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Abstract

In this short technical note, we are interested in the constitutive equations used to model macroscopically the
mechanical function of soft tissues under mechanical loading. Soft tissues have the ability to undergo large elastic
reversible deformations under quasi-static loading and are usually modelled using hyperelastic constitutive laws.
Several constitutive equations have been defined in the literature by means of strain components or strain
invariants isotropic hyperelastic models. This short technical note recalls how to derive the weak form for
hyperelasticity equations, and how this weak form can be linearized. It also presents a semi-analytical solution
for a simplified geometry representing the mechanical response of an artery modelled under pressure loading.

1. Introduction

As recalled in the book “Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element
Modeling” by Yohan Payan and Jacques Ohayon [10], the mechanics of human soft tissues has been an emerging
research field since the publication, in 1981, of the book “Biomechanics: Mechanical Properties of Living Tissues”
by Yuan-Cheng Fung [7]. Since that date, many groups in the world have proposed biomechanical models of
soft organs to investigate both the underlying mechanisms that drive normal physiology of biological soft tissues
and the mechanical factors that contribute to the onset and development of diseases such as tumour growth [I5],
atherosclerosis or aneurysms [I2], or multilevel lumbar disc degenerative diseases [I3], to name a few. Such organs
indeed deform under physiological conditions (such as muscle activations or interactions with other tissues) or
because of the mechanical interaction with the surgical gesture.

Assuming we know the governing ordinary and partial differential equations, finite element models can predict
the behavior of the system from given initial and boundary conditions measured at a few selected points. This
approach is incredibly powerful, but, to close the system of equations, we need constitutive equations that
characterize the behavior of the system, which we need to calibrate with experimental data, for instance.

In the last decades, significant theoretical results, many confirmed by experiments, have projected considerable
light on the mechanical behaviour of elastic materials subjected to large deformations. It has consistently been
shown that hyperelasticity can be used to model macroscopically the mechanical function of soft tissues under
mechanical loading.

In this document we focus on general hyperelasticity formulations, and detail the derivation of the weak
form, and then of the tangent weak problem, for the deformation of an hyperelastic body. These are the two
fundamental ingredients for an implementation within a finite element library. Nowadays modern finite element
libraries such as FEniCS [8] or GetFEM++ [I1] make use of high level assembling languages and even of symbolic
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automatic differentiation, and are capable of solving an hyperelastic problem by specifying only the complete
expression of the hyperelastic potential. Nevertheless, even in this case, it can be interesting to know how to
carry out by hand this derivation, for instance to gain more control on the solving procedure. Furthermore, the
linearized hyperelasticity problem is involved in adjoint-based solvers, that are useful in many applications, such
as parameter calibration, shape optimization or dual-based error estimation, see, e.g., [I} [2]. This first topic that
concerns the weak form and its linearization is of course covered in many documents about hyperelasticity and
the presentation here is mostly inspired from [3| [6].

The second part of this document details a semi-analytical solution for the hyperelastic deformation of a ring,
that may represent an idealized artery. This can be helpful to verify numerical solutions with finite elements, in
the same spirit as manufactured solutions [5]. This is a first step towards semi-analytical solutions with active
constitutive laws such as presented in [10].

2. Hyperelasticity

We first recall that, when a material is purely elastic, all the energy that is supplied to it during loading can
be regained after unloading. So, during the whole cycle of deformation, no energy is dissipated physically. It
can be shown that the stress in such a material can be derived from a scalar functional representing the specific
elastic energy density (elastic energy per unit undeformed volume).

2.1. Notations

Let © C R? be an open bounded set that denotes the reference configuration of one deformable solid in a
space of dimension d = 2 or 3. A deformed configuration 2! can be defined through a transformation ¢ which
maps any point X of the reference configuration to a point x of the deformed one:

p: 0 — R4
X — x=¢X).

We define the displacement u relatively to the reference configuration as:
u(X) == o(X) — X.

The gradient of a quantity in the deformed (resp. reference) configuration will be noted V (resp. Vx). To
describe the deformation, we introduce as usual the identity matrix of size d x d, denoted by I and the deformation
gradient F =14 V xu. We introduce as well
(Vu+vu®) =

€(u) :==sym (Vu) = (Vxw)F '+ F T(Vxu)T") =sym ((Vxu)F 1)

N =
N =

where sym (-) denotes the symmetric part of a second order tensor. The jacobian of ¢ is denoted by J := det F.
We introduce also the Cauchy-Green tensor C = FTF, and the Green-Lagrange tensor E = %(C —1I). We will
note o the Cauchy stress tensor, I = JoF~7 the first Piola-Kirchhoff stress tensor and ¥ = JF~'gF~7T the

second Piola-Kirchhoff stress tensor.

