
HAL Id: hal-03637765
https://hal.science/hal-03637765

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dialogue Validation from Task Analysis
Francis Jambon, Patrick Girard, Yohann Boisdron

To cite this version:
Francis Jambon, Patrick Girard, Yohann Boisdron. Dialogue Validation from Task Analysis. Proc.
Eurographics Workshop on Design, Specification, and Verification of Interactive Systems (DSVIS
1999), Jun 1999, Universidade do Minho, Braga, Portugal. pp.205-224, �10.1007/978-3-7091-6815-8
14.hal − 03637765

https://hal.science/hal-03637765
https://hal.archives-ouvertes.fr

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 1 -

Dialogue Validation from Task Analysis

Francis JAMBON, Patrick GIRARD and Yohann BOISDRON

LISI / ENSMA1, Téléport 2, B.P. 109
F-86960 Futuroscope cedex, France

 E-mail: {girard, jambon}@ensma.fr
Web: http://www.lisi.ensma.fr/ihm.html

Keywords: Dialogue Validation, Task Analysis, ARCH Architecture Model,
H4 Architecture Model, Dialogue Component.

Abstract:

Up today, formal methods have mainly been used to allow designers to verify that
software conforms to its specification. In this article, we propose a validation method
and a tool to analyse whether the design actually fulfils the original requirements for
the system. The principle of our validation method is to generate the complete set of
possible user interaction sequences from the task analysis. Then, this set is injected in
the Dialogue Controller Component of the application. At last, the Dialogue
Controller Component’s calls to the Functional Core are intercepted, and compared
with the user's goals. Our case study is in the general Computer-Aided Design area, in
which systems support a huge number of tasks.

1. Introduction

As it is stated in [Fields, Merriam, & Dearden 1997], in recent past years, formal
methods have mainly been used to allow designers to verify that software conforms to
its specification. By the use of a single notation, many authors intended to
demonstrate that some properties of the specification –more precisely, that would have
to be in the specification– can be enforced by formal study, by the way of model
checking or theorem proving.

Today, the field seems to be mature enough to reach a second step that deals with
validation. It consists in analysing whether the design actually fulfils the original
requirements for the system. In the article above mentioned –[Fields, Merriam, &
Dearden 1997]– the authors suggest combining different formalisms which are right
for some classes of properties. From descriptive and prescriptive viewpoints, the
authors propose using formal methods as communication artefacts in the design
process. At the end of their analyses, they conclude with a necessary focus shift from a
semantic level to a methodological level.

1 Laboratory of Applied Computer Science, National School of Engineers in Mechanics and
Aerotechnics

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 2 -

Nevertheless, the focus of these approaches is always the design process. Even when
requirements are explicitly involved, as for example when task analysis is emphasised,
the goal is to provide more formal descriptions of these requirements, and to help
analysis and design. This approach might be interesting in domains were tasks are
well-defined. Unfortunately, that is not always the case. In the Computer-Aided
Design area, systems cannot be described as a global task analysis. The reasons are
twice. On the one hand, these systems must support a huge number of possible tasks
–for example, some systems contain thousands of primitive functions, whose
assembly generates up to a hundred of thousand tasks. On the other hand, “designers”
are people whose creativity is a major characteristic. So doing, they cannot be
restricted to a finite number of diagrams embedded in constrained tasks.

By the way, validation may be required for systems that cannot be exhaustively
described by classical task analysis. Let us give two examples of such validation
needs: (1) Choosing an existing system requires the purchaser to evaluate the
possibilities of the system against his needs, when basic evaluation of every function
of the system is not possible, the definition of scenarios to test on the system may be
a solution. An “ad hoc” validation would be a good solution. (2) When a new release
is distributed, it is important to know whether the system, despite of its new
capabilities, is always capable to do what the users made with the previous release.
So, an automated validation would be very interesting.

Our aim in this paper is to describe a method, which includes a task definition
grammar and automated tools, in order to provide the designer of a CAD system for a
practical validation of use cases. This paper is organised as follows: in Section 2, we
explore some related approaches. In Section 3, we describe the context of Computer-
Aided Design. In Section 4, we detail what kind of validation we want to achieve. At
last, Section 5 focus on our case study.

2. Related Work

Many works in HCI use formal methods to check models of the actual systems.
Model checking methods are a good illustration of this point. They are based on the
evaluation of logical properties on the state transition system obtained from the
evolving variables. Among these techniques, we can find temporal logics, Petri nets
and so on. In the area of interactive systems, these methods are assumed to have first
been used in formal verification of interactive systems [Campos & Harrison 1997].
For example, [Abowd, Wang, & Monk 1995] verify user interfaces with SMV
(Symbolic Model Verifier) using CTL (Computational Tree Logic), while [Paternó &
Faconti 1992] uses LOTOS to write interactors specifications, and analyse translated
finite state machines using ACTL (Action-based Temporal Logic). [Brun 1997]
develops a new temporal logic based on formalism, named XTL (eXtended Temporal
Logic), to address interruptions in interactive systems' specification. Model checking
is also used by Palanque et al. who model user and system by the way of object-
oriented Petri nets –ICO– [Palanque, Bastide, & Sengès 1995]. The weakness of these
approaches is that the running system has to be proved to conform to the model. More

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 3 -

recently, [D'Ausbourg 1998] used the Lustre language for the automatic validation of
user interface systems. In this case, the formal model is deducted from the UIL2

description of the interface. Assuming the translator is proved, we can consider that we
are really working on the actual system. Nevertheless, in most cases, formal models
are only “modelling” the system, with no proof of the equivalence between the model
and the system.

