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Abstract

The concept of unprejudiced beliefs equilibrium is simple: out-of-equilibrium

beliefs should be consistent with the principle that multiple deviations are in-

finitely less likely than single deviations. Our questions are: does there always

exist such an equilibrium and what can be done if there are multiple such equi-

libria?

To select a unique equilibrium, this notion is usually coupled with the intu-

itive criterion. The simultaneous usage of these concepts is ad hoc, unjustified,

and again might eliminate all the equilibria.

We show that coupling these notions is legitimate, as both are implied by

strategic stability (Kohlberg and Mertens (1986)), hence a desired equilibrium

always exists. The intuitive criterion is trivially implied by stability. We show

that in generic multi-sender signaling games stable outcomes can be supported

with unprejudiced beliefs. It follows by forward induction that stable sets con-

tain an equilibrium which is unprejudiced and intuitive at the same time.

In many applications where pooling is an issue, the senders have only two

possible types. Our result offers a simple tool for analyzing games where the

senders can have arbitrarily (but finitely) many types.
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ward induction
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1 Introduction

It is well known that in extensive form games restricting the out-of-equilibrium be-

liefs can eliminate equilibria which are not sensible. In this paper we investigate the

usage of the extremely simple and powerful restriction of Bagwell and Ramey (1991),

dubbed unprejudiced beliefs, in signaling games with multiple senders. In several

applications, see e.g., Bagwell and Ramey (1991), Bester and Demuth (2015), Schultz

(1996), (1999), and Hartman-Glaser and Hébert (2019), this restriction is used to-

gether with versions of the intuitive criterion (see Cho and Kreps (1987)), so as to

be able to eliminate (or to justify) undesirable pooling, yet unprejudiced equilibria.1

Some of these papers report the non-existence of pure equilibrium outcomes which

can be supported both by unprejudiced and by intuitive beliefs. Unprejudiced beliefs

and the intuitive criterion are seemingly unrelated concepts. Hence, their simultane-

ous usage, even though successful and frequent, seems to be ad hoc, unjustified and

can yield to eliminate all the (pure) equilibria. Moreover, there can be undesirable

equilibrium outcomes which can be supported by both types of beliefs but cannot be

supported with a belief which is unprejudiced and intuitive at the same time (see our

example in section 1.4).

Our question is: is it legitimate to couple these concepts? Does there always exist

an equilibrium satisfying both of these concepts? Our answer and main contribution

is: yes, in the sense that both are implied by strategic stability (see Kohlberg and

Mertens (1986)). More precisely, a strategically stable set contains an equilibrium

which is unprejudiced and intuitive (or D1 etc.).

A strategically stable set of equilibria (henceforth: stable) always exists, exhibits

desirable properties and narrows down the set of equilibria. Although the conse-

quences of stability are well understood when there is a single-sender (see Banks and

Sobel (1987), Cho and Kreps (1987), and Cho and Sobel (1990)), the properties of

stable outcomes of multi-sender games have not yet been analyzed.2 It is obvious, by

1Other applications of unprejudiced beliefs where pooling is not an issue can be found for example
in Emons and Fluet (2009) and in Zhang (2020).

2An exception is Honryo (2018), where the full power of stability is used in a multi-sender setting
because unprejudiced beliefs have no bite on the multiple equilibria.
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the application of forward induction, that the multi-sender versions of the intuitive

criterion are also implied by stability. We show that stable equilibrium outcomes have

the following additional desirable property. They can always be maintained with un-

prejudiced beliefs. It follows that the simultaneous usage of unprejudiced beliefs and

the intuitive criterion is justified. The existence of an equilibrium (possibly in mixed

strategies) satisfying both of these concepts is also ensured.

First, in sections 1.1, 1.2, 1.3 we explain by an example with economic content:

the main difference between the structures of the out-of-equilibrium events in the

single and the multiple sender case, what unprejudiced beliefs are, and the gist which

is common in all the applications mentioned above. In this example we concentrate

on pure equilibria, just as in the papers mentioned above. Pooling equilibria are

eliminated solely by a version of the intuitive criterion, and then unprejudiced beliefs

select a unique equilibrium among the separating equilibria. This method is successful,

just because the senders are assumed to have only two types, exactly as in all the

papers mentioned above.

Second, to provide further motivation and to show that something new can be

done using our result, in section 1.4 we extend our previous example and allow for

the possibility of a third type of the senders. We show that there is an undesirable

equilibrium outcome which can be supported by unprejudiced beliefs and also by

beliefs satisfying various versions of the intuitive criterion. However, none of these

intuitive beliefs are unprejudiced. Hence, the outcome could only be eliminated by

requiring that the supporting beliefs are unprejudiced and intuitive at the same time.

Doing this elimination safely, i.e. without risking to lose the existence of a desirable

equilibrium, is extremely subtle. In short, one must use our result and the full power

of Proposition 6 in Kohlberg and Mertens (1986) (we discuss this in detail in section

1.4). It is not surprising that in the applications listed above the senders cannot

have more than two types. Eliminating an equilibrium outcome solely on the ground

of some versions of the intuitive criterion xor solely on the ground of unprejudiced

beliefs is something that many authors have done already. Contrary to other scholars,

we still believe that doing so is unjustified and risky without knowing our result.
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But eliminating an equilibrium outcome because it cannot be supported with beliefs

which are unprejudiced and intuitive at the same time has never been done. Yet,

using our result, this can be safely done without risking the non-existence of a desired

equilibrium.

Summing up, our result ensures that one can always find an equilibrium that can

be supported by intuitive and unprejudiced beliefs and provides a safe and effective

tool for analyzing and solving models having more than two types.

We conclude the introduction with section 1.5 in which we restate our main con-

tribution and describe the structure of the paper.

1.1 The Single Sender Case

To understand the notion of unprejudiced beliefs and the main differences between

the single- and the multi-sender case, consider a variant of the job market signaling

model of Spence (1973) similar to that of in Cho and Kreps (1987). Let us start

with a single worker whose marginal product t can be 0 (low) or 1 (high), with equal

probabilities, and t is known to the worker but unknown to the firm. The worker

chooses a level of education m, to signal his type, which changes his marginal product

to 4tm. The firm, after observing m, forms a belief about the worker’s type t and pays

a wage equal to his expected marginal product. On the equilibrium path beliefs must

be formed using Bayes rule, out-of-equilibrium the beliefs can be arbitrary. Education

is costly for the worker and its cost is given by (3 − t)m2. Hence, given m and that

the firm’s belief, conditional on m, about t is τ(m)(t), the type t worker’s payoff

is 4m
∑

t tτ(m)(t) − (3 − t)m2. It is well known that if the set of available signals

is sufficiently rich, there is a unique equilibrium outcome that survives a version of

the intuitive criterion (called D1) and that this is the unique stable outcome (see

for example Cho and Sobel (1990)). In this equilibrium outcome the types fully

separate: the low type chooses m = 0, gets 0 wage, and 0 utility. The high type’s

equilibrium signal is the lowest possible signal that the low type does not want to

mimic. This is the signal 4/3, and the high type gets 16/3 wage and 16/9 utility.

The firm’s belief about t is 0 after observing the equilibrium signal 0, and it is 1 after
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the equilibrium signal 4/3. For any unsent, out-of-equilibrium signal m ∈ (0, 4/3),

the firm believes that the worker is of low type with high enough probability.3 This

is necessary for maintaining the equilibrium. To see this, for example, should the

firm assign 0 probability to the low type after observing the out-of-equilibrium signal

m = 1, the high type can deviate and achieve his first best utility level (given that

the firm knows his type) 2 > 16/9 by sending the signal 1.