2.2. Hyperelastic constitutive law

We consider a general hyperelastic constitutive law, derived from a potential W that depends on the defor-
mation through E (or C) (see, e.g., [3,[6]), so that the second Piola-Kirchhoff stress is

5 OV 0w
~ OE ToC’
with corresponding fourth-order elasticity tensor
c. 05 _FW
" OE OEOE’



We will need as well the isotropic tensor
1
ISZ i(ez ®ej ®ei®ej +ei®ej ®ej ®ei),

where ® denotes the tensor product of two vectors, (e;)i=1,....4 is the canonical basis of R and where Einstein’s
summation convention is used. The tensor Z has the property Z : A = A for any symmetric second-order tensor
A (: denotes the double-dot product between two tensors).

We will denote the global potential energy by J(:). For example, if considering simple equilibrium under a
gravity force, the potential energy is

= [ We) ax - [ pg-uax (1)

where p is the density in the reference configuration and g is the gravity acceleration vector. Of course, additional
terms such as boundary loads, can be considered as well. Dirichlet conditions can also be prescribed, but, to
simplify the formulation, the treatment of Dirichlet conditions will be omitted in the following.

Moreover, we consider the following notations to simplify the mathematical presentation. The directional
derivative of a quantity A with respect to the displacement v in direction du will be denoted by A’(u;du). This
directional derivative is defined as

A(u; 6u) := lim Alu+e0u) = Alw)

e—0 3

( %A(u +e 5u)|e_0)

when this limit exists.

2.3. Having some fun with differential calculus

We need first the following results on the directional derivatives of deformation tensors, that are obtained
after simple computations (see, e.g. [6l Chapter 14]):

Proposition 2.1. The directional derivatives of F and E are:

F'(u;0u) = Vx(ou),
E'(u;0u) = sym(FL(u)Vx(0u)) = FT (u) e(6u) F(u).

Proof: The expression of F(u; du) is a direct consequence of the definition of F. Then let us compute
E'(u;6u) = =C'(u;du)

(FTY (u; 0u)F (u) + FT (u)F' (u; 0u))

(VX)) (6w)F () + F* (u)Vx (du))

NN~ DN

where we used first the definition of E and C, then the product rule and finally the expression of F/. As a result
we recover the first expression. To get the second expression we can do as follows

E'(u;0u) = sym (FT(u)Vx(6u))
= sym (F"(u)V(6u)F(u))
= FT(u) sym (V(6u))F(u)

u

u

where we used Vx (du) = V(du)F(u) and the properties of the symmetric part. O

The computation of the directional derivatives of stress tensors IT and X is more involved and we recall their
expression below (see as well [6], Chapter 14]):



Proposition 2.2. The directional derivatives of 3, resp. I, are:

> (u; 6u)
I (u; 0u)

C(u) : FT(u)Vx (du) = C(u) : FT (u) e(6u) F(u). (2)
Vi (6u) B (u) + F(u)(C(u) : FT (1) Vx (5u)). (3)
Proof: First, for an hyperelastic law, there holds in fact 3(u) = 3(E(u)) and we apply the chain rule:

ox
JE

¥ (u; 6u) = X'(E(u); B (u; 6u)) = ——= (E(u)) : E'(u; du).

Since C = 0% /OE and using Proposition [2.1] we get:

¥/ (u;6u) = C(u) : sym (FT (u)V x (du)).

Then is obtained with the above formula and the symmetry properties of C. Using the relationship IT = FX
and applying the product rule yield:

I (u; 0u) = F'(u; 6u)E(u) + F(u) X' (u; Su).
We use and once again Proposition to obtain . O

2.4. Weak formulation

Now we are ready to find the expression of the weak form for an hyperelastic material. This weak form is the
first order optimality condition associated to the minimization of and reads, for any virtual displacement du:

OZJI(U;5U)=/(WOE)’(u;5u) dX—/pg-(SudX.
Q Q

We compute, using the chain rule and Proposition

(W o E) (u; 6u) = W (E(u); E' (u; 6u)) = ?I/EV (E(v)) : E'(u;0u) = X(u) : sym (FT (u)Vx (du)).

Using the symmetry property of ¥ and the relationship IT = F3I, we obtain:
W o E) (u;6u) = B(u) : FT (u)Vx (6u) = F(u)X(u) : Vx(6u) = I(u) : Vx (du).

Finally we define (substituting v to du)

(u;v) /H : Vxv dX, L(v):/pgovdX,
Q
and the weak form for an hyperelastic material reads, for all v:
a(u;v) = L(v). (4)

This is the kind of expression that can be implemented in GetFEM++ or FEniCS, as an alternative to the
expression of W.