Using proof systems have quite similar drawbacks. They are systems where the
model is described by variables, operations and invariants. The operations must
preserve these invariants and a set of other properties (preconditions and/or post
conditions). To ensure the correctness of these specifications, a set of proof
obligations are generated and they must be proved. The proof system can achieve some
of the proofs automatically. Among these techniques, we can mention Z, based on set
theory [Spivey 1988], VDM, based on preconditions and post-conditions calculus
[Andrews & Ince 1991], and B, based on the weakest precondition calculus [Abrial
1996 ; Dijkstra 1976]. In the Human-Computer Interaction field VDM and Z have
been used to define atomic structures like interactors [Duke & Harrison 1993], and Z
and Object-Z are now used more extensively [Hussey & Carrington 1997]. HOL (a
Higher Order Logic Theorem Prover) has been used in the verification of User Interface
specifications [Bumbulis, et al. 1996]. In these methods, we generally have the same
problem of separating specifications and models of the system –on which proofs are
conducted– from the actual system –which is only supposed to conform to the models.
An exception can be found in [Aït-Ameur, Girard, & Jambon 1998], which uses the
refinement methodology to reach the code level: the application itself is proved.

Despite this large number of studies, formal methods are not largely used in HCI.
One of the reasons is the formality gap [Dix 1991], i.e., the mapping from the
requirements of the users and the formalism. In fact, even if we assume that formal
models used for reasoning are relevant with final applications, formal methods suffer
from a lack of readability and usability for non-specialists. Reading formal models is
always hard, and the transition between the informal state of requirements and the
formal model is quite difficult. Whenever formal approaches address task analysis
[Markopoulos, Johnson, & Rowson 1997], such as ConcurrentTaskTree [Paternò,
Mancini, & Meniconi 1997] or [Palanque & Bastide 1995], constructed models are
very far from task analysis models such as MAD [Scapin & Pierret-Golbreich 1990]
or HTA [Shepherd 1989]. Moreover, while these methods are devoted to analysis and
design, no real method or tool is developed to allow system users or experts in human
factors to directly validate the systems.

Obviously, a strong need exists for validation techniques, able to ensure that a
system “is really able to do that”. We describe hereafter a couple of method and tool
that allows it in the particular domain of Computer-Aided Design.

2 User Interface Language

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 4 -

3. Computer-Aided Design Context

Our work has been made in the context of Computer-Aided Design. In this area,
systems have specific topics like a huge number of functions, strong relations
between functional core and presentation layer, and complex dialogues. In fact, they
constitute one of the worse case of applications according to the taxonomy of
interactive systems [Pierra 1995]. In this taxonomy, seven criteria have been
developed to classify applications’ needs. They deals with task arity (1) and structuring
(2), domain objects autonomy (3) and structuring (4), source of control (5),
mono/multi-user (6) and mono/multi modal (7) applications. The first four criteria are
specially relevant for CAD applications. In this section, the terminology conforms to
the Arch model [Bass, et al. 1992].

3 .1 Task arity

Applications support different kinds of tasks. They can be mono-object tasks –each
user task involves only one domain object– or multi-object tasks –each task involves
several domain objects. Mono-object tasks may be supported by direct manipulation
techniques, whatever multi-object tasks must be represented independently from the
domain objects. Some dialogue component, of which the structure is independent from
the object structure, must exist. As an example, MacDrawTM only supports mono-
object tasks. Examples of multi-object tasks are provided by the drafting systems that
enable creating lines as tangential to two circles.

3 .2 Task structuring

Applications support atomic tasks when users must specify independently each of
their tasks, the result of these tasks are recorded in the state of the domain-specific
component. Conversely, applications support structured tasks when users may input
in pre-order their task/sub-task hierarchy [Norman 1986]. The support of structured
tasks needs recording the state of the dialogue independently from the state of the
domain-specific component and the interaction component. Atomic tasks may be
encapsulated either in domain objects or in interaction objects.

The following example (fig. 1) shows a typical structured task in which commands
are in bold and <> represents conceptual objects that are picked up by the user.

create_circle_centre_radius
projection

<point_1>
<line_2>

distance
<point_3>
<point_4>

/
2.0

 Figure 1: A structured task

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 5 -

We call create_circle_centre_radius a terminal task: it corresponds to one of the
goals of the application, and projection a production sub-task: its role is to
produce some information token, e.g., a position computed by projecting <point_1>
on <line_2>, for the higher level terminal task.

3 .3 Domain objects autonomy

The domain objects are autonomous when their presentation is mainly dependent on
their state. In the opposite, they are relational when their presentation depends on the
state of other domain objects. If these objects are autonomous, each of them may be
mapped onto one interaction object that supports its rendering function. In the other
case, rendering spaces must be provided. CAD objects are relational since that they are
parts of complex models whose visualisation depends on the view the user selects.

3 .4 Domain objects structuring

Domain objects are structured when several levels of objects, structured by
aggregation, may be accessed by the user, whenever they are simple when domain
objects are not part of other domain objects. When they are highly structured,
designing one domain object may only be interpreted by the domain-side components.
It requires a complete traversal of the system by the user-defined events.

