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Abstract. The Web and social media have become the main source of informa-
tion for citizens, with the risk that users rely on shallow information in sources
prioritizing commercial or political incentives rather than the correctness and in-
formational value. Non-experts tend to avoid scientific literature due to its com-
plex language or their lack of prior background knowledge. Text simplification
promises to remove some of these barriers. The CLEF 2022 SimpleText track ad-
dresses the challenges of text simplification approaches in the context of promot-
ing scientific information access, by providing appropriate data and benchmarks,
and creating a community of NLP and IR researchers working together to resolve
one of the greatest challenges of today. The track will use a corpus of scien-
tific literature abstracts and popular science requests. It features three tasks. First,
content selection (what is in, or out?) challenges systems to select passages to
include in a simplified summary in response to a query. Second, complexity spot-
ting (what is unclear?) given a passage and a query, aims to rank terms/concepts
that are required to be explained for understanding this passage (definitions, con-
text, applications). Third, text simplification (rewrite this!) given a query, asks to
simplify passages from scientific abstracts while preserving the main content.

Keywords: Scientific text simplification · (Multi-document) summarization · Con-
textualization · Background knowledge

1 Introduction

Being science literate is an important ability for people. It is one of the keys for criti-
cal thinking, objective decision-making and judgment of the validity and significance of
findings and arguments, which allows discerning facts from fiction. Thus, having a basic
scientific knowledge may also help maintain one’s health, both physiological and men-
tal. The COVID-19 pandemic provides a good example of such a matter. Understanding
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the issue itself, being aware of and applying social distancing rules and sanitary poli-
cies, choosing to use or avoid particular treatment or prevention procedures can become
crucial. In the context of a pandemic, the qualified and timely information should reach
everyone and be accessible. That is what motivates projects such as EasyCovid.9

However, scientific texts are often hard to understand as they require solid back-
ground knowledge and use tricky terminology. Although there were some recent efforts
on text simplification (e.g. [25]), removing such understanding barriers between scien-
tific texts and general public in an automatic manner is still an open challenge. Sim-
pleText Lab brings together researchers and practitioners working on the generation
of simplified summaries of scientific texts. It is a new evaluation lab that follows up
the SimpleText-2021 Workshop [9]. All perspectives on automatic science popularisa-
tion are welcome, including but not limited to: Natural Language Processing (NLP),
Information Retrieval (IR), Linguistics, Scientific Journalism, etc.

SimpleText provides data and benchmarks for discussion of challenges of automatic
text simplification by bringing in the following tasks:

– TASK 1: What is in (or out)? Select passages to include in a simplified summary,
given a query.

– TASK 2: What is unclear? Given a passage and a query, rank terms/concepts that
are required to be explained for understanding this passage (definitions, context,
applications,..).

– TASK 3: Rewrite this! Given a query, simplify passages from scientific abstracts.
– UNSHARED TASK We welcome any submission that uses our data!

2 Background

2.1 Content Selection

We observe an accelerating growth of scientific publication and their major impact on
the society, especially in medicine (e.g. the COVID-19 pandemic) and in computer sci-
ence with unprecedented use of machine learning algorithms and their societal issues
(biases, explainability, etc.). Numerous initiatives try to make science understandable
for everyone. Efforts have been made by scientific journalism (Nature, The Guardian,
ScienceX) researchers (Papier-Maché project10), and internet forums (Explain Like I’m
511). The ScienceBites12 platform publishes short simple posts about individual re-
search papers, making state-of-the-art science accessible to a wide audience. While
structured abstracts are an emerging trend since they tend to be informative [12,10],
non-experts are usually interested in other types of information. Popular science arti-
cles are generally much shorter than scientific publications. Thus, information selection
is a crucial but understudied task in document simplification especially with regard to
the target audience [39]. In many cases the information in a summary designed for an

9 https://easycovid19.org/
10 https://papiermachesciences.org/
11 https://www.reddit.com/r/explainlikeimfive
12 https://sciencebites.org/

https://simpletext-project.com
https://simpletext-project.com
https://www.nature.com/news
https://www.theguardian.com/science
https://sciencex.com/
https://easycovid19.org/
https://papiermachesciences.org/
https://www.reddit.com/r/explainlikeimfive
https://sciencebites.org/
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expert in scientific domain is drastically different from that from a popularized version.
Moreover, different levels of simplification, details, and explanation can be applied,
e.g for a given scientific article the Papier-Maché platform publishes two level of sim-
plification: curiosity and advanced. Zhong et al. analyzed discourse factors related to
sentence deletion on the Newsela corpus made of manually simplified sentences from
news articles [39]. They found that professional editors utilize different strategies to
meet the readability standards of elementary and middle schools.