3. Linearization for hyperelasticity

We want to linearize the weak form . This linearization can be helpful for different purposes. Particularly
it is involved in iterative procedures for numerical solving, such as the Newton method, that needs the exact
jacobian of the weak form. It can also be useful for the theoretical study of linearized systems around some states
or prestress calculations. It has also an interest for adjoint-based solvers when doing dual based a posteriori error
estimation, sensitivity analysis, parameter calibration or optimization. As already mentioned, some computer
software has now the capability of carrying out this linearization automatically, but it can be necessary sometimes,
or just more amusing, to do this by hand. We can proceed as follows.



8.1. Details of the linearization procedure

Since L(-) is linear, there only remains to compute the directional derivative of a(-;-). We fix u and v and
consider a direction of differentiation du, and first note that:

a’ (u; du,v) = /QH/(U; du) : Vxv dX.
There just remains to apply (3):
a’(u; du,v) = /Q (Vx(6u) 2(u) + F(u)(C(u) : FT(u)Vx (du))) : Vxv dX.
Splitting the sum, there holds:
o (u; 6, v) = /Q Vo (0u) S(u) : Vv dX + /Q Fu)(Clu) : BT () Vx (u) : Vv dX.
This can be rewritten as (using symmetries of C):
a'(u; du,v) = /QE(u) : Vx(0u)! Vv dX—i—/QFT(u)VX(éu) :C(u) : F(u) ' Vv dX. (5)

Remark that for a Newton-Raphson iteration, at each step, and for a given u, we will find an increment du

solution to the tangent system:
a'(u; du,v) = L(v) — a(u;v).

3.2. Re-interpretation “a la Schotté” of the tangent stiffness weak form

We can provide a beatiful decomposition of the tangent stiffness system, following [14]. First we use the
relationship F = I 4+ Vx, and reformulate the term:

/QFT(u)vx(au) . Cu) : F(u)TVxv dX

/Q(I + VL () Vx (6u) : Cu) : (T+ VE (1)) Vxv dX

A Vx(du): C(u): Vxv dX
—i—/ﬂ Vx(6u) : Clu) : VE(u)Vxv dX
—I—/QVE(U)VX(éu) :C(u) : Vxv dX
+/QV)T((U)VX(5U) :C(u) : Vi (u)Vxv dX.
With the above calculation, we can rewrite the tangent weak form as:
a’ (u; 6u,v) = ag (u; du, v) + ap (u; du, v) + a'p (u; du, v),
where

ag (u; du, v) ::/ S(u) : Vx(6u)T Vxv dX
Q

is the geometric stiffness contribution,

al (u; du,v) == / Vx(du) : C(u) : Vxv dX
Q



is the linear stiffness contribution and
ap(u; du,v) = /QVX(éu) :C(u) : VE(u)Vxv dX
+/QV§(U)V)((6U) :C(u) : Vxv dX
+/QV§(u)VX(5u) :C(u) : VE(u)Vxv dX.
is the predeformation stiffness contribution. For the terminology and more explanations, see [14].

3.8. Saint- Venant-Kirchhoff material

As an example, and as in [9], suppose that the constitutive law is those of a Saint-Venant-Kirchhoff material,
i.e., that:

WE) = 5 (i (B))” + ptr ().

where A and p are material parameters, see, e.g., [3, Chapter 5]. The associated second Piola-Kirchhoff stress
tensor and elasticity tensor are:

S =Ar(E)I+2uE, C=M&I+2uZ.
Let us detail the expression
IT' (u; 6u) = Vx (0u) (u) + F(u)(C(u) : FT (u)Vx (6u))
=V x(0u) \tr (E(u)I + 2uE(w) + F(w) (A1 @I+ 2uT) : FT (u)Vyx (6u)).
We compute separately
IQI:FL(u)Vx(du) = (I: FT(u)Vx(6u))I = tr (FT (u)Vx (6u))l,

and
Z:FT(u)Vx(6u) = sym (FT (u)Vx (6u)).

This yields
IT' (u; 6u) = Vx (6u) (Atr (E(u)
+ F(u) (M tr (FT (u
=\ (tr (E(uw))Vx (du
+ 24 (Vx (6u)E(u

I+ 2uE(u))

Vx (6u))I + 2psym (FT (u)V x (0u)))
+ tr (F7 (u)Vx (6u))F(u))

+ F(u) sym (FT (u)V x (6u))) .