3 .5 Designing a specific model for CAD systems

So, complex interactive graphic applications are systems that support multi-object
structured tasks and of which the conceptual objects are structured and relational
objects. CAD systems are good examples of such applications. In these systems,
conceptual objects are very precise: line are defined by their two end points and sweeps
by their sweeped face and sweeping vectors. The tasks are multi-object tasks, users
know these constraints and the system must provide for the specification of these
constraints [Roller 1990]; the system supports expressions and the tasks are
structured.

The conceptual objects are highly structured –a solid is the part inside of a closed
shell, a shell consists of faces, etc.– and relational objects –the visibility of a point
depends on every entity involved in the hidden surface process. Therefore, it does not
exist any one to one mapping between conceptual objects and presentation objects,
and when the designer picks up some graphical position, in order to designate some
conceptual object, its intent may only be interpreted by querying the functional core.

Such systems are complex software systems, and it is well known, in Software
Engineering, that these systems, whether they are designed according to object oriented
techniques or not, must be first split into sub-systems. The Arch [UIMS 1992] model
provides for such a macro-structuring of the system. But Software Engineering
principles also require the interfaces, specification and relationships between these sub-
systems, to be precisely defined, and require each system to map to one unique

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 6 -

abstraction. We have developed a specialisation of the Arch model for CAD systems,
called the H4 architecture [Guittet 1995].

The macro-structure of this model (fig. 2) conforms to the Arch model. Regarding
its macro-structure, each component, but the domain-adaptor, is based on a specific
hierarchy of units. Their role, interface and structuring criteria, have been precisely
defined.

H1

Interation toolkit
component

Domain adaptator
component

Questionaries implementation

H3

Domain specific
component

Conceptual objects
hierarchy

H2

Dialogue
component

Control interactors
hierarchy

H4

Presentation
component

Space
transformation

hierarchy

Low-level I/O
interactors
hierarchy

Projection

Projection

Tokens

Tokens

Questionaries

USER

Figure 2: The H4 architecture model

In our purpose, let us emphasise the dialogue component. The only role of the
dialogue component is to support the structured and multi-object task-level protocol.
When using a multi-agent approach to specify this component, the agents involved in
this component are very different from the classical interactive agents such as
interactors [Duke & Harrison 1993]. They do not only differ by the abstraction they
implement –dialogue component agents implement one task or one category of related
tasks such as defining geometrical 3D entities, defining 2D drafting presentation,
producing geometric positions from geometric expressions, and so on)– but they also
differ by their interface with the remaining part of the system. The main role of these
agents, that we call control interactors, is to control, i.e., to trigger the functional
core procedures. The only exchange of events is not sufficient to achieve this goal.

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 7 -

The state of the dialogue does not depend upon the output data that are issued by the
functional core as a feedback of the triggered procedures: it only depends on whether or
not the procedure fails. Therefore there is no reason to justify that the output flow
from the domain adaptor component to the user should go through the dialogue
component. This fact was acknowledged by the Seeheim model [Pfaff 1985], and it is
still required by the class of applications we discuss in this paper.

Therefore, a control interactor does not provide rendering functions. To ensure the
independence between tasks and sub-tasks, a special kind of event dispatcher –called a
monitor– is needed to realise the circulation of events. It must be noticed that the
development of dialogue interactors is completely different from the one of I/O
interactors. Intended to support application specific tasks, they cannot be found in any
predefined standard toolkit. Fortunately, they may be specified either by using a
language approach [Olsen 1992], using an ATN approach [Woods 1970] or Petri Nets
[Palanque 1992] in a pure declarative way. Therefore, they may be automatically
generated and the different models proposed for dialogue specification [Green 1986]
may be used to specify, in a modular way, each dialogue interactor behaviour. Do
notice that this approach is close to the “transducer” approach from [Accott, et al.
1997]. The major difference consists in the main structure and the global behaviour of
our model, which involves elementary “bricks”, such as transducers.

Thanks to this architecture, the composition of complex dialogues is
straightforward. Organising functions in separate dialogue interactors according to
global levels of functions –picking, graphical expressions, geometrical creations,
structuring, etc.– allows a good modular decomposition of the application. Then, the
hierarchical organisation of the dialogue interactors, under the control of a monitor,
allows free compositions of task/sub-tasks provided they do not belong to the same
dialogue interactor.

3 .6 A strong need for validation

Unfortunately, task analysis is very difficult in CAD systems. Because of the strong
hierarchy of goals and sub-goals, which leads to strong hierarchy of tasks and sub-
tasks. Task analysis of such systems leads to extremely large and flat trees. Reaching
a given goal may be made by several methods with an equivalent result. Defining
every possible path is unrealistic. In practice, the definition of CAD systems is made
by incremental adjunction of new functions, which are integrated into the dialogue. A
design lifecycle starting from a task analysis does not apply.

So, the need for validation is different from systems with well-characterised tasks, as
for example air-traffic control or database management. In our approach, we do not
address any ergonomic aspect of HCI applications. In the opposite, we focus on
dynamic dialogue control. The question is “Is the system able to do that”, in which
“that” is expressed in a user-comprehensible way. We choose a notation that is in fact
a restriction of MAD [Scapin & Pierret-Golbreich 1990]. This method allows us to
define abstract scenarios of dialogues to be validated on the system.