1.2 The Multiple Sender Case, Unprejudiced Beliefs

In this section, we argue that in some situations the firm should indeed attach 0

probability to the low type at the unexpected event when observing the signal m = 1.

Assume there is another worker with the same (perfectly, positively correlated) type,

with the same equilibrium behavior as described in the single sender case? Suppose

the firm observes the out-of-equilibrium signal 1 from one of the workers and the

equilibrium signal 4/3 from the other at the same time? Should not the firm infer

that the workers are high type from the fact that one of the workers is sending the

equilibrium signal 4/3 of the high type? This brings us to the concept of unprejudiced

beliefs.

First, we describe the game with two senders which we derive from the game with

a single sender described above. Second, we describe an equilibrium of this game in

which both senders and the receiver behave exactly as in the equilibrium we discussed

in the single sender case. Third, we argue that this equilibrium is not sensible. We

question the plausibility of the out-of-equilibrium beliefs with which this equilibrium

can be maintained. We argue that the justification of these beliefs is too complicated

(or prejudiced). We show that there are other simpler (or unprejudiced) beliefs which

are much easier to justify given the putative equilibrium. However, with these simpler

beliefs this equilibrium cannot be maintained, it falls apart.

Hence, assume that there are two workers, husband and wife, who are assortatively

matched, i.e., their types are perfectly, positively correlated which we denote also by

t ∈ {0, 1}. That is, either both have low types or both have high types. Assume that

3For signals higher than 4/3 the beliefs can be chosen arbitrarily.
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the husband’s preference is the same as described above and it does not depend on the

signal sent by the wife neither it depends on the wage the wife receives. Assume the

same for the wife’s preferences. Further assume that signals are sent simultaneously

and that the firm forms a belief about t and pays each worker his and her own

expected marginal product. Clearly, the firm cannot ever believe that the workers have

different types. The signaling strategy profile, in which both workers signal according

to the equilibrium described above in the single sender case, can be maintained as a

sequential equilibrium outcome. Namely, there is an equilibrium in which the firm

either observes the signal pair (0,0) and concludes that both of them have low type or

observes the signal pair (4/3, 4/3) and concludes that both of them have high type.

Individual deviations from this equilibrium behavior are deterred just as in the single

sender case. Namely, after any out-of-equilibrium signal pair, say for example after (1,

4/3), the firm believes that the workers are of low type with high enough probability

and pays a sufficiently low wage which makes these deviations unattractive.

We do not believe in the plausibility of this equilibrium because we find the out-

of-equilibrium beliefs of the firm rather strange (prejudiced). To demonstrate this,

consider an unilateral deviation and suppose that the high type husband sends the

signal 1 instead of his equilibrium signal 4/3, while, of course, the high type wife

sends her equilibrium signal 4/3. As discussed above in the single sender case, to

deter such a deviation of the husband, the firm must believe that the couple has low

type with positive probability after observing the out-of-equilibrium signal pair (1,

4/3) , where the first coordinate is the signal of the husband.4 We as many others

(see the references above) question the plausibility of such a belief, which is called

prejudiced, as the wife is clearly signaling that their type is high. To recapitulate, the

firm cannot believe that the wife has high type and the husband has low. Types are

perfectly and positively correlated. Clearly, this situation cannot emerge in the single

sender case.

Unprejudiced beliefs, as defined in Bagwell and Ramey (1991), require that the

firm should not attach positive probability to double deviations when an out-of-

4Consistency of such a belief is demonstrated in the example right after Proposition 1.
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equilibrium event can be explained by a single deviation.5 Given the equilibrium

above and given the out-of-equilibrium signal pair (1, 4/3), such a simpler, unpreju-

diced explanation is that the couple is of high type and only the husband was devi-

ating. Believing the couple is of low type is prejudiced, more complicated, and less

likely. For such a prejudiced belief, the firm must assume that both workers were

deviating at the same time, i.e. they are low type, the husband has sent the signal 1

instead of his equilibrium signal 0 and the wife has sent the signal 4/3 instead of her

equilibrium signal 0. This equilibrium can only be maintained with prejudiced beliefs

and cannot be maintained by simple, unprejudiced beliefs. Hence, the restriction to

unprejudiced beliefs eliminates this equilibrium.

1.3 Selecting a Unique Equilibrium: the Two-type Case

In our example, if the signal space is sufficiently rich, the unique pure strategy stable

equilibrium outcome is the same as the unique pure equilibrium outcome which sur-

vives a version of the intuitive criterion and where the beliefs are unprejudiced. This

outcome is the efficient one: low types are sending the signal 0 and high types are

sending the signal 1 and achieve their first best utility level (conditional on that their

type is known to the firm).

Notice that just as in the single sender case, solely a version of the intuitive

criterion (a multi-sender version of D1) eliminates all the pooling equilibria. We give

a formal definition of an even stronger criterion in the next subsection. For now, it

is enough if one thinks of a pooling equilibrium in which both players pool in pure

strategies and considers a deviation of a single player. Then the intuitive criterion

or D1, as defined and applied in the single sender case, directly applies in the very

same way here as well. This is because the signal of the other player does not change

with his or her type, hence the incentives of the different types of a sender are clearly

comparable.

5In their recent paper, Milgrom and Mollner (2018) introduce a new refinement of the Nash
equilibrium, called test-set equilibrium, which is strongly related to the notion of unprejudiced beliefs.
As Milgrom and Mollner (2018) state: the concept “... formalizes the idea that players contemplate
only deviations from equilibrium play in which a single competitor plays a non-equilibrium best
response.”
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Now we show how unprejudiced beliefs select a unique equilibrium among the

separating equilibria. Assume w.l.o.g. that the husband separates. Then the low

type wife must send the signal 0, otherwise deviating to 0, by unprejudiced beliefs,

she must get her first best outcome (since the firm must believe that their type is low

given the low type husband’s separating signal). Also, for the same reason, the high

type wife must send the signal 1. Given that the wife also separates the husband’s

separating equilibrium signals must be also 0 and 1. To recapitulate, clearly, if one

sender separates the other must choose his or her first best given that the firm knows

his or her type (given that the spouse separates, unprejudiced belief dictates that the

firm concentrates its belief on the true type). Hence, in the unique equilibrium low

types must send the signal 0 and high type must send the signal 1.6 Any deviation

to a non-equilibrium signal is deterred by the unique unprejudiced belief formed by

using the equilibrium signal of the other player who fully separates and sends his

or her equilibrium signal. Deviations to the equilibrium signal of another type are

deterred by for example the lowest possible unprejudiced belief which is the belief

that the senders’ type is 0 with probability 1.

1.4 An Example with Three Types

Consider the same game as in section 1.2 with the difference that now the senders

may have 3 different types, t = 0, 1 and also 1.5, with equal probabilities. Let us also

restrict the signal space of both senders to [0, 2]. We claim that the following partially

pooling equilibrium outcome can be supported with a version of intuitive beliefs and

also with unprejudiced beliefs, however, it cannot be supported with beliefs which are

intuitive and unprejudiced at the same time.

The equilibrium outcome is as follows: Type 0 senders send the signal 0, type 1

and type 1.5 senders pool by sending the signal 1, hence separate from type 0 senders.

The firm uses Bayes rule to calculate its belief τ on the equilibrium path and payments

6The situation is a bit different when education does not increase the marginal product. In that
case the first best education levels are 0 for both types. In the unique equilibrium selected, the low
types now choose 0 education level and the high types choose the lowest level different from 0. Then
deviating to 0 for the high types can be deterred by the, in this case, unprejudiced belief that the
senders are of low type.