_— — —

4. Inflation of an artery modelled as a hyperelastic cylinder : semi-analytical solution

The prediction of the stress distribution within arteries has been a major focus of cardiovascular biomechanics.
The complexity of the physical system presents a formidable modelling challenge. The walls of blood vessels are
mixtures of solid and fluid constituents, with a very sizable fraction of fluid content. The solid constituent of soft
tissues is comprised of extra-cellular matrix containing various types of collagen and elastin, and cells which also
contain fluids. Blood vessels are anisotropic and the anisotropy changes from point to point, and complicating
matters further, blood vessels are inhomogeneous. To make some initial progress, idealisations of various degrees
of realism have necessarily been made in the litterature. The larger arteries are commonly idealised as being
cylindrical in shape in cardiovascular biomechanics and assumed to be both incompressible and non-linearly
elastic. The complex loadings experienced by arteries in situ are typically modelled using the approximation of
uniform internal inflation. It is commonly assumed that the artery is cylindrically isotropic.

All of these idealisations are adopted in this section. The artery is modelled using a strain-energy function
per unit undeformed volume. We derive here a semi-analytical solution for a simplified geometry (a ring).



Figure 1: Reference configuration {2

4.1. Geometry and boundary conditions

We consider a perfect ring that represents the transverse section of an idealized arterial wall, see Figure
This configuration is established as the reference one ). The notations I'; and I'. define internal and external
boundaries, respectively. A predefined pressure peyt is imposed on the external boundary T'. (where Z = re¢;.):

OT = Poxt T (6)

On I'; (where ¥ = r;€;) we can impose either a Neumann (pressure) or Dirichlet (displacement) boundary
condition, as:

—

Ol = PintTl, (7)
ﬂ = Uintﬁy (8)

where piy¢ and uiy are fixed internal pressure and displacement, and 77 normal vector pointing outward to the
boundary, which is either €, for I, or —e, for T';.

4.2. Incompressible neo-hookean material

In biomechanical studies, arterial tissue is commonly assumed to be incompressible. A challenge of this study
is also to determine relevance of this incompressibility condition. Indeed, although ex-vivo experiences confirm
it, in-vivo tests - more invasive - could be in favour of a quasi-incompressible model (see, e.g. [4]). Considering
an incompressible neo-hookean material, the associated constitutive law yields:

w(e) = E(tr (C) - a).

2
Second Piola-Kirchhoff tensor is computed as follows:
ow
S=2— —pC!
oC p )

where p is the hydrostatic pressure defined in each point of Q. Plus, we introduce the following condition for
incompressibility (conservation of volume):
J =det(F)=1. (9)

4.3. Equilibrium equation

Supposing the absence of body forces on the whole domain €2, the fundamental principle of statics is:

—div (o) =0. (10)



4.4. First calculations in cylindrical coordinates

The gradient of the displacement u is given in cylindrical coordinates by:

ou, 1 % B ou,

or r \ 00 o 0z

. Oug 1 (Ouy Qug
Vsl w\ae ") o

8u2 1 auz auz
or r \ 00 0z
In the present case, the displacement w is unidirectional and depends only on r. Hence as sketched in Fig. |1} we

assume that:
VYM(r,0,z), @(M)=u.(r)é,.

The gradient of the displacement can be directly simplified as follows:

du,

0 0
dr

Vu=1 19 = 0
A

0 0

0

The tensors of deformation F = I 4+ Vu, Cauchy C and Green-Lagrange E are derived in Egs. to
respectively.

(A 0 0
F=[0 X 0 (11)
|0 0 1]
(A2 0 0]
C=1|0 )\3 0 (12)
|0 0 1]
du, du, 2 du, 1 [du, 2
92 z
1 dr ( dr ) 0 0 dr 2\ dr 0 0
2 1 /w2
E—- Ur | (Ur — Ur 1 (Ur . 13
2 0 2r+(r> 0 0 r+2(r) 0 (13)
0 0 0 0 0 0
du,

where \, =1+ and)\9:1+&.
dr r

4.5. Expression for the displacement

First, the displacement w, is obtained by solving the differential equation of incompressibility:

du, u,.  du,. U,
O—det(F)_l—)\’,«Ag—l— d'r' 7 d/r 7

We assume that a solution is

up(r) =+vVe+r2—r,



where c is a constant which will be noted ¢ = 72. Let us proceed with intermediate calculations:
du, 2r
dr 2vc+r?

det(F) — 1

So we checked that the expression for w, is correct. Then the constant c¢ is determined using the boundary
conditions.

e In the case where u,(r;) is known, we consider Eq. (§), so that:
Up(ri) = —ting = /T2 + 7% — 1,0

e = Uit (Uin — 273).

Then we find

Finally, response of the displacement is defined for r; < r < r. and given by:

up(r) = \/uint (wing — 27;) + 12 — 1. (14)

e In the case where u,(r;) is unknown, 2 is determined by pressure conditions Egs. @ and . Hence, u,

is noted:
up(r) = \/m —r.