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 8 -

A second requirement is to automate
the validation. So, our objective is to
produce test sequences from the
scenarios' descriptions, and then, to
validate the global execution of these
test sequences onto the system itself.
Test sequences are not an example of
system execution, because no real value
is provided. The test generation only
produces dialogue tokens without
associated value. In fact, we are only
able to validate the dialogue of the
interactive system. Let us give an example. Assume we need to test if creating a
circle, which centre is the projection of a point on a segment, and which radius is half
the distance between a second point and the extremity of the segment, is still possible
in a new release (Fig. 3).

For user convenience, we want the system to allow either entering first the centre or
the radius of the circle. The task is well-defined: the main goal may be split in two
sub-goals, defining the centre and defining the radius, with no sequential relation
between them. Each of them must then be expressed by a projection and a distance
calculus. Expressing this task in MAD is straightforward. Of course, in real world
applications, a huge set of these complex tasks may have to be checked, and so, the
validation cannot be hand-performed. From this description, our system must be able
to automate the generation of tests sequences and their validation on the system.

At this point, we can list the major requirements for our validation system: the
designer's needs, expressed in terms of a goal and sub-goals hierarchy, lead us to use a
task analysis as the main data input for our validation system. In addition to this, the
designer should want to be sure that the user's goals are really achieved, i.e., correct
side effects are the consequences of the user's actions. So, we have to check the
system's links to the functional core of the system too. On a more technical point of
view, the need for a complete coverage and the huge set of possible user interactions
with the target system force us to develop an automated tool to ensure a realistic
validation. We will show in the next section our validation principles, and their
application on our case study in section 5.

4. Validation Principles

This section deals with the validation principles, whereas the next one (5) is
dedicated to the tools used to ensure the validation of our case study –a prototype of a
CAD application. In this section, we first detail the HCI properties we want to
validate, and then, we describe the validation methodology starting from task analysis
to interaction sequence generation.

2 cm

Segment

Point1

Point2

Figure 3: Creation of a circle

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 9 -

4 .1 Usability Properties

As detailed in the previous section of this paper, our research focuses on CAD
systems. These systems usually gather a very important set of functions. In such
context, our aim is twofold: we want to make sure that all these functions are
reachable for the user, and consistent with the domain objects. So, following Dix and
al. [Dix, et al. 1998] in §4.3.3, we have to check both Reachability and Task
completeness.

Reachability

On the one hand, our goal is to check that the system implements the full set of
user's tasks given in the user interface specifications. More precisely, we want to
make sure that the system accepts and recognises the sequence of user interactions
–command selection, object designation, etc.– used to perform each task given in the
specifications, and each of its variants. So, from the A. Dix and al. point of view, we
want to ensure Reachability which "refers to the possibility of navigation through the
observable system states".

Reachability is a common usability principle. This principle may be checked by the
way of verification of formal specifications. As for example, P. Palanque et al. use an
object-oriented Petri nets formalism and a model checking method to prove some
Reachabily properties [Palanque, Bastide, & Sengès 1995]. The Y. Aït-Ameur et al.
approach is quite different: they use the B method and theorem proving to ensure this
principle [Aït-Ameur, Girard, & Jambon 1998].

Our approach in this paper is significantly different: we want to validate the
Dialogue Controller of an existing application. We do not provide any model of the
final system –in fact we use the binary code of the Dialogue Controller itself. We just
need a model of the user tasks performed in an independent way by a specialist of
human factors. Another difference is in the scale: we need a complete coverage
validation of the system, not only partial proofs.

Task completeness

On the other hand, we want to ensure that the modifications of the domain objects
are consistent with the user's tasks. In other words, we must show that the side effects
of the user's tasks on the Functional Core can be linked with the user's goal, i.e. the
system does exactly what the user wants it to do. So, from the A. Dix and al. point of
view, we want to ensure Task completeness which "refers to the level to which the
system services can be mapped onto all the user tasks".

Task completeness is a usability principle rather difficult to prove, because one has
to bridge the gap between user's goals and system Functional Core. In our approach,
we want to check that the Functional Core methods called by the Dialogue Controller
during user interaction are consistent with the goal and sub-goals defined in the task
analysis. This way, we only make the validation on the Dialogue Controller. So, to
ensure full Task completeness, we make the assumption that the Functional Core

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 10 -

methods are functionally correct. Such validation of the Functional Core can be carried
out separately.

4 .2 Task Model

The first step of our validation method is a task analysis, which is supposed to be
performed by a specialist in human factors. This task analysis gathers all the possible
interactions performed by the user to achieve his goal. And in CAD systems, these
user's goals are creations of conceptual objects in the model, modifications or requests
for information on these objects.

Typical user's tasks of CAD systems –see §3– are structured. They can be modelled
by a classical task/sub-task tree corresponding to a goal/sub-goal hierarchical analysis.
In our task model, as in MAD, sub-tasks can be re-used, but cycles and recursivity are
forbidden. Moreover, the set of temporal relationships between tasks is restricted to
sequence, alternative, and order independence. So our task model is limited to this set
of relationships.

