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Large deviations and the emergence of a logarithmic delay in a nonlocal Fisher-KPP equation

We study a variant of the Fisher-KPP equation with nonlocal dispersal. Using the theory of large deviations, we show the emergence of a "Bramson-like" logarithmic delay for the linearised equation with step-like initial data. We conclude that the logarithmic delay emerges also for the solutions of the nonlinear equation. Previous papers found very precise results for the nonlinear equation with strong assumptions on the decay of the kernel. Our results are less precise, but they are valid for all continuous symmetric thin-tailed kernels.

Introduction

We are concerned with the spreading properties of the solution of the Fisher-KPP equation with nonlocal dispersal

∂ t v(t, x) = [J * v(t, x) -v(t, x)] + f (v(t, x)) t > 0, x ∈ R, v(0, x) = 1 (-∞,0] (x) x ∈ R, (1) 
where J * v(t, x) = R J(y)v(t, x -y) dy.

We shall look for the emergence of a "Bramson-like" logarithmic delay. Here, the reaction term f is monostable and satisfies the KPP condition, and the dispersal kernel J is thin-tailed. These assumptions are precised and explained below.

The Cauchy problem (1) is akin to the classical (local) Fisher-KPP equation [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] ∂ t w(t, x) = ∂ xx w(t, x) + f (w(t, x)) t > 0, x ∈ R, w(0, x) = 1 (-∞,0] (x)

x ∈ R,

but the diffusion term ∂ xx w is replaced by the nonlocal dispersal term J * v -v.

In both Cauchy problems (1) and ( 2), under suitable assumptions on the reaction term f , the maximum principle holds and implies that 0 ⩽ v ⩽ 1 and 0 ⩽ w ⩽ 1 (see [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] for the local equation and [START_REF] Yagisita | Existence and nonexistence of traveling waves for a nonlocal monostable equation[END_REF] for the nonlocal equation). Therefore, in biological models, one can see v(t, x) and w(t, x) as the environment occupancy by an invading species at time t and at location x. For example, the Cauchy problem [START_REF] Addario-Berry | Minima in branching random walks[END_REF] arises in [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF] as the infinite particle limit of a stochastic process modelling the range expansion of a plant. In this model, which stems from [START_REF] Bolker | Using moment equations to understand stochastically driven spatial pattern formation in ecological systems[END_REF][START_REF] Law | Moment approximations of individual-based models[END_REF], the reaction term f (v) corresponds to the demography (birth and death) of individuals subject to competition, while the dispersal term J * v -v (which is the generator of a jump process) describes the dispersal of the seeds. As 1 2 ∆ is the generator of Brownian motion, the local equation ( 2) usually models small and frequent movements, as in the model of Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF]. See also [START_REF] Skellam | Random dispersal in theoretical populations[END_REF][START_REF] Turchin | Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants[END_REF] for related models.

Although our primary interest lies in the Cauchy problem [START_REF] Addario-Berry | Minima in branching random walks[END_REF], we shall focus on the linearised equation

∂ t u(t, x) = [J * u(t, x) -u(t, x)] + ru(t, x) t > 0, x ∈ R, u(0, x) = 1 (-∞,0] (x) x ∈ R, (3) 
where r := f ′ (0) > 0. The behaviour of the linear equation seems simpler to understand.

From the study of the solutions of (3), we shall deduce a similar (weaker) result on the solutions of [START_REF] Addario-Berry | Minima in branching random walks[END_REF]. Now, let us focus on known results about the local equation, which has already been widely studied. We say that the reaction term f is monostable when it satisfies f ∈ C 1 ([0, 1]), f ′ (0) > 0, f (0) = f (1) = 0, ∀u ∈ (0, 1) , f (u) > 0. (4)

We assume throughout that the reaction term f is monostable. The solution w of the local Cauchy problem [START_REF] Alfaro | Quantifying the threshold phenomena for propagation in nonlocal diffusion equations[END_REF] is then known to propagate with a finite speed c * > 0 ( [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF], Theorems 4.1 and 4.3), in the sense that lim t→+∞ w(t, c ′ t) = 0 for all c ′ > c * , lim t→+∞ w(t, c ′′ t) = 1 for all c ′′ ∈ (0, c * ).

(
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The speed c * that satisfies [START_REF] Bolker | Using moment equations to understand stochastically driven spatial pattern formation in ecological systems[END_REF] is called the critical speed. A travelling wave of speed c is a solution w of the local equation that can be written in the form w(t, x) := W (x -ct), where W : R → [0, 1] satisfies W (-∞) = 1 and W (+∞) = 0. The function W is called the profile of the travelling wave, and has the shape of an interface between the invaded zone, where W ≃ 1, and the non-invaded zone, where W ≃ 0. The solution of the Cauchy problem (2) converges "in shape" to the unique positive travelling wave of critical speed c * [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF][START_REF] Uchiyama | The behavior of solutions of some non-linear diffusion equations for large time[END_REF]. We thus say that an invasion front appears in the solution. Now, we might wonder where exactly the invasion front is: is it really "near" the travelling wave? More precisely, given any level ρ ∈ (0, 1), let θ ρ loc (t) be the largest position such that w(t, θ ρ loc (t)) = ρ. The goal is to compare θ ρ loc (t), which represents the position of the invasion front, to c * t, which is the position of the travelling wave with minimal speed.