8



are made accordingly. Type 0 senders obtain 0 utility, type 1 senders obtain 3 utility,

and type 1.5 senders obtain a utility of 3.5. For example, for any out-of-equilibrium

signal pair, choosing the lowest unprejudiced belief supports the given outcome as an

equilibrium.

1.4.1 Unprejudiced Beliefs are not Intuitive

Notice that in any unprejudiced beliefs supporting this outcome, the firm must believe

with positive probability that the type of the senders is 1 after the out-of-equilibrium

signal pair (2,1), i.e. τ(2, 1)(1) > 0. Clearly, by unprejudiced beliefs it must be that

τ(2, 1)(0) = 0. Furthermore, if we had that τ(2, 1)(1) = 0 then τ(2, 1)(1.5) = 1 in

which case type 1.5 husband finds it profitable to deviate to signal 2 and obtains

6 = 4 · 2 · 1.5 − (3 − 1.5) · 22 > 4 · 1 · 1.25 − (3 − 1.5) · 12 = 3.5. However, such a

belief does not survive the multi-sender version of the D1 criterion. We can simply

compare the incentives of type 1 and type 1.5 husbands, as those types of the wife

pool. Clearly, whenever type 1 husband is weakly better off by sending signal 2

relative to his equilibrium payoff, type 1.5 husband always strictly prefers to send the

signal 2 rather than his equilibrium signal. Hence, there are no unprejudiced beliefs

which are intuitive and support the outcome at the same time.

1.4.2 An Intuitive but Prejudiced Belief

Yet, while believing that the type of senders is 0 after the signal pair (2,1) is clearly

prejudiced, it does satisfy the multi-sender version of the D1 criterion and deters type

1.5 husband from deviating and sending the signal 2. To see this, we invoke and tailor

to our games the definition of Never a Weak Best Response (NWBR) criterion used

in the single sender case in Cho and Kreps (1986).7

An equilibrium outcome together with supporting beliefs τ (i.e. an equilibrium) is

called intuitive if for all out-of equilibrium signal pair (mH ,mW ), where at least one

of the signals is sent in equilibrium, τ(mH ,mW )(t) = 0 if either mH or mW is never

7We could have come up with definitions for the intuitive criterion or for D1 and D2 in an expense
of extra notation. We know that some scholars do not think that the NWBR criterion is intuitive,
we used this here only for simplicity.
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a weak best response for the husband or for the wife of type t.8

It is easy to see, using Proposition 6 in Kohlberg and Mertens (1986), that any

stable outcome is an intuitive equilibrium outcome. Of course, not all intuitive equi-

librium outcomes are stable as we will see it in the next subsection.

Our equilibrium is intuitive. For example, the firm can believe after the out-of-

equilibrium signal pair (2,1) that the type of the senders is 0, i.e. we can choose

τ(2, 1)(0) = 1. Indeed, we can set τH(2, 0)(1.5) = 1, τW (0, 1)(1) = 3/4, τW (0, 1)(0) =

1/4, and one can set the rest of the beliefs arbitrarily for both τH and τW while

supporting the outcome. Indeed, type 0 husband and type 0 wife both expect 0 by

sending the signal 2 and the signal 1 under τH and τW , respectively, and there are

no profitable deviations. One can similarly justify the belief concentrated on type 0

after any out-of-equilibrium signal pair.

1.4.3 Eliminating the Putative Equilibrium

Can we safely eliminate this equilibrium by the fact that the equilibrium cannot be

supported with beliefs which are both unprejudiced and intuitive at the same time?

It is still not obvious that the above, partially pooling equilibrium outcome is not a

stable outcome. The subtle point is the following. It is not trivial to rule out the

possibility that stable sets contain some unprejudiced equilibria and some others which

are intuitive but do not contain an equilibrium which is unprejudiced and intuitive at

the same time. We argue now that this indeed cannot be the case. The trick is to apply

Proposition 6 in Kohlberg and Mertens (1986). It states that a stable set contains a

stable set of the game obtained by the deletion of all the strategies which are never a

weak best responses. In the resulting set all the equilibria are intuitive. Applying our

theorem to this smaller stable set, we can find an unprejudiced equilibrium which is

also intuitive. Notice, that we used the full force of forward induction of Proposition

6 in that after deleting NWBR strategies we still find a stable set. It follows that

8I.e. either there is no τH , supporting the outcome, such that type t of husband expects exactly
his equilibrium payoff when sending mH or there is no τW , supporting the outcome, such that type
t of wife expects exactly her equilibrium payoff when sending mW . In the case this criterion can be
satisfied only with τ(mH ,mW )(t) = 0 for all t for some (mH ,mW ), we also allow the equilibrium
outcome to pass our test if no choice of τ(mH ,mW ) induces profitable deviation from the outcome.
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eliminating an equilibrium outcome with the combination of these concepts is safe,

and that in any stable set one can find such a desired equilibrium. The partially

pooling equilibrium outcome can be then eliminated by simply observing that no

unprejudiced equilibrium is intuitive. On the one hand, there is no need to test and

compare the incentives of types which are outside the pool because the belief set at

(2,1) is irrelevant for the incentives of these types. On the other hand, testing and

comparing types from the pool is just as simple as in the single sender case.

After elimination of the partially pooling equilibria, one can select again the effi-

cient, non distorted equilibrium which is the unique pure strategy equilibrium with

unprejudiced and intuitive beliefs. The strategies of types 0 and 1 are just like in the

two type case, and types 1.5 send the signal 2 which is their first best signal given that

the receiver knows their type as required by unprejudiced beliefs. Any deviation to a

non-equilibrium signal is deterred by the unique unprejudiced belief formed by using

the equilibrium signal of the other player who fully separates and sends his or her

equilibrium signal. Deviations to the equilibrium signal of another type are deterred

by the lowest possible unprejudiced belief (τ(2, 1)(1) = τ(1, 2)(1) = 1, τ(0, 1)(0) =

τ(1, 0)(0) = 1, τ(2, 0)(0) = τ(0, 2)(0) = 1).

1.5 Our Main Contribution

Neither consistency nor the intuitive criterion nor forward induction or properness

necessarily imply unprejudiced beliefs, but we show that stability does.

The converse is not true. First, in pooling equilibria any belief is unprejudiced.

Second, these pooling outcomes are not stable in our example or in the applications

mentioned above, once the signal space is sufficiently rich. This is exactly the reason

why in the applications cited above unprejudiced beliefs have to be coupled with a

version of the intuitive criterion, i.e., to be able to eliminate pooling equilibria.

By showing that stable outcomes can be supported with unprejudiced beliefs and

observing that stable outcomes satisfy the various versions of the intuitive criterion,

we can justify the coupling of these concepts. It follows that instead of working with

the complicated machinery of strategic stability one can reach sharp predictions in
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games by the safe and simultaneous application of these simple concepts, even if there

are more than two types of the senders. We repeat, in our example with three types

above one can select again the efficient, non distorted equilibrium which is the unique

pure strategy equilibrium with unprejudiced and intuitive beliefs. The strategies of

types 0 and 1 are just like in the two type case, and types 1.5 send the signal 2

which is their first best signal given that the receiver knows their type as required by

unprejudiced beliefs.

In our example, types are perfectly correlated. If the prior probability that the

type of the husband is low or the type of the wife is high and vice versa is positive, then

consistency already implies unprejudiced beliefs. We prove (see our Proposition 1)

that any sequential equilibrium has unprejudiced beliefs if the prior has full support.

For general supports, when some type profiles have 0 probability under the prior this

is not the case. Sequential or even proper equilibria well can have prejudiced beliefs.