We defined a new and simple task model for our kind of applications. This model
can be considered as a simplified version of HTA [Shepherd 1989] or MAD [Scapin &
Pierret-Golbreich 1990] notations underlying model. The resulting task model will
enable us to generate all the possible user's interaction sequences.

4 .3 User's Interaction Sequences

It is not straightforward to validate the Dialogue Controller directly from a user's
tasks model. However, it is easy to check if a sequence of user's interactions is valid:
one just have to do it with the system and see what happened. Our validation method
follows a similar principle: we validate the user's interaction sequences one by one.

To do so, we use the task analysis to generate all the possible interaction sequences.
These sequences are automatically generated by the way of a classical tree traversal
–cycles and recursivity are forbidden from our task model. All the possible sequences
are generated, so, we ensure a complete coverage validation of the application. These
sequences are finally sent to the system to be validated.

4 .4 Dialogue Component Validation

We assume that the target system has been implemented with the Arch architecture
model [Bass et al. 1992]. In fact, our case study has been implemented with the H4

architecture model –see §3.5– which is a variant of the Arch model. Our aim is to
validate the Dialogue component of the final application.

As shown on figure 4, the principle of our validation method is to generate the
complete set of possible user interaction sequences from the task analysis. Then, this
set is injected in the Dialogue Component of the real application via a modified
Presentation Component. Then, the application is launched and the Dialogue

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 11 -

Component calls to the Domain Specific Component –the Functional Core– via the
Domain Adaptor Component are intercepted, and compared with the user's goal. If
they match exactly, the sequence of interactions is assumed to be valid.

Domain
Specific

Component

Domain
Adaptor

Component

Dialogue
Component

Presentation
Component

Interaction
Toolkit

Component

=

Validation

Calls to
Functionnal Core User's goals

User's
interactions

User's
Interaction
sequences

Figure 4: Dialogue component validation principle in the Arch model

This validation principle considers the Dialogue Component as a black box. No
assumptions are made about the internal architecture of this component. It must
onlyto respect the Application Programming Interface of both the Presentation and the
Domain Adaptor Components which is reused by the modified components. So, it is
possible to use the binary code of an existing application directly, provided the
programming language accept post-compilation linkage.

5. Case study

This section deals with a validation example. We apply the validation principles
exposed in the previous section (4) to a case study: MiniCAD, an application of the
GIPSE system. In this section, we first describe the main features of MiniCAD, and
then we relate the validation process from task analysis to error trace generation.

5 .1 Test Application

The GIPSE system is a prototype of a CAD application with an integrated
Programming by Example Interface Generator [Patry & Girard 1997]. GIPSE is
implemented with the H4 architecture model described in §3.5. We use a part of this
system, called MiniCAD, as our case study. Briefly speaking, the MiniCAD
application implements basic CAD functions –objects drawings, objects selections,
etc.– and enables structured dialogue modes, but does not include any programming by
demonstration generator.

Although MiniCAD is a prototype with very little functions available –compared
with a real world CAD system– a huge set of user interactions are possible. As a

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 12 -

consequence, the system cannot be validated “by hand”. So, we develop a tool to do
so. We test this tool on the complex structured task previously described: «creating a
circle, which centre is the projection of a point on a segment, and which radius is half
the distance between a second point and the extremity of the segment» (see fig. 3). For
user convenience, the system allows the user either entering first the centre or the
radius of the circle. The circle’s radius can also be given in a simpler way by typing
directly its value.

5 .2 Task Description Grammar

The task of creating a circle can easily be written down by a specialist in human
factors thanks to a graphical formalism, like HTA or MAD. We use a simplified
version of this latter formalism to express the task of creating a circle. MAD [Scapin
& Pierret-Golbreich 1990] is a graphical formalism based on temporal relationships
and task/sub-task decomposition. We use as temporal relationships the more relevant
operators of an enhanced version of MAD, MAD* [Hammouche 1995]. Among these
operators, we use:

• AND which means that the tasks must be executed both in any order ;
• OR which means that only one of the tasks must be executed ;
• SEQ which means that the tasks must be executed both, and in sequence.

The figure 5 shows the resulting specification. In this diagram, the sentences in
rectangles are tasks whereas sentences in Italics are final atomic tasks directly executed
by the user on the interface, as selecting an object by a mouse click or a typing of a
number with the keyboard.

create_circle

projection

select_point select_segment

point 1 segment

real multiplication

real distance

select_point extremity

select_segmentpoint 2

segment

2 cm

Segment

Point1

Point2

AND

SEQ

OR

SEQ

SEQ

Figure 5: Task of creating a circle in a simplified version of the MAD formalism.

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 13 -

Of course, our sequence generator cannot directly interpret the diagram on figure 5.
So, we define a task grammar. Both representations –graphical and text– are
equivalent. The tool to translate the graphical representation to the textual one is not
yet implemented. Consequently, the task description shown on figure 6 has been
translated manually from the MAD description (fig. 5).

task 1

command : create_circle
result : circle
parameter : position=<11>
& parameter : real=a_real / <13>

sub-task 11
command : projection
result : position
parameter : point=<111>
parameter : segment=<112>

end sub-task

sub-task 13
command : multiplication
result : real
parameter : real=a_real
parameter : real=<12>

end sub-task

sub-task 12
command : distance
result : real
parameter : point=<121>
parameter : position=<122>

end sub-task

sub-task 122
command : extremity
result : position
parameter: segment=<1221>

end sub-task

sub-task 111
command : select_point
result : point
parameter: position=a_position

end sub-task

sub-task 112
command : select_segment
result : segment
parameter : position=a_position

end sub-task

sub-task 121
command : select_point
result : point
parameter : position=a_position

end sub-task

sub-task 1221
command : select_segment
result : segment
parameter : position=a_position

end sub-task

end task

 Figure 6: Task of creating a circle in our task grammar.