The KPP condition on the reaction term f is defined by

∀u ∈ [0, 1] , f (u) ⩽ f ′ (0)u. (6) 
The KPP condition means that the per-capita growth rate f (u)/u is maximal at 0. In biological models, it implies that there is no Allee effect (e.g., [START_REF] Turchin | Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants[END_REF]). When the KPP condition is satisfied, the critical speed is known to be c * = 2λ, with λ = f ′ (0) [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF]. Bramson, in [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF], showed that if f ′ (u) is maximal at u = 0 (which implies that the KPP condition is satisfied), and if the initial condition is 1 (-∞,0] , then the invasion front is located well behind the position x = c * t. More precisely, he showed

θ ρ loc (t) = c * t -s ln(t) + O t→+∞ (1) with s = 3 2λ , ( 7 
)
where λ = f ′ (0). The term -s ln(t) is called the (Bramson) logarithmic delay. The same year, Uchiyama [START_REF] Uchiyama | The behavior of solutions of some non-linear diffusion equations for large time[END_REF] proved a slightly less precise result, but for much more general initial conditions and more general reaction term: the KPP condition is almost sufficient. A few years later, keeping the assumption that f ′ (u) is maximal at u = 0, Bramson showed that in fact the term O( 1) can be turned into a term C + o(1) for some constant C ∈ R (which depends on the initial condition). Moreover, he extended again the class of initial conditions for which [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF] holds, and for which the solution converges to a travelling wave. His proofs use the so-called McKean representation with a branching Brownian motion [START_REF] Mckean | Application of Brownian Motion to the Equation of Kolmogorov-Petrovskii-Piskunov[END_REF][START_REF] Skorokhod | Branching Diffusion Processes[END_REF]. Lau [START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF] gave a new proof of Bramson's latter result, with the same assumptions, but using analytic techniques. Likewise, more recently, the emergence of the logarithmic delay in [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF] has been proved thanks to interesting analytic techniques [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF], for initial conditions with a support bounded from above and for reaction terms satisfying the KPP condition. For example, the techniques of [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF] have been used in [START_REF] Nolen | Convergence to a single wave in the Fisher-KPP equation[END_REF][START_REF] Nolen | Refined long-time asymptotics for Fisher-KPP fronts[END_REF] to prove refinements of (7) up to order 1 √ t (which before had been found formally in [START_REF] Ebert | Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts[END_REF]).

Bramson and Uchiyama's results, with their extensions, induce that in the local equation, when the KPP condition is satisfied and when the initial condition decreases sufficiently fast, the shift between the position θ ρ loc of the invasion front and the position c * t is unbounded. Such a situation does not always occur. See the works of Rothe [START_REF] Rothe | Convergence to pushed fronts[END_REF] and of Fife and McLeod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] for the study of reaction terms that give rise to bounded shifts. See also the work of Giletti [START_REF] Giletti | Monostable pulled fronts and logarithmic drifts[END_REF] for the study of general monostable reaction terms (that is, satisfying (4) but not necessarily (6)), which always give rise to unbounded shifts.

Much fewer articles have focused on nonlocal equations. The emergence of a logarithmic delay has been shown for other nonlocal variants of the classical Fisher-KPP equation. The case of a competition that is nonlocal in space has been studied in [START_REF] Penington | The spreading speed of solutions of the non-local Fisher-KPP equation[END_REF] (using probabilistic arguments) and in [START_REF] Bouin | The Bramson delay in the non-local Fisher-KPP equation[END_REF] (using analytic arguments). In the latter, the authors also showed that for a slowly-decaying competition kernel, the delay takes an algebraic form. The case of a phenotype-dependent equation with a competition that is nonlocal in phenotype and a diffusion rate that depends on the phenotype, the "cane-toad equation", has been studied in [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF].