4.6. Stress and equilibrium
We compute the Cauchy stress tensor o under the incompressibility hypothesis Eq. @:

1
o= jFEFT = FulF? — pFC'F? = 4C — pFF'FTFT = 4C — pI, (15)
i.e..
pAr =p 0 0
o= 0 pAi—p 0 |. (16)
0 0 K—D

Then remember that the divergence of a second order tensor A in cylindrical coordinates is given by:
aAr'r 1 8147"0 aArz Arr - AGG
+ - +

or r 00 0z r
YR 0Apr 10Aps  0Ap, Avg+ Apr
div(A) = z
v(4) or + r 00 0z + r

0A,, n lﬁAzg . 0A,. n &
or r 00 0z r

For the Cauchy stress tensor, invariant in 6 and z:

A2 dp 1,

o ar )
divie) = |

0



Applying the fundamental principle of statics Eq. and incompressible equation Eq. @, assuming that

1
A= —:
Ao

dp _ CD\% 1 2 2

d r2 +1 r2 1+7‘2
H dr \r? +r2 r \r?+r2 r2

d 72 N 2r 1 72
H dr \r? +r2 2(r2 +1r2) ¢ 3|’

By integration, we obtain then:

r? 1 3 9 r2 2r +r2(r2 4 12) 2 +r2
pr(’l") = U m—kiln(r +T'O)—1n(7')+ 2;2:| +po=p 2T2(:2+Tg)0 +In T + Do, (17)
with p, the constant of integration.
From Egs. (@ and @ on boundary conditions, with an external pressure peyxy = O:
7(/“)‘724, - p(rl)) = Pint,
W\?E - p(re) =0.
Thus
r? 2rd +1r2(r? +r2) r? 4 r2
it = — 3 _ 7 o 3 o _ 1 V' ' "o o 18
R e R T ) N | 18)
with
o= i re 2r +1r2(r2 +12) —ln /T2 412 (19)
S R T R 2

We sum Eq. + Eq. to get the expression of p;,; in function of r;, r. and r,:

Y S I YRS (RS R (L P (Y (S
s ) T2 U e T e n\rEen

Finally, from:

pr(r) =p + Pos

2r2(r2 +1r2)

27’4+r3(7’2+r3)+1 (\/TQJr’/‘g)
n|l XYL T
,

the final expression of p, is given by:

C R ) B S R G R <\/r2+r2> 1<W>
nf—|-In{-+—=

2r2(r2 4+ r2) r2 +r2 B 2r2(r2 +r2) r Te

pr(r) = p

Hence, we obtain the expressions of the principal radial stress tensor (cf Eq. ), and therefore derived expres-
sions such as the Von Mises stress, etc. Wonderful, isn’t it ?

In order to find a numerical value of r,:
We introduce the following function ®, such as ®(r,) = 0:

2 2 90t L a2(r2 4 22)  9pd 4 2(p2 4 g2 B R
ri+a?  ritx 2 ri(ri + x2) r2(r2 + 22) m\ 2y

By dichotomy, a numerical value of 7, can be obtained for r, = 2.25 mm and r; = 1.93 mm:

ro = 0.01707...

10



4.7. Numerical application

Let us take a very simple example of an expansion movement. The value for the parameters are: r; = 4.0 mm,

re = 7.0 mm, and uj,y = — 2.0 mm. See configuration Fig.
Initial configuration Current configuration
10+ 10
5f 5
ot 0
-5| -5
—10} -10
-10 -5 0 5 10 -10 -5 0 5 10

Figure 2: Visualisation of displacement from the reference to the ”current” configuration under pressure.

For the next figure |3} we use following values: r; = 1.93 mm, r. = 2.25 mm, and p = 27.9 kPa, see [10].

2 Hydrostatic Pressure (kPa)
g
X 18+ .
o'
— 40 mmHg
— 20 mmHg

1 : : ‘ ; ; ; ;
1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30
r {(mm)

Figure 3: Hydrostatic pressure at 20, 40 and 60 mmHg

11



4.8. Saint-Venant-Kirchhoff material

As an other example, suppose that the constitutive law is those of a Saint-Venant-Kirchhoff material. Ac-
cording to the constitutive law adapted to this case

Y = Mr(E)I+ 2uE,

Second Piola-Kirchhoff stress is written:

du, du,

Atr (E) + 2u o+ w( - )2 0 0
r= 0 Atr (E) +2u% +u(%>2 0
0 0 Atr (E)

and allows to find the first Piola-Kirchhoff stress tensor II = FX:
du,

du, du,

1 E)+2 2
- (+d7,)[>\tr()+ udr+u(dr)] ., 0 . . 0
FX = 0 (L4 =) (B) + 20"+ pu(=5)2 0
0 0 Atr (E)
Thus SFS )
. 5 L Z(FSy; — Fy)
div(FE)=| 4 " r
0
and du, 1.d 1
U U u U
tr(E) = — + = (—2)2 4+ = + =(2)2.
r(E) dr+2(d7‘) r 2(7“)