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 14 -

In our task grammar, the tasks and sub-tasks are numbered. Each task (resp. sub-
task) description begins with the keyword task (resp. sub-task) and ends with the same
keyword with the word end before. Then, three types of fields must be fulfilled:

• The command field refers to the command activated by the user, for example,
the menu's item he must select in order to accomplish his task ; this field is
also used to check the Functional Core calls ;

• The result field is the type of conceptual object the task or sub-task is
supposed to produce, for example, the sub-task extremity (of a segment)
command returns a position;

• The parameter field gives information about the sub-tasks of the present task:
- First, it gives the type of the expected conceptual object (position

or real for example);
- Second, it gives the possible sub-tasks, which can be either the

number of a sub-task (<11> for example) or an atomic action
(a_position or a_real for example); these sub-tasks are supposed to
produce the conceptual object type expected ;

- Third, a temporal operator can be used to set the relationships
among the order of parameters –in fact sub-tasks– or the use of
more than one sub-task as a parameter. These operators are
equivalent to MAD operators: “&” is equivalent to AND, “/” is
equivalent to OR, and the SEQ operator is default.

5 .3 Dialogue Sequences Generator

From the task analysis, we can extract the user's interaction sequences. Our task
model does not allow neither recursivity nor cycle, so, the task/sub-task analysis
specify a finite number of user's interaction sequences. Consequently, we can achieve a
complete coverage validation of the Dialogue component of the MiniCAD
application.

We develop a tool to extract automatically all these possible interaction sequences.
The task analysis (fig. 6) gives four possible interaction sequences. We reprint two of
them on figure 7. The syntax of the interaction sequences in similar to the task
grammar syntax, except that each sequence begins with the keyword SEQUENCE and
ends with the keyword END_SEQUENCE. When commands are issued by the user
(create_circle or select_point for example) the “COMMAND :” sentence is added before the
command name. When the user’s actions are atomic actions (a_position or a_real for
example), their names are directly printed.

SEQUENCE
COMMAND : create_circle
a_reel
COMMAND : projection
COMMAND : select_point
a_position
COMMAND : select_segment
a_position

END_SEQUENCE

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 15 -

SEQUENCE

COMMAND : create_circle
COMMAND : projection
COMMAND : select_point
a_position
COMMAND : select_segment
a_position
COMMAND : multiplication
a_reel
COMMAND : distance
COMMAND : select_point
a_position
COMMAND : extremity
COMMAND : select_segment
a_position

END_SEQUENCE

…

 Figure 7: Interaction sequences.

5 .4 Test Platform

Our case study is the MiniCAD application (fig. 8). MiniCAD was developed in the
ADA95 language with the H4 architecture model. Our test platform re-uses the
Dialogue Component of the MiniCAD application to validate it.

Figure 8: MiniCAD application after the completion of the task “drawing a circle”.

In order to make the mapping between the command names of the task analysis
done by the human factors specialist –in English in our case study– and the names of
functions implemented by the MiniCAD programmer –in French in our case study–

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 16 -

we need an association table. This table embodies the links between terminal tasks and
functions of the CAD system. This table is in fact the only formal link between the
human factor domain and the Application Programming Interface (API). The filling of
this table needs cooperation between the designers. This table are to be filled only
once in the design process, because the task names as well as the API are usually
reused for new application versions. It must be update if new tasks are added or API
are changed. Figure 9 gives an excerpt of the table we use, in which task analysis
command names are on the left side of the “=” symbol, whereas the API methods are
on the right one.

command : create_circle = COMMANDE : creation.cercle
command : create_segment = COMMANDE : creation.segment
command : create_point = COMANDE : creation.point
command : multiplication = COMMANDE : calc.multiplication
command : projection = COMMANDE : calculs.projection
command : distance = COMMANDE : calculs.distance
command : select_circle = COMMANDE : designation.cercle
command : select_segment = COMMANDE : designation.segment
command : select_point = COMMANDE : designation.point
command : extremity = COMMANDE : information.extremite

…

a_reel : = REEL :
a_position : = POSITION :
a_segment : = SEGMENT :
a_point : = POINT :
a_circle : = CERCLE :

…

 Figure 9: Excerpt from the association table.

For the test platform, we made a new version of the Presentation component and the
Domain Adaptor Component but the Dialogue Component is exactly the same as the
one of the MiniCAD application (fig. 10):

• The Presentation Component takes the simulated user's interaction sequences
and the association table files as inputs, makes the mapping between the
sequences and API functions –tokens in the H4 model– and then, activates the
Dialogue Component.

• The Domain Adaptor Component has the same API as the MiniCAD
application but does not call the Domain Specific Component. This module
compares the Dialogue Component calls to the expected commands. When
the command called are not the expected ones, or if no command has been
called, the test system produces an error for the corresponding sequence. Every
error is written in the output file.