We now turn our attention to the results we have at hand for the nonlocal Cauchy problems of interest (1) and (3). Here, the nonlocality is on the movements, not on the competition. Throughout this work, we assume that J satisfies the assumptions:

J ∈ C 0 (R), J ⩾ 0, R J = 1, ∀x ∈ R, J(x) = J(-x), (8) 
together with the assumption:

There exists L > 0 such that R e L|x| J(x) dx < +∞. (9) 
Assumption [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF] means that the dispersal kernel is thin-tailed. It means that individuals usually do not move too far away from their origin, and it implies that travelling waves do exist. If the tail of J is too heavy, the invasion is accelerating [START_REF] Garnier | Accelerating Solutions in Integro-Differential Equations[END_REF][START_REF] Kot | Dispersal Data and the Spread of Invading Organisms[END_REF]. When the invasion is accelerating, auto-similar travelling waves cannot exist due to a flattening of the solutions [START_REF] Garnier | Transition fronts and stretching phenomena for a general class of reaction-dispersion equations[END_REF].

The assumption that J is symmetric is made for convenience but is not essential (see [START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF]). Under those assumptions ( 8) and ( 9) on the dispersal kernel J and the monostability assumptions (4) on the reaction term f , the Cauchy problem is well-posed (see e.g. the argument at the beginning of [START_REF] Yagisita | Existence and nonexistence of traveling waves for a nonlocal monostable equation[END_REF]) and, as in the local case, there exists a minimal speed for travelling waves, called the critical speed [START_REF] Coville | On a non-local equation arising in population dynamics[END_REF][START_REF] Schumacher | Travelling-front solutions for integro-differential equations. I[END_REF]. For the nonlocal equation, we denote by c the critical speed. When the KPP condition ( 6) is satisfied, the expression of c is explicit:

c = inf λ>0 M (λ) + r -1 λ with M (λ) = R e λx J(x) dx. (10) 
Since the function λ → (M (λ) + r -1)/λ is strictly convex and goes to infinity as λ → 0 and as λ → +∞, the infimum is reached at a unique λ r > 0, which thus satisfies

c = M (λ r ) + r -1 λ r . ( 11 
)
Under mild additional assumptions on the kernel J, the critical speed c satisfies the propagation property (5) for all nonzero solutions v with an initial support bounded from above (replacing w by v in ( 5)). See [START_REF] Lutscher | The effect of dispersal patterns on stream populations[END_REF], Theorem 3.2. Recently, Graham [START_REF] Graham | The Bramson correction for integro-differential Fisher-KPP equations[END_REF] showed that the logarithmic delay (7) can also arise for the nonlocal equation ( 1). He assumes that f satisfies the KPP condition. He also makes a slightly technical assumption on the kernel J, which holds if J has a compact support or is Gaussian, but may fail for other thin-tailed kernels. Roquejoffre [START_REF] Roquejoffre | Large time behaviour in nonlocal reaction-diffusion equations of the Fisher-KPP type[END_REF], assuming that J has a compact support, was able to turn the term O(1) into C + o(1) (for some C ∈ R). The techniques in both works are close to those of [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF] (Graham combines them with a probabilistic argument, and Roquejoffre uses a refinement as in [START_REF] Nolen | Convergence to a single wave in the Fisher-KPP equation[END_REF]). Our goal is to relax their conditions on J and to treat the general case of thin-tailed kernels. A first step towards this goal is to work on the linear Cauchy problem and, using the maximum principle, to find an upper bound for the position of the invasion front for the nonlinear Cauchy problem.

One specificity of this work is the use of the large deviation theory. In the works cited above, there are essentially two kinds of proofs: those that use analytic tools, as in [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF][START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Giletti | Monostable pulled fronts and logarithmic drifts[END_REF][START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF][START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF][START_REF] Nolen | Refined long-time asymptotics for Fisher-KPP fronts[END_REF][START_REF] Roquejoffre | Large time behaviour in nonlocal reaction-diffusion equations of the Fisher-KPP type[END_REF][START_REF] Rothe | Convergence to pushed fronts[END_REF] and those that use probabilistic tools, as in [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF][START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF][START_REF] Mckean | Application of Brownian Motion to the Equation of Kolmogorov-Petrovskii-Piskunov[END_REF][START_REF] Penington | The spreading speed of solutions of the non-local Fisher-KPP equation[END_REF][START_REF] Uchiyama | The behavior of solutions of some non-linear diffusion equations for large time[END_REF]. Graham and Uchiyama combine both kinds of proofs. The methods here are probabilistic. We shall use a Feynman-Kac representation of the solution. Then, we shall use the large deviation theory to estimate precisely the terms of the sum that will arise. In fact, it seems natural to use the large deviation theory in the problem we have raised, because we are mainly concerned with the extreme behaviour of individuals modelled by the solution of the Cauchy problem -much as the large deviation theory is concerned with the extreme values of random processes.