Term by term, calculations show that:

du,

FS11 — F¥ = (14 - duy duy,

dr +(d7‘

= Atr (E) (d:T - &) +u [Zdur + (dur)2 - (%)2} +p [2(du’“)2 + (dur)3 gtz (“4)3}

) @) + 2 )] - 0+ 20 [ @)+ e+ (292)

T

r r dr dr r dr dr r r
dur 1 dur .3  ur duy 1 ur odur Uy AUy 1 dur our U | o 1 ur 3
=2 - i (= T B G - il
|:(dr)+2(dr)+rdr+2(r) dr r dr 2(dr)r (r‘) 2(7“)
du du du u u u
|25 13S0 4 (T)8 -2 (M) - ()2
dr dr dr T r r

( A up dur) (dur ur)
= 2#— _ - —
2 r dr dr T

Ok (G - (202

dr r
+ G+ (G- ().

Furthermore

_ du, dur, 1 duy.o ur 1 Up o du, duy | o
Pou = 0+ 0 o (B s Lty s ) s e 4 By

U 1 u du 3 du 1 du Uy du 1 u, »du
-\ T L %ry2 T 9 T\2 = T\3 Uy T Ur g r
|:’I“+2( ) dr 2(dr) Z(dr)+rdr+2(r) dr
du du du
9 T T\2 7“3'
Jru{ dr Jr3(dr) +(dr)}
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Some intermediates calculations could be helpful:

d u-, 1 du,  u

dr(r) - r(dr_7)’
d Uro U duy Uy
dr(r) - rz(dr 7‘)’
du, U, up 2w, 1 [ du 9 du, u,
(dr r) ) +T<(dr)_(drr)>’
ur QduT _ (&)QdQur &(dur _&)
o r’ dr? dr r
and
dF¥;; A Uy du, U, d“u
dr _r(1+ )(dr_r)+(2u+/\)d2
o d?u,

du, d*u, A du,.
+(6u+3)\)( >+3(2+u)( dr) =

d
up w1 [ du, Uy dtty 1 up od?u, 1 Ur du, du,  u,
er(ETg L (G- )+ T G - ).

r dr 2 r ' dr? rr o dr > dr r

We finally obtain:

div(FE) é =—<2M:A)%+(2“:A)dzf+(2M+A)(d;:f)2
Syt L2ty
G + LG+ Gy (20)
) b
2 2
AL dd:; ;(%)de:;
+ (633 0 d;f? b 56 ax)(try d;fg

Then, using the above expression and the equilibrium equation Eq. , an approximated numerical solution
could be obtained.

5. Conclusion

In this short technical note, after a brief review of the general hyperelasticity framework and the detail of the
derivation of the weak form, the theory was applied to a the case of the mechanical response of an artery modelled
under pressure loading. This can be helpful to verify numerical solutions with finite elements, in the same spirit
as manufactured solutions [B]. This is a first step towards semi-analytical solutions with active constitutive laws
such as presented in [10].

Appendix A. Computations using the first Piola-Kirchhoff stress tensor

Appendiz A.1. Boundary conditions

A pressure peyt is imposed on I'y, where & = r.é;.:

Hﬁ(.’f) = Pext> (Al)

13



On I';, where & = 7;€,., we apply either:
() = —pint7 (A.2)

or

Uy (i) = UingTl, (A.3)
where piye and uy, are fixed internal pressure and displacement, and 7 normal vector pointing outward to the
boundary, which is either €. for I, or —e, for I';.

Appendiz A.2. Equilibrium
We start from

OFX 1
N N 87“11 + ;(qu —F3y)
div(IT) = div(FXZ) = [ (A.4)
0
and compute second Piola-Kirchhoff tensor as follows:
oW _ 0 ru _ O(Crr, — d) _ _
» =222 _,cC 1:2—{715 C fd]f c =, 85 —Y ot = - pet
50 P 5G Lz (1(C) p =56 p pl—p
1
Tu 0 0
(1+—=)?
4 dr
Cc = 1
0 T, 0
14+ =
(+2)
0 0 1
p
m= du, 0 0
(1+—=)?
dr P
= 0 p——rr 0
(1+—)2
0 0 H—p
in order to obtain: 4
1+ =) - — 0 0
1+—--)
FX = 0 p(ig Uy P 0
T+
0 0 H =P,

dFZn, L FS,) - Fi) = d’u, N d’u, 1 dp_ 1 1 dur  ur 1 1 (A5)

dr r 11 22) = # dr2 p dr?2 du, \ 2 dr du, r B dr r p du, 1 Ur ’

14 14 —= 1+ ==y @Q+4+-—)
dr dr dr T

It results from Equilibrium equation Eq. combined with Egs. (A.4) and (A.5):

2, 1 . . 1 1
P d*u, dp M(duv ”) P —0 (A6)

L dur 2| w2 ar Ly G R B
+dr d'f‘

)

This equation will give the differential equation of u,., as a function of hydrostatic pressure p. Let us finally take
the result of the fundamental principle of statics given by Eq. (10):

d?u,
dr2 +1 1 _ 1 _d£ 1 _ K &_dur _ d?u,
b 1+dur 2y 1+ﬂ 1+dur drlerur_r r dr dr?
dr r dr dr
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Appendix B. A few lines of Python
We provide here a Python script for the numerical application.

