Thus, we must

have P = P t
j and N =

∑
i∈It−

|P t
i |. Thus,

∑
m∈M

ym (∗)
Et +

∑
i∈I

P t
i = 0 + P t

j +
∑
i∈It−

P t
i +

∑
i∈It0

P t
i

= P t
j +

∑
i∈It−

P t
i +

∑
i∈It0

0 = P −N
(†)

ET
(�)

0,

where (∗) is by Lemma A1(b), (†) is by equation (A8), and (�) is by equation (3D),
because DT = 0. Thus, the decision with full disclosure would also have been neutral,
so the equilibrium is full-disclosure equivalent. 2

Lemma A4 Suppose there is some time t ∈ N such that Et = 0, and such that either
It+ = ∅ or It− = ∅. Then in the parallel advisory protocol, the deliberative equilibrium is
full-disclosure equivalent.
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Proof: Suppose It− = ∅. (The argument when It+ = ∅ is similar.) If also It+ = ∅, then we
must have I = It0; thus, the group has already reached deliberative equilibrium at time
t, with Dt = 0 . However,∑

m∈M

ym (∗)
Et +

∑
i∈I

P t
i (†)

0 +
∑
i∈I

0 = 0,

where (∗) is by Lemma A1(b), and (†) is because I = It0 and Et = 0 by hypothesis.
Thus, the decision with full disclosure would also be neutral. Thus, the deliberative
equilibrium is full-disclosure equivalent.

Now suppose It+ 6= ∅. Then∑
m∈M

ym (∗)
Et +

∑
i∈I

P t
i = 0 +

∑
i∈It0

P t
i +

∑
i∈It+

P t
i >

(†)
0,

where (∗) is by Lemma A1(b), and (†) is because each of the terms in the first sum
is zero, while each term in the second sum is positive. Thus, the decision with full
disclosure would be positive.

During round t + 1 of deliberation, each agent in It+ discloses one piece of positive
information. Since Et = 0, we have It0 = N t. Thus, Lemma A2 says that agents in
It0 do not discloses any evidence at time t + 1. Finally, no one discloses any negative
information, because It− = ∅. Thus, we have Et+1 > 0, so Dt+1 = 1 by equation (3D).
At this point, for every i ∈ It+, we have Et+1 + P t+1

i > P t+1
i ≥ 0, so equation (3B)

implies that all the agents who were in It+ retain a positive opinion at time t+ 1.

Meanwhile, for every i ∈ It0, we have Et+1 + P t+1
i = Et+1 > 0, so equation (3B)

implies that all the agents who were in It0 now also have a positive opinion at time t+ 1.
By hypothesis, It− = ∅, so these two cases account for everyone in I. Thus, everyone
in I has a positive opinion at time t + 1, so deliberative equilibrium is obtained with
Dt+1 = 1 —a deliberative equilibrium which agrees with the full-disclosure decision. 2

Proof of Theorem 4. If |I0+| = 1 or |I0−| = 1, then Lemma A3 says that the deliberative
equilibrium is full-disclosure equivalent. So, we can assume without loss of generality that
|I0+| ≥ 2 and |I0−| ≥ 2. Since |I0+|+ |I0−| ≤ |I∗| ≤ 4, it follows that |I0+| = |I0−| = 2 and
hence |I∗| = 4. Let I0+ = {j, k} and let I0− = {`,m}. For all i ∈ I∗, let P 0

i :=
∑

m∈Mi
ym;

thus, P 0
j , P

0
k > 0 > P 0

` , P
0
m. Let T0 := min{P 0

j , P
0
k , |P 0

` |, |P 0
m|}.

Since D0 = 0, all four agents will disclose evidence during the first round of delib-
eration. But since |I0+| = |I0−|, the result will be that D1 = 0, by statement (A1)
and equation (3D). Thus, during the second round, all four agents will again disclose
evidence, leading again to D2 = 0 by (A1) and (3D). Inductively, all four agents will
disclose evidence in each of the rounds t = 1, 2, . . . , T0. In round t, we will have

Et = 0 by (A1), P t
i = P 0

i − t for both i ∈ I0+, and P t
i = P 0

i + t for both i ∈ I0−.
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Once we get to round T0, we will thus have P T0
i = 0 for some i ∈ I∗

At this point, there are at most three agents remaining with non-neutral opinions.
There are now four cases.