In our Theorem 1, we show that in generic multi-sender signaling games every

stable outcome can be supported by unprejudiced beliefs.9

The paper is structured as follows. In Section 2, we define finite multi-sender

signaling games, sequential equilibria, and its refinements: unprejudiced sequential

equilibrium and stable sets of equilibria, and we also state Proposition 1 and Theorem

1. In Section 3, we provide the proof of Theorem 1. In section 4 we conclude and

give a hint how and to what extent our result can be directly generalized for arbitrary

extensive form games with perfect recall and generic payoffs.

9Although our example is not generic, we find it important to highlight (as suggested by Hari
Govindan) that there are generic games possessing (even proper) equilibria which can be maintained
only with prejudiced beliefs. We provide such an example in Section 5.2 of the Online Appendix.
Our example in the introduction is not generic in the sense that the husband’s payoff does not depend
on the education level of the wife and vice versa. The class of games investigated in Bagwell and
Ramey (1991) is not generic either because the entrant’s payoff does not depend on the first period
prices. But these features do not necessarily imply that our theorem does not hold for these games.
In fact, we were unable to find a signalling game for which our Theorem does not hold. Nevertheless,
our proof hinges on the qualification that the game under consideration satisfies a given property
(see Definition 4 in the proof of Theorem 1) which holds for and open and dense set of games (see
footnote 15). The reader is referred to Section 5.1 of the Online Appendix for further discussion of
this issue.
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2 The Games and the Solution Concepts

There are three players: two senders S = {1, 2}, and a receiver.10 A typical sender is

denoted by i ∈ S and the other sender by −i. First, senders learn their private type

ti ∈ Ti which is not known by the receiver nor by the other sender. Senders’ types

t = (t1, t2) are drawn from some probability distribution π ∈ ∆T = ∆(T1 × T2).11

π(t) denotes the probability that the realized type profile is t, and π(t−i|ti) is the

conditional probability of t−i given ti. Second, each sender i simultaneously sends a

signal mi to the receiver. The set of possible signals for sender i is Mi, and we denote

by m an element of M1×M2 = M. Finally, the receiver responds to the senders’ signals

by taking an action a from a set A. All the sets: M1,M2, T1, T2 and A are finite. The

players have von Neumann-Morgenstern utility functions defined over type profiles,

signal profiles and actions of the receiver. Sender i’s payoff function is ui(t,m, a),

and the receiver’s payoff function is v(t,m, a). A behavioral strategy for sender i is

σi = (σi(·|ti))ti∈Ti , where for each ti, σi(·|ti) ∈ ∆Mi. A behavioral strategy for the

receiver is e = (e(·|m))m∈M , where for each m, e(·|m) ∈ ∆A. The expected utility of

sender ti of choosing mi is:

ui(ti,mi, σ−i, e)
.
=

∑
t−i∈T−i

π(t−i|ti)
∑

m−i∈M−i

∑
a∈A

ui(ti, t−i,mi,m−i, a)σ−i(m−i|t−i)e(a|mi,m−i).

The receiver’s beliefs about the types of the senders after signal profiles is a col-

lection µ = (µ(·|m))m∈M such that µ(·|m) ∈ ∆T for all m ∈ M . The receiver’s pure

best response correspondence is ê(µ,m)
.
= arg maxa∈A

∑T
t=1 v(t,m, a)µ(t|m).

(σ, e) is a sequential equilibrium (SE) if there is a µ such that:

(1) sequential rationality: (a) for all m ∈ M : e(·|m) ∈ ∆ê(µ,m), and (b) for all

i, ti : σi(m
′
i|ti) > 0 implies m′i ∈ arg maxmi∈Mi

ui(ti,mi, σ−i, e);

(2) consistency: There is a justifying sequence (σn)n∈N such that σni (mi|ti) > 0 for

all n, i, ti ∈ Ti,mi ∈ Mi converging to σ, where µn, which is calculated according to

Bayes’ rule using σn, converges to µ.

10All of our results extend to games with more than two senders.
11∆X denotes the set of probability distributions over any finite set X.
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Definition 1. Given σ, a message pair m for which there is an i, ti such that σi(mi|ti) >

0 is called important. µ is unprejudiced given σ if for every important m we have

that µ(t|m) > 0 only if there is an i such that σi(mi|ti) > 0. An SE with unprejudiced

µ is called an USE.12

Proposition 1. If π has full support then every SE is a USE.

Proof. Consider a σ, which is part of an SE, and the justifying sequence σn. Since

for equilibrium message pairs the proof is trivial, consider an important signal pair

(x,m2), where σ1(x|t1) = 0 for all t1 ∈ T1. The roles of the players can be ex-

changed. Define T2(m2) = {t′2 ∈ T2|σ2(m2|t′2) > 0} and T1(x) = {t1 ∈ T1|@t′1 ∈

T1 : limn→∞
σn
1 (x|t1)

σn
1 (x|t′1)

= 0} sets which are not empty, as the game is finite. Since

π(t) > 0 for all t ∈ T1 × T2, we have that limn→∞ µ
n(t|x,m2) > 0 if and only if

t ∈ T1(x)× T2(m2).

However, USE is a powerful refinement of SE when π does not have full support. To

see this, we recall the structure driving our example in the introduction and show that

a prejudiced belief well may be consistent. Suppose that Mi = {l, h, x} and Ti = {l, h}

for i = 1, 2, and that types are perfectly correlated, i.e., π(l, h) = π(h, l) = 0. Let

us write l and h for the only possible type profiles (l, l) and (h, h), respectively.

Suppose that payoffs are such that the following strategy profile σ is part of an SE:

σi(ti|ti) = 1 for i = 1, 2. Hence, only signal pairs (l, l) and (h, h) are on the equilibrium

path (see the example in the introduction). USE requires that µ(l|x, l) = 1. We

show that µ(h|x, l) > 0 is possible in an SE. Consider the justifying sequence σn

converging to σ for which σn1 (x|h) = σn2 (l|h) = ε and σn1 (x|l) = ε3 and ε = 1/n.

Simple calculation shows that limn→∞ µ
n(h|x, l) = 1. Proposition 1 fails now because

T1(x)× T2(l) = {(h, l)} but π(h, l) = 0. 13

12Our definition is weaker then that of Bagwell and Ramey (1991) in which µ(t|m) > 0 if and only
if there is an i such that σi(mi|ti) > 0 for all important m. This extra requirement, which they
call open-mindedness, does not make any difference in generic games since µ(t|m) > 0 is allowed to
be arbitrarily small. In fact, it directly follows from the proof of Theorem 1 that generically open-
mindedness is also implied by stability. Proposition 1 also remains to be true with this stronger
concept of USE for generic games. We decided, however, for the sake of clarity, simplicity and
brevity to work here with this weaker but simpler concept.

13Even though consistency allows for prejudiced beliefs it still restricts the set of possible beliefs,
as it rules out for example that µ(h|x, l) > 0 and µ(l|x, h) > 0 hold at the same time.
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To state our main result, we define now the notion of stable sets of equilibria

à la Kohlberg and Mertens (1986) for multi-sender signaling games. Consider the

(reduced) normal form Γ of a multi-sender signaling game. Let σ = (σ1, σ2), where

σi is a completely mixed-strategy of sender i ∈ S.14 For δ > 0, consider the set of all

normal form games Γ′ that have the same strategy space as Γ and for which for all

i ∈ S there exists δi ∈ (0, δ), such that if some strategy profile (σ∗1, σ
∗
2, e
∗) is played

in Γ′, then the payoffs are the same as when each sender i ∈ S plays (1− δi)σ∗i + δiσi

and the receiver plays e∗ in Γ. A game in this set is called a (σ, δ) perturbation of Γ.

Definition 2. A set of Nash equilibria of Γ is stable if it is minimal with respect to

the following property: N is a closed set of Nash equilibria of Γ satisfying: for each

ε > 0, there is a δ > 0 such that for any completely mixed σ the (σ, δ) perturbations

of Γ have a Nash equilibrium ε-close to N .