The state-of-the-art in automatic summarization is achieved by deep learning mod-
els, in particular by pretrained Bidirectional Encoder Representations from Transform-
ers (BERT) which can be used for both extractive and abstractive models [24]. It is
important to study the limits of existing AI models, like GPT-2 [30] for English and
CamemBERT for French [27], and how it is possible to overcome those limits. Re-
cently, AI21 released the Jurassic-1 suite of language models, with 178B parameters
for J1-Jumbo [23]. Jurassic-1 is a large AI model able to transform an existing text, e.g.
in case of summarization. Multilingual T5 (mT5) is a large multilingual pretrained text-
to-text transformer model developed by Google, covering 101 languages [36]. mT5 can
be fine-tuned for any text-to-text generation, e.g. by using the SimpleT5 library.

2.2 Complexity spotting

Our analysis of the queries from different sources revealed the gap between the ac-
tual interest of the wide readership and the expectations of the journalists [28]. People
are interested in biology or modern technologies as long as there is a connection with
their everyday life. Thus, a simplified scientific text needs to contain references to the
daily experience of people. On the one hand, the subjective complexity of terminology
is involved when readers face concepts that go beyond their area of expertise and gen-
eral knowledge, and need additional definitions or clarifications. On the other hand,
the objective complexity of terminology is a systematic feature caused by complexity
of research areas, research traditions and socio-cultural diversity. The complexity of a
scientific area depends on peculiar attributes and conditions [34]. Ladyman et al. [22]
suggest five such conditions: numerosity of elements, numerosity of interactions, disor-
der, openness, feedback. The complexity of terminology is also associated with a for-
mal representation (signifier) of a term. Apart from borrowings, scientific text is rich in
symbols and abbreviations (acronyms, backronyms, syllabic abbreviations, etc.) that are
meant to optimize content transferring, standardize the naming of numerous elements,
allow frequent interaction among them, and facilitate data processing. But readers of
popularized publications expect explanations of the symbols and abbreviations.

One of the technical challenges here is thus term recognition. Robertson provided
theoretical justifications of the term-weighting function IDF (inverse document fre-
quency) in the traditional probabilistic model of information retrieval [31]. IDF shows
term specificity and can be used for difficult term extraction as it is connected to the
Zipf’s law. WordNet [11] distance to the basic terms can be used as a measure of the
term difficulty. Task-independent AI models, like GPT-2 [30], Jurassic-1 [23], Multilin-
gual T5 [36], can be fine-tuned for the terminology extraction. It should be noted that
there are tools available online such as OneClick Terms or TermoStat Web that allow
us to extract intuitively mono and multiwords.

https://www.ai21.com/
https://github.com/Shivanandroy/simpleT5
https://terms.sketchengine.eu/
http://termostat.ling.umontreal.ca
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2.3 Text simplification

Existing works mainly focus on word/phrase-level (simplification of difficult words and
constructions) [38,4,32,15,29,26] or sentence-level simplifications [40,35,7,41,5,33].
Koptient and Grabar analyzed the text transformation topology during simplification
[21]. Among the most frequent transformations, they found synonymy, specification
(insertion of information), generalization (deletion of information), pronominalization,
substitution of adjectives by their corresponding nouns, and substitutions between sin-
gular and plural. In their further work, they proposed a rule-based system in French
that combines lexical and syntactic simplification, for example, by transforming pas-
sive sentences into active sentences [19], and rating a lexicon [20]. Approaches based
on rated lexicons are neither scalable nor robust to neologisms, which are frequent in
scientific texts. Recent deep learning models with a large number of training param-
eters, like GPT-2 [30], Jurassic-1 [23], Multilingual T5 [36], can be applied for text
simplification. Jurassic-1 Jumbo is the largest model publicly available with no waitlist.
The AI21 studio’s playground provides ready-to-use prompts for text simplification (see
De-Jargonizer). However, as Jiang et al. showed, a text simplification system depends
on the quality and quantity of training data [18]. Therefore, a major step in training
artificial intelligence (AI) text simplification models is the creation of high quality data.

Researchers have proposed various approaches based on expert judgment [6], read-
ability levels [13,14], crowdsourcing [6,35,2], eye-tracking [37,16], manual annotation
[17]. Traditional evaluation like comparison to the reference data by standard evalua-
tion measures is difficult to apply as one should consider the end user (young readers,
foreigners, non-experts, people with different literacy levels, people with cognitive dis-
abilities etc.) as well as source document content.

3 Data set

In 2022, SimpleText’s data is two-fold: Medicine and Computer Science, as these two
domains are the most popular on forums like ELI5 [28]. For both domains, we provide
datasets according to our shared tasks:

– content selection relevant for non-experts;
– terminology complexity spotting in a given passage;
– simplified passages.

As in 2021, we use the Citation Network Dataset: DBLP+Citation, ACM Citation
network (12th version) [1] as source of scientific documents to be simplified [8]. It con-
tains: 4.894.083 bibliographic references published before 2020, 4.232.520 abstracts
in English, 3.058.315 authors with their affiliations, and 45.565.790 ACM citations.
Scientific textual content about any topic related to computer science can be extracted
from this corpus together with authorship. Although we manually preselected abstracts
for topics, participants also have access to use an ElasticSearch index. This Index is
adequate to passage retrieval using BM25. Additional datasets have been extracted to
generate Latent Dirichlet Allocation models for query expansion or train Graph Neu-
ral Networks for citation recommendation as carried out in StellarGraph13 for example.
13 https://stellargraph.readthedocs.io/

https://stellargraph.readthedocs.io/
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The shared datasets are: document abstract content for LDA or Word Embedding; docu-
ment author relation for coauthoring analysis; document citation relation for co citation
analysis; author citation relation for author impact factor analysis. These extra datasets
are intended to be used to select passages by authors who are experts on the topic (highly
cited by the community).