Case 1. If no non-neutral agents remain, or only one non-neutral agent remains, then
either I0+ = ∅ or I0− = ∅ (or both), so Lemma A4 says the equilibrium is full-disclosure
equivalent.

Case 2. If only two non-neutral agents remain, and they both belong to I0+ or they both
belong to I0−, then Lemma A4 says the equilibrium is full-disclosure equivalent.

Case 3. If only two non-neutral agents remain, and one belongs to I0+ while the other
belongs to I0−, then Lemma A3 says the equilibrium is full-disclosure equivalent.

Case 4. If three non-neutral agents remain, then we have either two negative agents and
one positive agent, or two positive agents and one negative agent. Either way, Lemma
A3 says that the deliberative equilibrium is full-disclosure equivalent. 2

B Proofs from Section 4

Proof of Proposition 4.1. Suppose Cti =Mi for all i ∈ I —in other words, each agent has
revealed all of her evidence at time t. Then Ct = M (by simply comparing equations
(2C) and (2D)). Let π denote the common prior. For all i ∈ I, we have P ti = ∅, so
formula (2E) yields

Bt
i(x) =

π(x)

(SNC)
·
∏
c∈Ct

ρx(yc), for all x ∈ X .

Thus, all agents have the same beliefs —hence they are in deliberative equilibrium. 2

Theorem 5 is just the special case of Theorem 6 when πi = ν for all i ∈ I. So it suffices to
prove Theorem 6.

Proof of Theorems 5 and 6. Rather than working with a conditional probability dis-
tribution like Py in equation (2A), it will be more convenient for us to work with
the corresponding log likelihood ratio matrix. This is the antisymmetric X × X matrix
By = [byw,x]w,x∈X , where, for all w, x ∈ X ,

byw,x := log

(
Py(w)

Py(x)

)
(∗)

log[π(w)]+
M∑
m=1

log[ρw(ym)]−log[π(x)]−
M∑
m=1

log[ρx(ym)], (B1)

where (∗) is obtained by substituting in the expression (2A). (Note that these logarithms
are always finite, because we have assumed that π ∈ ∆∗(X ) and ρx ∈ ∆∗(Y) for all
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x ∈ X .) One advantage of log likelihood ratios is that they eliminate the need for the
normalization constants we have been denoting by “(SNC)”. Another advantage is that
they turn multiplicative expressions like (2A), (2B), (2E), (4B), (4D) and (4E) into more
transparent additive expressions.

Let B∅ = [b∅w,x]w,x∈X be the antisymmetric X × X matrix defined by setting b∅w,x :=
log[π(w)] − log[π(x)], for all w, x ∈ X . Meanwhile, for any y ∈ Y , define the antisym-
metric X × X matrix Ey = [eyw,x]w,x∈X by setting eyw,x := log[ρw(y)] − log[ρx(y)], for all
w, x ∈ X . Then equation (B1) can be rewritten:

By = B∅ +
M∑
m=1

Eym . (B2)

In other words, the log likelihood ratio matrix By representing posterior beliefs is the sum
of a matrix B∅ representing the prior beliefs and the matrices Ey1 , . . . ,EyM representing
the evidence received. This representation will be convenient to us.