A strategy profile induces a distribution over T×M×A which is called an outcome.

It is well known that generic extensive form games have a stable outcome, namely a

stable set in which all strategy profile induces the same outcome.

Theorem 1. Generically, any stable outcome is a USE outcome.1516

3 Proof of Theorem 1

Before describing the structure of the proof, let us set our most important definition.

Definition 3. Fix a completely mixed σ. A Nash equilibrium (σ∗, e∗) is σ−perfect if

for each ε > 0, there is a δ > 0 for which any (σ, δ) perturbation of Γ has a Nash

equilibrium ε-close to (σ∗, e∗).17

14For simplicity, we perturb only the strategies of the senders (just as in the literature of the
single-sender case), as we are interested in the beliefs generated by the stabilization of these trembles.
Abusing notation slightly, we can identify mixed and behavioral strategies.

15A property of multi-sender signaling games with extensive game form G holds generically if
there is an open and dense set D ⊆ RdimG, such that the property holds for all games in D, where
dimG = (|S|+ 1)|T ×M ×A|.

16The stronger statement that all the equilibria in a stable set are USE does not hold. It is easy
to construct an example where a stable set contains equilibria which are prejudiced. We thank Hari
Govindan for pointing this out for us.

17In any game for any completely mixed σ there is a σ−perfect equilibrium of that game. The
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The Structure of the Proof of Theorem 1

Consider a stable outcome and the corresponding stable set which we denote by

(σ∗, E∗), where E∗ is a set of strategies of the receiver which may differ only off the

equilibrium path. Fix any completely mixed σ. First we show that the stable set

contains a σ−perfect equilibrium. Consider the sequence of εk, δk, (σk, ek), (σ∗, e∗k),

which exists by definition of stability, where (σk, ek) is the Nash equilibrium of the

(σ, δk) perturbed game which is εk-close to the stable set, namely to some (σ∗, e∗k),

where e∗k ∈ E∗. It is apparent that (σ∗, e∗), where e∗ = limk→∞ e
∗k, is a σ−perfect

equilibrium. Clearly, for any ε consider the δk for which (σ∗, e∗k) is sufficiently close

to (σ∗, e∗) and to which (σk, ek) is also sufficiently close. Hence, (σk, ek) will be

sufficiently close to (σ∗, e∗).

To complete the proof of Theorem 1 it is now sufficient to show that for any

completely mixed σ, a σ−perfect equilibrium is USE generically. We establish this

result in Lemma 1. This statement may not be true for any game. We show in the

proof of Lemma 1 that if a σ−perfect equilibrium is not an USE then we can locally

increase the support of the outcome of the given equilibrium. But the support of

the Nash equilibrium outcomes are generically locally constant. This motivates the

following definition of genericity.18 Hence, we start by fixing the generic set of games

for which our statements (Lemma 1, hence Theorem 1) hold, i.e. those in which the

support of the Nash equilibrium outcomes are locally constant, and then state and

prove Lemma 1.

proof of this statement goes exactly along the lines of the proof of existence of perfect equilibria and
taking the converging test sequence (which can be arbitrary see e.g. in Selten (1975)) so that each of
its element is induced by the same perturbation σ. Notice that in general the set of equilibria which
are σ−perfect for some σ is a strict subset of the perfect equilibria as defined by Selten (1975). The
reason is that Selten allows the σ to depend on ε. When σ is the product of uniform distributions over
the strategy spaces of the players then σ−perfection is equivalent to uniform perfection as defined
in Hársanyi (1982).

18Further clarification about the role of the genericity assumption can be found in Section 5.1 of
the Online Appendix.
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3.1 The Generic Set of Games

Definition 4. A Nash equilibrium (σ, e) of a game γ is not nice if there is a sequence

of γn such that γn → γ and a sequence of Nash equilibria of the corresponding games

converging to (σ, e) such that supports of the outcomes induced by the Nash equilibria

along the sequence is strictly larger than that of induced by (σ, e). We say that a game

is nice if it does not have a not nice equilibrium. We denote the set of nice games by

D.1920

Claim 1: D is open and dense in RdimG.

Proof of Claim 1: We show that the complement of D is closed and has an

empty interior. Given a converging sequence of games which are not nice, one can

choose a converging sequence of games γ̃n and not nice equilibria (σ̃n, ẽn) which make

the games in the sequence not nice. By upper-hemicontinuity the limit strategy

profile, denote it by (σ, e), is an equilibrium of the limit game, which we denote by

γ. We show that (σ, e) is not nice in γ and makes it not nice relative to V . First,

the support of the outcome of (σ, e) cannot be larger than that of (σ̃n, ẽn) for n large

enough. Then one can choose the converging set of games γn and the corresponding

equilibria (σn, en) as follows. For each γ̃n, (σ̃n, ẽn) choose the nearby game γn and

an equilibrium of this nearby game (σn, en) which induces an outcome with larger

support than (σ̃n, ẽn). Choose γn and (σn, en) so that they converge to γ and (σ, e).

This sequence of games and the corresponding equilibria justify that the limit game

is not nice, because (σ, e) does not induce larger support than (σ̃n, ẽn), while (σn, en)

induces strictly larger supports than (σ̃n, ẽn). Finally, it is easy to see that there

cannot be an open set of games which are not nice since there are only finitely many

possible supports of the outcome distributions.�

19The support of the outcome is a subset of T ×M × A, containing those elements for which the
induced distribution (the outcome) is positive.

20We thank Hari Govindan for suggesting this line of the proof, which significantly shortened and
simplified our original proof and made our statement stronger.
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3.2 Lemma 1: σ−perfection implies USE

Lemma 1. For any game in D and for any completely mixed σ, any σ−perfect equi-

librium (σ∗, e∗) is USE.

Proof of Lemma 1:

The Main Idea of the Proof of Lemma 1

The idea of the proof is as follows. Given a sequence of εk → 0 and the corresponding

sequence of δk, σk, let us denote by σ̄k = maxi,ti,mi|σ∗i (mi|ti)=0 σ
k
i (mi|ti) the largest

voluntary mixing in the equilibrium of the perturbed game on a message which is

not sent by a given type in the original equilibrium. Then, generically it must be

that δk

σ̄k 9 0 (see Claim 2 below). The intuition is that generically the perturbation

σ must be used with strictly positive weight when forming beliefs at the limit. To

put it differently, there can be no important out-of-equilibrium signal pair m where

only the limit of the voluntary mixing of the nearby equilibria determines the out-of-

equilibrium belief.

The Nash equilibria of the perturbed games together with the perturbations consti-

tute a sequence of completely mixed strategies converging to the original equilibrium

which can be considered as a justifying sequence. If δk

σ̄k 9 0, then this justifying

sequence results in an unprejudiced µ. This is because then the probability that any

type of any sender sends any out of equilibrium message converges in the same order

of magnitude (δk) to 0 (cf. the example above with perfectly correlated types, where

this is not true for the given justifying sequence).21 Given this discussion, we only

have to prove that:

21Suppose that there is a sequence of εk, δk, σk such that σk is part of an equilibrium of the (σ, δk)

perturbed game; it is εk-close to σ∗, limk→∞ εk = limk→∞ δk = 0 and limk→∞
δk

σ̄k > 0. Consider
an important signal pair m and a t which must get 0 probability under unprejudiced beliefs, i.e.,
σ∗i (mi|ti) = 0 for i = 1, 2. Consider ((1− δk)σki + δkσi)i∈S as a justifying sequence. Type t can get
extra probability weight (beyond the perturbation) along the sequence only via σ̄k > σki (mi|ti) > 0
for i = 1, 2. On the other hand, by the definition of an important signal pair, there must be a t′

for which there is an i such that σ∗i (mi|t′i) > 0. Along the sequence, such a t′ sends the message m
at least with probability arbitrarily close to δkc, where c = σ∗i (mi|t′i)σ−i(m−i|t′−i) > 0 is a constant
given that the perturbation σ is fixed(!). On the other hand, t sends the message m only at most

with probability (σ̄k + δk)2. Using that limk→∞
δk

σ̄k > 0, one obtains that conditionally on observing
m, t′ is infinitely more likely than t in the limit, hence µ(t|m) = 0, as required by USE.
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Claim 2: Given a σ−perfect equilibrium (σ∗, e∗) of a nice game γ the sequence

of εk and the corresponding δk can be chosen to be so that δk

σ̄k 9 0.