Listing 1: ro po

import matplotlib.pyplot as plt
import math

import numpy as np

from pylab import x*

# Il s’agit de determiner des wvaleurs numériques approchées des constantes ro et po
# Ceci permettant ensuite de calculer en tout point du domaine
# le déplacement, la pression hydrostatique,

# et d’autres paramétres tels que les contraintes principales,
# contrainte de Von Mises, déformation ...

# ——— Paramétres (unité SI)

ri = 1.93e—3 # en m. Rayon interne du cylindre parfait

re = 2.25e—3 # rayon externe

Ri = rixri

Re = rexre

rl = 1.99e-3 # points de calcul du modele numerique

r2 = 2.06e—3

r3 = 2.12e-3

rd = 2.19e-3

mu = 27.9e3 # en Pa.

# En realite, cette waleur de 27.9kPa
# correspond a une donnee pour [ ’intima, et non la media

# Conditions de bords en pression.

# on etudie une difference de pression : 100—80 = 20 mmHg
p-int = 2.666e3 #13.33e3 = 100 mmHg

p-ext = 0 #10.664e3 = 80 mmHg

# —— Fonction pour determiner ro —— (Phi(ro) = 0)
def Phi(x): #tq Phi(ro)=0

terme-mu = — mux( (Ri/(Ri+x*%2)) — (Re/(Retx*%2)) );

terme_mul2 = (mu/2)*( (2*Ri*Ri 4+ x**2x(Ritx*%2) )/(Ri*x(Rifx*%2))
— (2xRexRe + x#x2x(Retx*x%2))/(Rex(Retx*x%x2)) );

terme_ln = mux log( sqrt ( (Rex(Ri+x=*x2))/(Ri*x(Retx*%x2)) ) );
return( — p-int — p_ext + terme_mu + terme_-mul2 4+ terme_ln);

# Fonction dichotomie pour trouver le zero d’une fonction f
def dicho(f,a,b,prec):

while b—a>prec:

c = (atb)/2

if f(a)xf(c) <= 0:
b =c

else:
a = c

return a

# Determination des constantes —ro— et —po—

ro = dicho (Phi,0,0.1,1e—15) #attention, ro est une constante en m

Ro = rox*x*2

po = mux(Re/(Re+Ro)) — (mu/2)*(2xRe**2 + Rox(Ret+Ro)) /(Rex(Ret+Ro))

— muxlog( sqrt(Ret+Ro)/re ) + p_ext

alpha= —mux(Ri/(Ri+Ro)) + (mu/2)x(2*xRi*x*2 + Ro*(Ri+Ro)) /(Rix*(Ri+Ro))
+ muxlog( sqrt(Ri+Ro)/ri ) + po # wverification : alpha = pint
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# graphe permettant de situer ro, avec Phi(ro)=0
plt.figure (1)

x_def = np.linspace(—0.4,0.4,500)
y-def = [ Phi(i) for i in x_def]
plt.plot(x_def, y_def, marker="+4")
#plt.zlim(—0.1,0.1)

#plt . ylim (—10000,10000)

plt.title ("Phi(x)_|_Phi(ro)_=_0")
plt.legend ()

xlabel (7x7)

ylabel (?Phi”)

plt.grid (True)

plt.show ()

#

# Determination du champ de déplacement, visualisation

def u_r(r): #attention, r en m, donc u_-r en m
return( sqrt(r*x2 + ro*x2) — r)

plt.figure (2)

plt.grid (True)

x_-def = np.linspace(ri*le3,rex1e3,10000)
y-def = [ u_r(i*le—3)*1le3 for i in x_def]
plt.plot(x_-def, y_def, label = ”20_mmHg”)

x = np.array ([1.93,1.99,2.06,2.12,2.19,2.25])
#[rixle3,rixle3,r2x1e3,r3x1e3,r4{x1e3,rexled]
y = np.array ([0.484669,0.476807,0.469517,0.462759,0.456496,0.450694])
plt.plot(x, y, ’'ro’)

plt.xlim (1.9,2.3)

plt.title (”Displacement._u_r(r)”)

plt.legend ()

xlabel (7 r.(mm)”)

ylabel ("u.(mm)”)

plt.grid (True)

plt .show ()