For all i ∈ I, let B0
i be a log likelihood ratio matrix representing i’s beliefs at time

zero, before deliberation begins. In other words, this is the log likelihood ratio matrix
of the probability distribution B0

i in equation (2B). But we can also compute it directly,
as follows. Let B∅i be a log likelihood ratio matrix representing i’s prior πi. Then B0

i is
obtained by combining B∅i with her initial information, via equation (B2):

B0
i = B∅i +

∑
m∈Mi

Eym . (B3)

Let Bt
i be the log likelihood ratio matrix representing agent i’s beliefs Bt

i at time t,
as defined by equation (2E). This is a combination of her prior, the publicly available
evidence, and her own (undisclosed) private evidence. By applying (B2), we obtain:

Bt
i = B∅i +

∑
p∈Pt

i

Eyp +
∑
c∈Ct

Eyc (B4)

= B∅i +
∑
p∈Pt

i

Eyp +
∑
c∈Cti

Eyc +
∑

m∈Ct\Cti

Eym

(∗)
B∅i +

∑
m∈Mi

Eym +
∑

c∈Ct\Cti

Eyc (B5)

where (∗) is because Mi = P ti t Cti .
Assumption (B′) says there is an internally neutral agent n. Let N be the log likelihood

ratio matrix of n’s prior ν. Let Bt
n denote her beliefs at time t, as in equation (4D), and

let Bt
n be the log likelihood ratio matrix of Bt

n. By applying (B2), we get

Bt
n = N +

∑
c∈Ct

Eyc . (B6)
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In deliberative equilibrium, all agents must agree with all other agents, and hence with
the internally neutral n. Conversely, if all non-neutral agents agree with n, then they
automatically agree with each other. So in groups with an internally neutral agent n,
deliberative equilibrium is equivalent to requiring that Bt

i = Bt
n for all i ∈ I. For any

i ∈ I, we can rewrite (B6) as

Bt
n = N +

∑
c∈Cti

Eyc +
∑

c∈Ct\Cti

Eyc . (B7)

We deduce that(
Bt
n = Bt

i

)
⇐

(∗)
⇒

(
N +

∑
c∈Cti

Eyc +
∑

c∈Ct\Cti

Eyc = B∅i +
∑
m∈Mi

Eym +
∑

c∈Ct\Cti

Eyc
)

⇐⇒
(∑
c∈Cti

Eyc = (B∅i −N) +
∑
m∈Mi

Eym
)
, (B8)

where (∗) is obtained by substituting (B5) and (B7). There are now two cases: either
{Mi}i∈I are mutually disjoint, or they overlap.

Case (a) Suppose that {Mi}i∈I are all disjoint from one another. (So Assumption (A)
is trivially satisfied.) Recall that (by definition), they are also disjoint from the initial
public information set C0. Then

Bt
n (∗)

N +
∑
c∈Ct

Eyc
(†)

N +
∑
c∈C0

Eyc +
∑
i∈I

∑
c∈Cti

Eyc

(�)
N +

∑
c∈C0

Eyc +
∑
i∈I

(B∅i −N) +
∑
i∈I

∑
m∈Mi

Eym

(‡)
N +

∑
i∈I

(B∅i −N) +
∑
m∈M

Eym (B9)

Here, (∗) is by (B6), while (†) is by defining formula (2D), and the fact that the sets
{Cti}i∈I must all be disjoint from one another and from C0. Next, (�) is by applying the
equation in statement (B8) for all i ∈ I. Finally (‡) is by equation (2C).

Let M be the log likelihood ratio matrix of the belief µ obtained from applying the
multiplicative pooling rule to the beliefs {πi}i∈I with reference measure ν, as in equa-
tion (4E). Then M = N +

∑
i∈I(B

∅
i − N). Meanwhile, let A = [aw,x]w,x∈X be the

antisymmetric matrix defined by aw,x = log[α(w)/α(x)], where α is defined as in (4A).
Then

A =
∑
m∈M

Eym . (B10)

Thus, equation (B9) says that Bt
n = M + A. In other words, the probabilistic beliefs of

the internally neutral agent have the form Bt
n = µ · α, as claimed.
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Case (b) Suppose that {Mi}i∈I are not disjoint from one another. For all i ∈ I, define

M̃i := Mi \

⋃
j∈I
j 6=i

Mj

 and M̂i := Mi ∩

⋃
j∈I
j 6=i

Mj

 = Mi \ M̃i.