Proof of Claim 2:

The Structure of the Proof of Claim 2

We proceed by contradiction and assume that there is a nice game γ in D such that

for some σ−perfect equilibrium (σ∗, e∗), we must have that δk

σk
i (mi|ti)

→ 0 due to some

mi which is part of some out-of-equilibrium signal profile m = (m1,m2), i.e., some

type ti must send the message mi with relatively high (though vanishing) probability

in the perturbed games. We are going to reach a contradiction by finding another nice

game γ′ in D which admits a variant of (σ∗, e∗) as a Nash equilibrium and show that

the support of its outcome is locally increasing. Namely, we construct a sequence of

games converging to γ′ and a corresponding sequence of equilibria converging to the

variant of (σ∗, e∗) such that in these equilibria of these nearby gamesm will also be sent

with positive probability, whereas in the variant of (σ∗, e∗) it is sent with probability

0, implying that the equilibrium is not nice, hence we reach a contradiction.

We start with a short introduction of some terms and notation, where we identify

the relevant signal-type pairs which will increase the support of the original outcome

locally. Then, although, we could continue and do the proof at once (as outlined

above), we split it into two parts. In the first part, we provide the proof of Claim

2 for a simple case. In this simple case we assume that there is a relevant out-of-

equilibrium signal profile m such that the receiver “knows for sure” that sender i was

deviating. This is the case when mi is never sent under σ∗i . We refer to this case as

“The Deviator is Known”. In this case γ′ can be chosen to be γ, hence the variant

of (σ∗, e∗) is just our original equilibrium (σ∗, e∗). In the second part, we go to the

more complicated case where “The Deviator is not Known”, i.e., when all the relevant

out-of-equilibrium signal profiles are such that both signals are sent by some type of

the given sender but this type profile has 0 prior probability. This completes the proof

of Claim 2, hence the proof of Lemma 1 is completed.
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Some Terms and Notations, Relevant Signal-Type Pairs

To clarify the wording used above and to introduce some notation, fix some σ̂.

We say that mi is never sent under σ̂ if σ̂i(mi)
.
=

∑
t∈T π(t)σ̂i(mi|ti) = 0 and we

define σ̂(m)
.
=

∑
t∈T π(t)σ̂1(m1|t1)σ̂1(m2|t2). We say that the deviator is known at m

if σ̂(m) = 0 and there is an i such that σ̂i(mi) = 0 and σ̂−i(m−i) > 0. We say that

the deviator is not known at m if σ̂(m) = 0 and for all i ∈ S we have that σ̂i(mi) > 0.

Consider a σ−perfect equilibrium (σ∗, e∗) of a nice game γ ∈ D. Consider a se-

quence εk → 0 and assume that there must be an i, ti,mi such that limk→∞ σ
k
i (mi|ti) =

0 and limk→∞
δk

σk
i (mi|ti)

= 0, where σk is a part of the εk-nearby equilibrium of a (σ, δk)

perturbed game. Let O = ∪i∈S{(mi, ti)|σ∗i (mi|ti) = 0} and consider the set:

N = ∪i∈S{(mi, ti) ∈ O|∀j ∈ S,∀(mj, tj) ∈ O : lim
k→∞

σki (mi|ti)
σkj (mj|tj)

> 0}.

We say that (mi, ti) is relevant if it is in N . These are the strongest or largest

voluntary mixings in the nearby equilibria in the sense that their speed of convergence

to 0 is the slowest, and even slower than that of δk by assumption. We choose a

ξ ∈ (0, 1), sufficiently small (to be set later), and an η : N → (ξ2, ξ) such that for all

(mi, ti), (m
′
j, t
′
j) ∈ N we have that:

lim
k→∞

σki (mi|ti)
σkj (m′j|t′j)

=
η(mi, ti)

η(m′j, t
′
j)
.

Clearly, by the definition of N , there is a ξ̄, which can be taken to be smaller than

min(mi,ti)/∈O σ
∗
i (mi|ti), such that for all ξ ∈ (0, ξ̄) there exists such an η(·.·). For all

ξ ∈ (0, ξ̄) let us construct a new strategy profile for the senders denoted by σξ for

which limξ→0 σ
ξ = σ∗ and the support induced by σξ is strictly larger than that of σ∗.

We would like to have σξ as part of a Nash equilibrium of some nearby game and to

reach contradiction, i.e., to conclude that our original equilibrium is not nice.

The Case when the Deviator is Known

Let us first consider the simple case in which N contains an (mi, ti) such that mi

is never sent under σ∗i . So let us fix this mi and for all ti for which (mi, ti) ∈ N set
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σξi (mi|ti) = η(mi, ti) and for all m′i 6= mi set σξi (m
′
i|ti) = σ∗i (m

′
i|ti)(1− η(mi, ti)). For

(m′j, t
′
j) /∈ N set σξj (m

′
j|t′j) = σ∗j (m

′
j|t′j) for all j ∈ S. It is easy to see that e∗(·|m) is

exactly sequentially rational under σξ for all m such that σξ(m) > 0 and σ∗(m) = 0.

For the signal pairs such that σ∗(m) > 0 one can slightly modify the receiver’s payoff

to restore sequential rationality of e∗(·|m) and slightly modify the payoffs of sender

−i to restore indifferences and make sure that −i does not want to send any message

which he has never sent under σ∗−i. Hence, (σξ, e∗) becomes a Nash equilibrium of

a game γξ arbitrarily close to γ (by choosing ξ to be sufficiently small), having a

strictly larger induced support. Moreover, these equilibria converge to (σ∗, e∗) as the

neighborhood around γ becomes smaller. This shows that our equilibrium is not nice,

which is a contradiction.�

The Case when the Deviator is not Known

Increasing the support locally is more complicated if there is no relevant mi which

was never sent by i under σ∗i . In that case one has to consider all the pairs in N when

defining σξ because all these voluntary mixings of the two senders may interplay in

general. Hence, consider the following σξ. For all i, ti let N(ti) = {mi|(mi, ti) ∈ N},

and for every mi ∈ N(ti) set σξi (mi|ti) = η(mi, ti) and for m′i /∈ N(ti) set σξi (m
′
i|ti) =

σ∗i (m
′
i|ti)(1 −

∑
mi∈N(ti)

η(mi, ti)). It follows that there might be an m which is im-

portant under σ∗ but for which 0 < σξ(m) < ξ2 (and σ∗(m) = 0). For these signal

pairs e∗ may be far from sequential rationality under σξ. This is because the beliefs

of the receiver at these message pairs induced by the σ−perfect equilibrium might

be very different from those induced by σξ.22 So setting eξ(·|m) to be sequentially

rational under σξ at these pairs is not sufficient in itself as it could induce unilateral

deviations from σξ. Nevertheless, let us define eξ by changing e∗, only for those m−s

for which 0 < σξ(m) < ξ2, in such a way that eξ becomes sequentially rational under

22For example, suppose the speed of convergence to 0 of σki (mi|ti) and σkj (mj |tj), for i 6= j are

in the order of
√
δk for some, hence it is so for all (mi, ti), (mj , tj) ∈ N . Then it is possible that

σ∗(m) = 0 for m = (mi,mj) and that the belief under e∗ stems from the convex combination of
the perturbation and that of the voluntary mixings since σki (mi|ti)σkj (mj |tj) converges to 0 in the

order of the speed of δk. Under σξ however, the perturbation gets 0 weight and σξi (mi|ti)σξj (mj |tj)
is strictly positive.
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σξ at these m-s. Since we need that (σξ, eξ) converges to (σ∗, e∗), let us replace e∗

with e∗ = limξ→0 e
ξ. Clearly, (σ∗, e∗) may not be a Nash equilibrium of γ any more

because an m with 0 < σξ(m) < ξ2 may be important under σ∗.