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 17 -

H1

Interation toolkit
component

Domain adaptator
component

Questionaries implementation

H3

Domain specific
component

Conceptual objects
hierarchy

H2

Dialogue
component

Control interactors
hierarchy

H4

Presentation
component

Space
transformation

hierarchy

Low-level I/O
interactors
hierarchy

Projection

Projection

Tokens

Tokens

Questionaries

USER

Test results

M
od

ifi
ed

Interaction
sequences

Association
table

expected
methods

M
od

ifi
ed

 Figure 10: Test platform architecture.

5 .5 Execution Traces

We have identified three major validation errors:

• The method called by the Dialogue Component via the Domain Adaptor
Component does not exist in the Domain Specific Component API ;

• The method called is not the expected one, e.g., a rectangle is created, whereas
a circle is expected.

• No method is called by the Dialogue Component at the end of the sequence.

These errors may be symptoms of either task analysis error or Domain Specific
Component bugs. So, they can be rather difficult to interpret by the design team.
However, our main goal is to check a huge number of interaction sequences to validate
the system as a whole, i.e., to answer the designer “yes all is OK” or “no, there is a
problem”.

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 18 -

6. Conclusion

[Fields, Merriam, & Dearden 1997] define focus shifts as new trends for works in
DSV-IS papers. In the specific point of validation, our proposal addresses many of
them. Shifting from prescription to description, we propose a simple way to describe
examples of tasks we want the system to be able to do. Starting from that point, a
validation can be done: the analysis performed can determine whether or not the
system supports the task. So doing, we also address the need for shifting from
verification to validation.

Shifting from general to specific notations allows a great operability. Our model of
task description is simple, and allows the automation of the validation process. We are
able to perform validation of an existing dialogue component after its design.
Moreover, the capabilities of the test platform enable designers to check quickly,
while developing a new software version, a huge number of sequences. Doing so, they
might prove that a new version is backward compatible with the previous one.

Nevertheless, many points have to be enhanced. The link between terminal tasks
and functions of the CAD system is hand-made. With the possible great number of
functions (so terminal tasks), a more automated mechanism to establish this link is
needed. Methods such as Programming by Demonstration [Cypher 1993] might be
used to enforce the usability of our tools. In the same way, a graphical tool might be
preferable to pure textual methods. At last, the adaptation of this methodology to
other application fields might also be interesting. We also plan to generate interaction
sequences not at the Presentation Component level but at a lower level, i.e., at the
Interaction Toolkit Component level in order to reduce system code modifications.

7. Bibliography

[Abowd, Wang, & Monk 1995] Abowd G.D., Wang H.-M., & Monk A.F. A Formal
Technique for Automated Dialogue Development. DIS'95, Ann Arbor, Michigan, August
23-25 1995. p. 219-226.

[Abrial 1996] Abrial J.-R. The B Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[Accott et al. 1997] Accott J., Chatty S., Maury S., & Palanque P. Formal transducers:
Models of devices and building bricks for the design of highly interactive systems.
Eurographics Workshop on Design, Specification, Verification of Interactive Systems,
Granada, Spain, June 4-6 1997. p. 143-160.

[Aït-Ameur, Girard, & Jambon 1998] Aït-Ameur Y., Girard P., & Jambon F. Using the B
formal approach for incremental specification design of interactive systems. IFIP
Working Conference on Engineering for Human-Computer Interaction (EHCI'98),
Heraklion (Crete), Greece , 14-18 September 1998. p. {to be published}.

[Andrews & Ince 1991] Andrews D. & Ince D. Practical Formal Methods with VDM.
McGraw-Hill, 1991.

[Bass et al. 1992] Bass L., Faneuf R., Little R., Mayer N., Pellegrino B., Reed S., Seacord
R., Sheppard S., & Szczur M.R. A Metamodel for the Runtime Architecture of an
Interactive System. SIGCHI Bulletin, 1992. vol. 24, n° 1, p. 32-37.

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 19 -

[Brun 1997] Brun P. XTL: a temporal logic for the formal development of interactive
systems. Formal Methods for Human-Computer Interaction, Springer-Verlag, 1997. p.
121-139.

[Bumbulis et al. 1996] Bumbulis P., Alencar P.S.C., Cowan D.D., & Lucena C.J.P.
Validating properties of component-based graphical user interfaces. Third International
Eurographics Workshop on Design, Specification, and Verification of Interactive
Systems (DSV-IS'96), Namur, Belgium, 5-7 June 1996. p. 347-365.

[Campos & Harrison 1997] Campos J.C. & Harrison M.D. Formally Verifying Interactive
Systems: A Review. Eurographics Workshop on Design, Specification, Verification of
Interactive Systems, Granada, Spain, June 4-6 1997. p. 109-124.

[Cypher 1993] Cypher A. Eager : Programming Repetitive Tasks by Demonstration. Watch
What I Do, Cambridge : The MIT Press, 1993. p. 205-217.

[D'Ausbourg 1998] D'Ausbourg B. Using Model Checking for the Automatic Validation of
User Interface Systems. Eurographics Workshop on Design, Specification and Validation
of Interactive Systems (DSV-IS'98), Abingdon, UK, 1998. p. 242-260.

[Dijkstra 1976] Dijkstra E. A Discipline of Programming. Englewood Cliff (NJ), USA :
Prentice Hall, 1976.