Thus, M̃i is the part of i’s evidence which is not shared by any other agent, while M̂i

is the part of i’s evidence that she shares with at least one other agent. Now define

C̃0 := C0 ∪
⋃
m∈M

M̂m.

Any deliberative equilibrium satisfying Assumption (A) can be obtained through the
following two-step procedure:

1. First, every agent discloses all evidence in M̂i (so that Assumption (A) is satisfied);

2. Then they continue deliberating as before.

Note that after the first step, we have arrived at the situation of Case (a), except that

we replace C0 with C̃0, and replace Mi with M̃i for all i ∈ I. Thus the logic of Case
(a) then applies, and yields the conclusions of Theorems 5 and 6, as before. 2

Proof of Proposition 4.2. We will continue to use the notation developed in the proof
of Theorems 5 and 6. We will first consider the Case (a), where the sets {Mi}i∈I are
disjoint (so Assumption (A) is trivially satisfied). Let B∅ be the log likelihood ratio
matrix for the common prior π. Then for any i ∈ I and t ∈ N, equation (B4) yields

Bt
i = B∅ + Ht

i +
∑
c∈Ct

Eyc , where Ht
i :=

∑
p∈Pt

i

Eyp . (B11)

In words, Ht
i is the log likelihood ratio matrix of all the evidence that i has not revealed

at time t. If there is deliberative equilibrium at time t, then Bt
i = Bt

j for all i, j ∈ I.
Substituting the expressions from (B11) into this equality, we get

B∅ + Ht
i +
∑
c∈Ct

Eyc = B∅ + Ht
j +

∑
c∈Ct

Eyc ,

and hence Ht
i = Ht

j, for all i, j ∈ I. Thus, there is some matrix H such that

Ht
i = H, for all i ∈ I. (B12)

Now, since the sets {Mi}i∈I are disjoint, we have

M
(∗)
C0 t

⊔
i∈I

Mi = C0 t
⊔
i∈I

(Cti tP ti ) = C0 t
⊔
i∈I

Cti t
⊔
i∈I

P ti (†)
Ct t

⊔
i∈I

P ti ,

(B13)
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where (∗) is by (2C) and (†) is by (2D). Thus, if A is as in equation (B10), then

A =
∑
m∈M

Eym
(∗)

∑
c∈Ct

Eyc +
∑
i∈I

∑
p∈Pt

i

Eyp

(�)

∑
c∈Ct

Eyc +
∑
i∈I

Ht
i (†)

∑
c∈Ct

Eyc + I ·H,

where (∗) is by equation (B13), (�) is by the right-hand equation in equation (B11), and
(†) is by equation (B12), with I := |I|. Thus,∑

c∈Ct
Eyc = A− I ·H. (B14)

Substituting (B12) and (B14) back into the left-hand equation in (B11), we get

Bt
i = B∅ + H + A− I ·H, = B∅ + A− (I − 1) ·H, (B15)

Now, let η be the probabilistic belief whose log likelihood ratio matrix is B∅− (I−1) ·H.
Then for all i ∈ I, equation (B15) tells us that Bt

i = α · η/(SNC), as claimed.

The proof in Case (b) proceeds as in the proof of Theorems 5 and 6. 2

C A game-theoretic interpretation of the model in

Section 3

As emphasized just below equation (3C), the model of deliberation in Section 3 is not a
game, and deliberative equilibria are not Nash equilibria. Nevertheless, Theorems 1 to 4
suggest an interesting game-theoretic reformulation of the model.

We will define a normal-form game with the following structure. The set of players is
I ∪ {0}, where I is the set of deliberating agents, and 0 is “Nature”. The players in I are
all identical. Each player’s strategy takes the form of a “disclosure policy”, which specifies,
for any possible configuration of public evidence, private evidence, and declared opinions
of the other players, what evidence (if any) this player should disclose during a particular
round of deliberation. During the game, each player chooses a disclosure policy, Nature
determines the public evidence and private evidence of each player, and then each player
receives a payoff depending on the end-result of the ensuing deliberation.