Hence, we have to modify our original nice game γ. We do this in such a way that

the resulting game γ′ is still in D and (σ∗, e∗) becomes a Nash equilibrium of this new

game. We will show that for every neighborhood of γ′ there is a ξ such that (σξ, eξ)

is a Nash equilibrium of some game in the neighborhood. This completes the proof

by reaching the contradiction that γ′ is not nice.

To this end, assume w.l.o.g. that all the payoffs of the senders are strictly positive

in γ and set the terminal payoffs of all the types of all the senders below 0 after

exactly those m-s for which 0 < σξ(m) < ξ2 in such a way that this new game γ′ is

still in D. This is possible as D is open and dense in RdimG. Clearly, (σ∗, e∗) is a Nash

equilibrium of γ′. Notice that eξ is almost sequentially rational under σξ at those m-s

for which ξ2 < σξ(m). This is because the belief of the receiver at these messages

can get arbitrarily close to the beliefs generated in the limit by the original σ−perfect

equilibrium if ξ is sufficiently small, and because eξ(·|m) = e∗(·|m) = e∗(·|m) at these

messages by definition. At these signal pairs, sequential rationality of eξ under σξ can

then be restored by slightly changing the receiver’s payoff in the tree (the smaller ξ is

the smaller is the necessary modification). What is left is to restore the indifferences

of the senders under (σξ, eξ) and make sure that the senders do not want to send

messages which they have never sent under σξ.23 This can be achieved by slightly

modifying the tree payoffs (the smaller ξ is the smaller is the necessary modification).

Hence, for any neighborhood of γ′ we can found a game in this neighborhood such

that (σξ, eξ) is a Nash equilibrium of this game, having a strictly larger induced

support than that of (σ∗, e∗). Moreover, these equilibria converge to (σ∗, e∗) as the

neighborhood around γ′ becomes smaller. This contradicts to the niceness of γ′.�

23Note, that the senders’ payoff can be adjusted even in the case when their payoffs do not depend
on the other sender’s signal (see footnote 9).
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4 Conclusion

The concept of Nash equilibrium expresses the robustness of a strategy profile against

unilateral deviations. This suggests that one should be able to explain sequentially

rational out of equilibrium behavior with unilateral deviations, i.e. with unprejudiced

beliefs, whenever it is possible. We have shown that for generic multi-sender signaling

games indeed this is the case.

We conjecture that Theorem 1 and its proof can be generalized to arbitrary

extensive-form games with perfect recall.24

However, in the general case one may wish to further restrict beliefs also on infor-

mation sets which are “not important” in our short game, namely on those that are

at least two deviations away from the equilibrium play (cf. Definition 1 for important

message pairs). We left this work for future research. The main difficulty is that it is

unclear how the current proof generalizes when the beliefs are restricted in all (and

not only on important) information sets in such a way that only those nodes can get

positive probability which can be reached by the smallest sets (in terms of cardinality)

of deviating agents.

An open question is whether USE outcomes always exist, namely, even for non-

generic games. Recall that σ−perfect equilibria exists for any completely mixed σ

and for any game (see footnote 17). But a σ−perfect equilibrium might not be USE

in those non-generic games where the support of the Nash equilibrium outcomes are

locally not constant, i.e. when the game is not nice (see Definition 4). We were

unable to find an example which does not have an USE. However, we show now by a

highly non-generic example that it well can be the case that no USE are perfect. The

example is an extension of the 3 player game given by Milgrom and Mollner (2018) on

their Figure 1 which is as follows: player 1 chooses row, 2 column and 3 the matrix.

24The key step is to apply Mertens’s notion of stability (see Mertens (1989, 1991)) or that of Hillas
(1990) for generic games. This allows one to look at σ−perfect equilibria of the agent normal form
and then carefully modify the original extensive form game similarly as in the proof of Theorem 1.
To find a σ−perfect equilibrium of the agent normal form, first, one finds “arbitrary” quasi-perfect
equilibria (strong backward induction in the sense of Govindan and Wilson (2006)) in any Mertens-
stable set. Second, one observes that some of these are σ−perfect equilibria of the agent normal
form, since generically quasi-perfect and agent normal form perfect equilibria coincide (see Pimienta
and Shen (2014)).
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L C R
U 0, 0, 0 0, 0, 0 0, 0, 0
D 0, 0, 0 −1, 1, 0 1,−1, 0

W

L C R
U 0, 0, 0 0,−1, 1 0, 1, 0
D −1, 0, 0 −1,−1, 0 1,−1,−1

E

Consider a fourth player who has two actions X and Y but his actions do not affect

the payoffs of the other players. By choosing X player 4 gets 0 independently of the

others’ actions. By choosing Y player 4 gets 0 unless players 1 and 2 chooses U and

C or D and R in which cases his payoff is 1 and -2, respectively. The four player

game has a continuum of Nash equilibria in all of which players 1,2 and 3 chooses

U,L,W and player 4 chooses an arbitrary mixture of X and Y . However, there is

a unique perfect equilibrium which is U,L,W,X. Clearly, W must be a best reply

against the completely mixed strategy profiles converging to the perfect equilibrium.

But this means that the probability of (U,C) must be smaller than or equal to the

probability of (D,R) in which case player 4 must choose X. Consider the extensive

form game in which first players 1,2 and 3 choose actions simultaneously. Player 4,

without observing the choices of the other players, chooses an action only if (U,C)

or (D,R) was chosen by 1 and 2. Player 4’s belief is prejudiced in every perfect

equilibrium in the sense that it attaches positive probability to (D,R), which is a

double deviation relative to (U,L), whereas in any USE only (U,C) could get positive

probability. Clearly, the support of the Nash equilibrium outcome of this game is

locally not constant. Note however, that there is still an USE in which player 4

chooses Y .
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5 Online Appendix (Not for publication)

5.1 Genericity

The following discussion is about our Definition 4 of genericity and whether our The-

orem holds or not for a larger set of possibly “non-generic” games, where the payoff of

some players cannot depend on the entire history. We show that in a discrete version

of Bagwell and Ramey (1991) our theorem holds on a (relatively) open and dense set

of games within that “non-generic” class. To this end, we refine the notion of nice

game and tailor it to a class of games, so that the payoff perturbations must remain

within this class.

Definition 5. We say that a game γ ∈ V is nice relative to V ⊆ RdimG if it does

not have a Nash equilibrium (σ, e) such that there is a sequence of γn ∈ V such that

γn → γ and a sequence of Nash equilibria of the corresponding games converging to

(σ, e) such that supports of the outcomes induced by the Nash equilibria along the

sequence is strictly larger than that of induced by (σ, e).

We show now by an example, that niceness relative to the entire payoff space is not

really necessary for our Theorem to hold. When γ already lives in a proper subspace

V , it is enough that γ is nice relative to this V .