We propose 13 topics on computer science based on the recent n press titles from
The Guardian enriched with keywords manually extracted from the content of the arti-
cle (see Table 1). It has been checked that each keyword allows participants to extract
at least 5 relevant abstracts. The use of these keywords is optional.

Query 12: Patient data from GP surgeries sold to US companies
Topic 12.1: patient data

Query 13: Baffled by digital marketing? Find your way out of the maze
Topic 13.1: digital marketing

Topic 13.2: advertising
Table 1. Query examples

We selected passages that are adequate to be inserted as plain citations in the original
journalistic article. The comparison of the journalistic articles with the scientific ones,
as well as the analysis we carried out to choose topics, demonstrated that for non-experts
the most important information is the application of an object (which problem can be
solved? how to use this information/object? what are the examples?).

Text passages issued from abstracts on computer science were simplified by either a
master student in Technical Writing and Translation or a pair of experts: (1) a computer
scientist and (2) a professional translator, English native speaker but not specialist in
computer science [8]. Each passage was discussed and rewritten multiple times until
it became clear for non-computer scientists. Sentences were shortened, excluding ev-
ery detail that was irrelevant or unnecessary to the comprehension of the study, and
rephrased, using simpler vocabulary. If necessary, concepts were explained.

In 2022, we introduce new data based on Google Scholar and PubMed articles on
muscle hypertrophy and health annotated by a master student in Technical Writing and
Translation, specializing in these domains. The selected abstracts included the objec-
tives of the study, the results and sometimes the methodology. The abstracts including
only the topic of the study were excluded because of lack of information. To avoid the
curse of knowledge, another master student in Technical Writing and Translation not
familiar with the domain was solicited for complexity spotting.

4 Tasks

In 2022, SimpleText was transformed into a CLEF lab. We propose three shared tasks
to help better understand the challenges as well as discuss these challenges and the way
to evaluate solutions. Contributions should not exclusively rely on these shared tasks.
We also welcome manual runs and runs within the unshared task.

Details on the tasks, guideline and call for contributions can be found at the Sim-
pleText website. In this paper we just briefly introduce the planned shared tasks.

http://simpletext-project.com/2022/clef/
http://simpletext-project.com/2022/clef/
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TASK 1: What is in (or out)? Select passages to include in a simplified sum-
mary, given a query. Based on an article from a major international newspaper general
audience, this shared task aims to retrieve, from a large scientific bibliographic database
with abstracts, all relevant passages to illustrate this article. Extracted passages should
be adequate to be inserted as plain citations in the original paper. Sentence pooling and
automatic metrics can be used to evaluate these results. The relevance of the source
document can be evaluated as well as potential unresolved anaphora issues.

TASK 2: What is unclear? Given a passage and a query, rank terms/concepts
that are required to be explained for understanding this passage (definitions, con-
text, applications,..). The goal of this shared task is to decide which terms (up to 10)
require explanation and contextualization to help a reader understand a complex scien-
tific text — for example, with regard to a query, terms that need to be contextualized
(with a definition, example and/or use-case). Terms should be ranked from 1 to 10 ac-
cording to their complexity. 1 corresponds to the most difficult term, while lower ranks
show that the term might be explained if there is space. Term pooling and automatic
metrics (e.g. accuracy, NDCG, MSE, etc.) can be used to evaluate these results.

TASK 3: Rewrite this! Given a query, simplify passages from scientific ab-
stracts. The goal of this shared task is to provide a simplified version of text passages.
Participants are provided with queries and abstracts of scientific papers. The abstracts
can be split into sentences as in the example. The simplified passages will be evaluated
manually with use of aggregating metrics.

UNSHARED TASK. We welcome any submission that uses our data! This task is
aimed at (but not limited to) Humanities, Social Science and Technical Communication.
We encourage here manual and statistical analysis of content selection, readability and
comprehensibility of simplified texts, terminology complexity analysis.

5 Conclusion and future work

The paper introduced the CLEF 2022 SimpleText track, containing three shared tasks
and one unshared task on scientific text simplification. The created collection of simpli-
fied texts makes it possible to apply overlap metrics like ROUGE to text simplification.
However, we will work on a new evaluation metric that can take into account unresolved
anaphora [3] and information types. For the pilot task 2, participants will be asked to
provide context for difficult terms. This context should provide a definition and take
into account ordinary readers’ needs to associate their particular problems with the op-
portunities that science provides them to solve the problems [28]. Full details about the
lab can be found at the SimpleText website: http://simpletext-project.com. Help us to
make scientific results understandable!
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