[Dix et al. 1998] Dix A., Finlay J., Abowd G., & Beale R. Human-Computer Interaction.
Prentice Hall, 1998.

[Dix 1991] Dix A.J. Formal Methods for Interactive Systems. London, UK : Academic
Press, 1991.

[Duke & Harrison 1993] Duke D.J. & Harrison M.D. Towards a Theory of Interactors.
Amodeus Esprit Basic Research Project 7040, 1993 System Modelling/WP6.

[Fields, Merriam, & Dearden 1997] Fields B., Merriam N., & Dearden A. DMVIS: Design,
Modelling and Validation of Interactive Systems. Eurographics Workshop on Design,
Specification, Verification of Interactive Systems, Granada, Spain, June 4-6 1997. p. 29-
44.

[Green 1986] Green M.W. A Survey of three Dialogue Models. ACM Transactions on
Graphics. 1986. vol. 5,n° 3, p. 244-275.

[Guittet 1995] Guittet L. Contribution à l'Ingéniérie des Interfaces Homme-Machine -
Théorie des Interacteurs et Architecture H4 dans le système NODAOO. Thèse de Doctorat :
Université de Poitiers, Poitiers, 1995.

[Hammouche 1995] Hammouche H. De la modélisation des tâches utilisateurs à la
spécification conceptuelle d'interfaces Homme-Machine. PhD : Paris VI, 1995.

[Hussey & Carrington 1997] Hussey A. & Carrington D. Specifying a Web Browser
Interface Using Object-Z. Formal Methods for Human-Computer Interaction, Springer-
Verlag, 1997. p. 157-174.

[Markopoulos, Johnson, & Rowson 1997] Markopoulos P., Johnson P., & Rowson J.
Formal Aspects of Task Based Design. Design, Specification and Verification of
Interactive Systems (DSV-IS'97), Granada, Spain, June 4-6 1997. p. 209-224.

[Norman 1986] Norman D. User Centered System Design. Lawrence Erlbaum Associates,
1986.

[Olsen 1992] Olsen D.R. User Interface Management Systems: Models and Algorithms. San
Mateo (CA), USA : Morgan Kaufmann, 1992.

Jambon F., Girard P., & Boisdron Y. Dialogue Validation from Task Analysis. Eurographics
Workshop on Design, Specification, and Verification of Interactive Systems (DSV-IS'99), Eds. D.J. Duke
& A. Puerta. Springer-Verlag, Universidade do Minho, Braga, Portugal, 2-4 June 1999, pp. 205-224.

- 20 -

[Palanque 1992] Palanque P. Modélisation par Objets Coopératifs Interactifs d'interfaces
homme-machine dirigées par l'utilisateur. PhD : Toulouse I, Toulouse, 1992.

[Palanque & Bastide 1995] Palanque P. & Bastide R. Task Models - System Models: a
Formal Bridge over the Gap. Critical Issues in User Interface Engineering, London :
Springer-Verlag, 1995. p. 65-80.

[Palanque, Bastide, & Sengès 1995] Palanque P., Bastide R., & Sengès V. Validating
interactive system design through the verification of formal task and system models. IFIP
TC2/WG2.7 working conference on engineering for human-computer interaction
(EHCI'95), Grand Targhee Resort (Yellowstone Park), USA, 14-18 August 1995. p. 189-
212.

[Paternó & Faconti 1992] Paternó F. & Faconti G.P. On the LOTOS use to describe
graphical interaction. Cambridge University Press, 1992. p. 155-173.

[Paternò, Mancini, & Meniconi 1997] Paternò F., Mancini C., & Meniconi S.
ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models. IFIP TC13
human-computer interaction conference (INTERACT'97), Sydney, 1997. p. 362-369.

[Patry & Girard 1997] Patry G. & Girard P. From Adaptable Interfaces to Model-Based
Interface Development: The GIPSE Project. Third Annual ERCIM Workshop on "User
Interfaces for All", Obernai, France, 3-4 november 1997. p. 127-133.

[Pfaff 1985] Pfaff G.E. User Interface Management Systems, Proceedings of the Workshop
on User Interface Management Systems held in Seeheim. Eurographic Seminars. Berlin :
Springer-Verlag, 1985.

[Pierra 1995] Pierra G. Towards a taxonomy for interactive graphics systems. Eurographics
Workshop on Design, Specification, Verification of Interactive Systems, Bonas, June 7-
9 1995. p. 362-370.

[Roller 1990] Roller D. Dimension-Driven Geometry in CAD: a Survey. Theory and
Practice of Geometric Modeling, Springer-Verlag, 1990. p. 509-523.

[Scapin & Pierret-Golbreich 1990] Scapin D.L. & Pierret-Golbreich C. Towards a method
for task description : MAD. Work with display units 89, Elsevier Science Publishers,
North-Holland, 1990.

[Shepherd 1989] Shepherd A. Analysis and training in information technology tasks. Task
Analysis for Human-Computer Interaction, Chichester, USA : Ellis Horwood, 1989. p.
15-55.

[Spivey 1988] Spivey J.M. The Z notation: A Reference Manual. Prentice Hall Int., 1988.

[Woods 1970] Woods W. Transition Network Grammars for Natural Language Analysis.
Communications of the ACM. 1970. vol. 13,n° 10, p. 591-606.