An Example à la Bagwell and Ramey (1991)

Our class of games is as follows. Suppose there are only two types for both senders

Ti = {l, h} and π(l, h) = π(h, l) = 0 and π(l, l) = π(h, h), so types are perfectly,

positively correlated. We write l and h for (l, l) and (h, h), respectively. Players

utilities are given by ui : T ×M × A → R and most importantly v : T × A → R.

That is, our class of games is non generic in the sense that these games live in a

proper subspace V of RdimG. Let us, however, assume that v(t, a) 6= v(t′, a′) whenever

(t, a) 6= (t′, a′).

Consider a σ−perfect equilibrium of a game which is nice relative to V . Clearly, the

induced beliefs are unprejudiced whenever the deviator is not known since there are
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only two perfectly correlated types. Hence, assume by contradiction that the belief is

prejudiced when the deviator is known. Suppose w.l.o.g., that the only relevant signal-

type pair for sender one is (m1, l). Fix this m1 and note that the only problem can be

that the belief induced by the σ−perfect equilibrium is prejudiced after some (m1,m
h
2)

for some (w.l.o.g. unique) mh
2 for which σ∗2(mh

2 |h) > 0 but σ∗2(mh
2 |l) = 0, i.e., that

µ(l|m1,m
h
2) > 0. It follows that (mh

2 , l) must be also relevant as otherwise the belief

induced by the σ−perfect equilibrium is unprejudiced after (m1,m
h
2). We want sender

one of type l to send m1 or sender two of type l to send mh
2 with probability ξ > 0

in equilibrium of some nearby game in V and reach a contradiction. The challenge

is to win back ξ from other messages of the given type of the given sender in such a

way that the receiver’s original strategy remains sequentially rational. The reason is

that now we cannot implement small changes in the receiver’s payoff depending on

the message profiles as we a restricted to stay within V .

We distinguish three cases: (1) there is an ml
1 such that σ∗1(ml

1|l) > 0 but

σ∗1(ml
1|h) = 0, (2) there is an mh

1 such that σ∗1(mh
1 |h) > 0 but σ∗1(mh

1 |l) = 0 or

(3) none of the types of sender one separates with positive probability.

In case (1), instead of decreasing all the equilibrium probabilities of sender one of

type l with the factor (1 − ξ) we only set σξ1(ml
1|l) = σ∗1(ml

1|l) − ξ and σξ1(m1|l) = ξ

and leave everything else unchanged. It is easy to see that the beliefs of the receiver

are unaffected and e∗(·|m) is sequentially rational for all m under σξ as well. One

only has to change slightly the payoffs of sender two to restore the equilibrium.

In case (2), we can suppose that case (1) does not hold which means that 1 >

σ∗1(mh
1 |h). In this case we can decrease the probabilities of type l with the factor (1−ξ)

(so we can set σξ(m1|l) = ξ) as in the general proof but we have now the possibility

to decrease the probabilities for type h with the same factor and increase σ∗1(mh
1 |h)

accordingly by ξ. It is easy to see that the beliefs of the receiver are unaffected and

e∗(·|m) is sequentially rational for all m under σξ as well. Again, one only has to

change slightly the payoffs of sender two to restore the equilibrium.

In case (3), we set σξ1 = σ∗1 and we change the strategy of sender two by setting

σξ2(mh
2 |l) = ξ. The belief induced by the σ−perfect equilibrium can be prejudiced only

28



after (m1,m
h
2) (remember that sender one’s types are pooling). We have to consider

two different subcases and win back ξ from other messages of sender two of type l.

3(a) If there is an ml
2 for which σ∗2(ml

2|l) > 0 but σ∗2(ml
2|h) = 0 then simply

set σξ2(ml
2|l) = σ∗2(ml

2|l) − ξ. The beliefs of the receiver may change a bit only after

(mp
1,m

h
2) by putting an arbitrarily small (depending on ξ) probability on type l, where

mp
1 denotes an arbitrary message on which sender one pools. But by the assumption

that v(t, a) 6= v(t′, a′) whenever (t, a) 6= (t′, a′) this will not change the unique optimal

pure action a of the receiver e∗(a|(mp
1,m

h
2)) = 1 if ξ is sufficiently small. Hence, again,

there is no need to change the receiver’s payoff. One only has to change slightly the

payoffs of sender one now to restore the equilibrium.

Finally 3(b), we can assume that sender two pools on every equilibrium signal mp
2

except that type h sometimes separates himself by sending mh
2 . Then it must be the

case that 1 > σξ2(mh
2 |h) and we can set σξ2(mp

2|l) = σ∗2(mp
2|l)(1 − ξ) and σξ2(mp

2|h) =

σ∗2(mp
2|h)(1−ξ) for every mp

2 on which sender two pools and set σξ2(mh
2 |h) = σ∗2(mh

2 |h)+

ξ. It is easy to see that the beliefs of the receiver change only after message pairs

(mp
1,m

h
2) as in case 3(a) above, hence there is no need to change the receiver’s payoff.

One only has to change slightly the payoffs of sender one now again to restore the

equilibrium. Notice that one may think that in case (3) the support induced by σξ is

not larger than that of σ∗ because the receiver observes the same set of signal pairs

on the path. Nevertheless, under σξ the signal pair (mp
1,m

h
2) is sent by types l as well,

so the induced distributions (outcomes) do have different supports on T ×M ×A. �
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5.2 A Generic Game with a Proper but Prejudiced Outcome

In this section we give an example of a generic game which possesses a proper equi-

librium outcome which cannot be maintained with unprejudiced beliefs. We call this

a prejudiced outcome.
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The description of the signaling game is as follows: nature (N) chooses the state l or

r with equal probabilities and both the Husband (H) and the wife (W) are informed

about the state. Then H and W sends a signal simultaneously to the firm (C) from

the signal sets {E,D}, {F,G} for H and W respectively. For example the strategy of

H sending E in state l and sending D in state r is indicated on the picture by the

actions e and d′. C must take an action only if the signal profile that he observes is

(D,G), i.e. the state is either l and H was choosing the action d and W was choosing

the action g or the state is r and H was choosing the action d′ and W was choosing

the action g′. A three-tuple at the terminal nodes indicate the payoffs in the order of

H,W, and C. A blanc space for a payoff means that it can be chosen arbitrarily. The

red arrows indicate an equilibrium in which H always sends the signal E and W sends

the signal F in state l and the signal G in state r. Hence, C must choose an action l or
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r only off the equilibrium path after observing (D,G). There is a single unprejudiced

belief for which C assigns 0 probability to the left node of his information set (D,G),

i.e. setting x = 0. This is because to reach the left node it must be that the state is

l and both H and W were deviating, while being in the right node requires only the

deviation of H in state r. However, for this belief C chooses r sequentially rationally

in which case when the state is r, H would deviate and send the signal D. There is

no way to maintain this outcome with unprejudiced beliefs. However, it is a proper

equilibrium (and also extensive form proper) as long as 1 > a > −1 in which C’s

induced belief at the limit is prejudiced at puts probability 0.5 on the left node of

(D,G) and chooses action l sequentially rationally which deters H from deviating.

The ε−proper equilibrium is indicated by the ε, ε2 behavioral mixing (take the red

arrows to 1 and then normalize). The normal form sequence can be obtained by

simple multiplications. The trembling of C is irrelevant. Notice that if the outcome

is a σ−perfect equilibrium outcome then it must be that a = 1 which is a non generic

tree payoff and indeed the support of the outcome can then be locally increased (for an

open set of payoffs of W) by letting H to send the signal D in state l with sufficiently

small probability, i.e. choosing the action d.
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