#

# Determination de la pression hydrostatique, visualisation , kPa

def p_r(r):
p = mu % (2xr*x4d + ro**x2x(r**%2+r0o*x%2))/(2xr*%2%(r*xk24r10%*%2))
4+ mu * log( sqrt(r*+*24+ro**2)/r) + po
return(p)

plt.figure (3)

plt.grid (True)

x_-def = np.linspace(rixle3,rex1e3,10000)
y-def = [ (p-r(ixle—3))xle—3 for i in x_def]
plt.plot(x_def, y_def, label = ”20_mmHg”)

x2 = np.array ([1.93,1.99,2.06,2.12,2.19,2.25])
y2 = np.array ([6.2,5.9,5.8,5.8,5.7,5.6])
plt.plot(x2, y2, ’ro’)

plt . xlim (1.9,2.3)

plt.title (" Hydrostatic_Pressure_(kPa)”)
plt.legend (loc = ’best’)

xlabel (7 r.(mm)”

ylabel (?p_r_(kPa)”)

plt .show ()

#

# Determination des contraintes, principales et Von Mises, wvisualisation

def sigma_rr(r):
lambd.r2 = rx*x2/(r**x2+ro*%2) #lambda_-r au carré
return( muxlambd_r2 — p_r(r) )

def sigma_tt(r):
lambd_t2 = 1 + ro**2/r**2 #lambda_theta au carré
return( muxlambd_t2 — p_r(r) )

def sigma_zz(r):
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return( mu — p_r(r) )

def sigma_VM(r):
return ( 1/(sqrt(2))* sqrt( (sigma_rr(r)—sigma_tt(r))*=2
+ (sigma_tt(r)—sigma_zz(r))*x2 + (sigma_zz(r)—sigma_rr(r))**x2 ) )

# Contrainte radiale Sigma-rr (Principal radial stress)
plt.figure (4)

#plt.subplot (121)

plt.grid (True)

x_-def = np.linspace(ri*le3,re*x1e3,1000)

y-def = [ —sigma_rr(ixle—3)xle—3 for i in x_def]
#y3_def = [ sigma_-tt(ixle—3) for i in z_def]

#y4_def = [ sigma_zz(ixle—3) for i in z_def]

plt.plot(x_def, y_def, label = ”Analytical_S117)
#plt.plot(z_def, y3_-def, label = "sigma_tt”)
#plt.plot(z_def, y4-def, label = "sigma_zz”)

plt.xlim(ri*1e3—0.05,re*x1e34+0.05)

x = np.array ([1.93,1.99,2.06,2.12,2.19,2.25])

# numerical model

y = np.array ([0.00252897e3,0.00205152e3,0.00148911e3,0.000959144e3,0.000459518e3,0.0000857227e3])
#

plt.plot(x, y, ’'ro’, label =”Numerical .S11")

plt.title (”Principal_Radial_Stress_(kPa)”)

plt.legend (loc = ’best’) #met la legende au meilleur endroit
xlabel (7 r.(mm)”)

ylabel (”sigma_11.(kPa)”)

plt.show ()

Contrainte principale selon theta

plt. figure (4)

plt.subplot (122)

plt.grid(True)

z_def = np.linspace(rixle3,rexle3,1000)
y3_def = [ sigma_tt(ixle—38) for i in z_def]
plt.plot(z_def, y3-def, label = "sigma-tt”)
#plt.zlim (rix1e3—0.05,rex1e3+0.05)
#plt.ylim (sigma_rr(ri)—1000,sigma_-zz(re)+1000)
plt.title (”stress (r)”)

plt.legend(loc = ’best’)

zlabel ("r (mm)”)

ylabel (”sigma_tt (Pa)”)

plt.show()

IR IR IR IR IR IR IR IR IR

i

Affichage contrainte Von Mises en MPa
plt.figure (5)

plt.grid (True)

x_-def = np.linspace(ri*le3,re*x1e3,1000)

yb5-def = [ (sigma_-VM(ixle—3))xle—3 for i in x_def]
plt.plot(x_-def, y5_-def, label = ”20_mmHg")
plt.xlim (1.9,2.27)

x = np.array ([1.93,1.99,2.06,2.12,2.19,2.25])

# numerical model

y = np.array ([0.0282709e3,0.0267656e3,0.0253366e3,0.0240268¢e3,0.0228226e3,0.0216665e3])
#

plt.plot(x, y, ’'ro’)

plt.title (?”Von_Mises_Stress._(kPa)”)

plt.legend (loc = ’best’)

xlabel (7 r.(mm)”)

ylabel (”sigma_-VM. (kPa)”)

plt.show ()
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