Formally, the public evidence can by summarized by an ordered pair c = (c+, c−) ∈
N2, where c+ is the number of positive signals that are public information, and c− is
the number of negative signals. Likewise, player i’s private evidence at any stage in the
deliberation can be summarized by an ordered pair pi = (pi+, p

i
−) ∈ N2, where pi+ is the

number of undisclosed positive signals remaining in i’s private evidence, and pi− is the
number of undisclosed negative signals. Finally, the profile of opinions of all agents can
be described by an I-tuple s = (si)i∈I ∈ {−1, 0, 1}I . A disclosure policy is thus a function
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D : N2 × N2 × {−1, 0, 1}I−→{−1, 0, 1}: for any c and pi in N2, and any s ∈ {−1, 0, 1}I ,
we interpret D(c,pi, s) = 1 to mean that i should disclose a piece of positive evidence if
her current deliberative situation is described by (c,pi, s) and she has the opportunity to
speak. Likewise, D(c,pi, s) = −1 means that i should disclose a piece of negative evidence
in this situation, and D(c,pi, s) = 0 means that she should disclose no evidence.26

Suppose all players in I choose a deliberation policy, and then Nature assigns to each
of them an initial set of private evidence, along with a set of public evidence. In the
parallel protocol, the ensuing deliberation is entirely determined by this information; the
parallel-protocol deliberation will unfold deterministically until it reaches a stationary state
in which all players’ disclosure policies have the value 0 (so that no one discloses any
further evidence). In the serial protocol, we must also specify an “order of speech”. This
can be done, for example, by labelling the players 1, 2, . . . , |I| and requiring them to speak
cyclically in that order. Given an order of speech, the disclosure policies of the players and
their initial private and public evidence once again completely determine the unfolding of
the deliberation until it reaches a stationary state.

The payoff functions of all players in I are identical: each player receives a payoff of 1
if the deliberation reaches a stationary state that is full-disclosure equivalent. Otherwise
she receives a payoff of zero.27 The player 0 (Nature) has a constant payoff function.

The normal-form game now proceeds as follows: Nature defines an initial set of public
evidence and assigns initial sets of private evidence to all players. Meanwhile, each player
in I chooses a deliberation policy. Then deliberation unfolds deterministically, as explained
two paragraphs up, and all players receive a payoff as in the previous paragraph.

Note that a priori, we impose no restrictions on each player’s deliberation policy. For
example, a player might continue to disclose evidence favourable to her opinion, even when
her opinion is already endorsed by a large majority. Or she might fail to disclose favourable
evidence, even when her side is in the minority. She might even disclose evidence which
is contrary to her current opinion. Her disclosure strategy could depend in some complex
way on the current public evidence and on the pattern of opinions of the other players.
In other words, her disclosure policy might violate all of the assumptions made under the
heading “Deliberative equilibrium” at the start of Section 3. But in fact, Theorems 1 to 4
tell us that she has no interest in violating these assumptions. These theorems tell us that,
for any strategy chosen by Nature, the disclosure policies described at the start of Section
3 define a Nash equilibrium for the game described in the previous paragraph. Thus, as
long as each player believes that the other players will adopt such a policy, she has no
incentive to deviate from such a policy.28

Given this result, why did we proceed in a more roundabout way, by arguing that a
combination of “good faith” and “communication costs” induces each deliberator to adopt
the disclosure policy described at the start of Section 3? Because we feel that this is a

26We impose the feasibility constraint that D(c,pi, s) ≤ 0 if pi+ = 0, while D(c,pi, s) ≥ 0 if pi− = 0. It
follows that D(c,pi, s) = 0 if pi = (0, 0).

27This payoff function arises because the Proposition at the start of Section 3 implies that any truth-
seeking agent always prefers outcomes that are full-disclosure equivalent.

28We do not claim that this is the only Nash equilibrium for the game.
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more realistic description of how people behave in actual deliberative interactions. But for
those who prefer a more traditional game-theoretic analysis, one is available.

References
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