Note however that the use of the large deviation theory is not new in the study of local or nonlocal Fisher-KPP equations. Freidlin [START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF] uses a large deviation principle over the paths of a Brownian motion to determine the area covered by the solution in a heterogeneous environment. A recent preprint [START_REF] Alfaro | Quantifying the threshold phenomena for propagation in nonlocal diffusion equations[END_REF] deals with an equation close to ours, but with bistable or ignition reaction. The authors use the same Feynman-Kac representation as we do, the terms of which are also estimated thanks to the large deviation theory. With such estimates they are able to derive requirements on the initial condition so that the population persists. Their problem, therefore, is different from ours but their methods are very close. Finally, it is worth to mention [START_REF] Addario-Berry | Minima in branching random walks[END_REF], in which Addario-Berry and Reed deal with branching random walks in discrete time. In his work, Graham [START_REF] Graham | The Bramson correction for integro-differential Fisher-KPP equations[END_REF] explains quickly how, from Addario-Berry and Reed's main result, one can deduce the emergence of the logarithmic delay [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF] for the solution of the nonlinear nonlocal Cauchy problem (1) for a restricted class of monostable reaction terms and general dispersal kernels (he does not enter much into the details because he focuses on general monostable reaction term).

Main results

The first result is a proposition that gives a representation of the solution u(t, x) of the linear Cauchy problem (3). Let J be a kernel that satisfies the hypotheses [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] and [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF]. The kernel J is therefore the density of a probability law. We consider a sequence (X k ) k⩾1 of real independent and identically distributed random variables, following the law of density J. Define the random walk

S n = n k=1 X k .
The following proposition is a Feynman-Kac representation of the solution of the linear Cauchy problem (3). Proposition 2.1. Let (S n ) n⩾1 be the random walk defined above. Let u(t, x) be a solution of the linear Cauchy problem [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF]. Then, for all t ∈ [0, +∞), for all x ∈ R,

u(t, x) = e (r-1)t +∞ n=0 t n n! P (S n ⩾ x) . ( 12 
)
As we look closely at each term of the sum [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], we observe that when x is near the position ct, there is a trade-off between the two factors t n n! and P (S n ⩾ x):

• for t ≃ n, the factor t n n! is large, but the probability P (S n ⩾ x) is small; • for t ≫ n, the probability P (S n ⩾ x) is large but the factor t n n! is small; • for t ≪ n, both the probability P (S n ⩾ x) and the factor t n n! are small.

In fact, we shall understand in the following that for x = ct + o( √ t), the dominant terms of the sum [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] are located around a position n ≃ αt proportional to t. Therefore, when we study u(t, ct), we will have to deal with probabilities of the form P Sn n ⩾ c α , where c α is a constant. The theory of large deviation provides an interesting framework to estimate precisely those very small probabilities as n → +∞, see e.g. the introduction of [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]. These observations will allow us to prove the main result.

Theorem 2.2. Let J be a kernel that satisfies the hypotheses (8) and [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF]. Let u be a solution of the linear Cauchy problem [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF]. Take ρ ∈ (0, 1) and denote by

σ ρ (t) = sup {x ∈ R / u(t, x) ⩾ ρ}
the position of the level ρ of u at time t. We have

σ ρ (t) = ct -s ln(t) + O t→+∞ (1) with s = 1 2λ r ,
where λ r is defined by [START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF].

Remark 2.3. Naturally, as we are currently considering the linear equation, we are not expecting to find exactly the same result as in Equation [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF]. However, we do get the same result with the local counterpart of the linear Cauchy problem (3),

∂ t z = ∂ xx z + rz, r = f ′ (0), (13) 
together with the initial condition z(t, 1) = 1 4π e -x 2 /4 . We then have a simple explicit expression for the solutions of Equation ( 13), z(t, x) = e rx √ 4πt e -x 2 /4t . We now look for the position σ ρ loc (t) such that z(t, σ ρ loc (t)) = ρ. A short computation yields, as t → +∞,

σ ρ loc (t) = 2 √ rt - 1 2 √ r ln(t) + O(1) = c * t - 1 2λ ln(t) + O(1),
which implies the same result as in Theorem 2.2 but for the local equation. Note also that the values λ = f ′ (0) and λ r play a symmetric role for, respectively, the local equation and the nonlocal equation.

Thanks to the maximum principle, we then deduce the following corollary about the nonlinear equation.

Corollary 2.4. Let J be a kernel that satisfies the hypotheses (8) and [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF]. Let f be a reaction term that satisfies the monostability conditions (4) and the KPP condition [START_REF] Bouin | The Bramson delay in the non-local Fisher-KPP equation[END_REF]. Let v be a solution of the nonlinear Cauchy problem [START_REF] Addario-Berry | Minima in branching random walks[END_REF]. Take ρ ∈ (0, 1) and denote by

θ ρ (t) = sup {x ∈ R / v(t, x) ⩾ ρ}
the position of the level ρ of v at time t. We have

θ ρ (t) ⩽ ct -s ln(t) + O t→+∞ (1) with s = 1 2λ r ,
where λ r is defined by [START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF].

Remark 2.5. This corollary is consistent with the main result of Graham [START_REF] Graham | The Bramson correction for integro-differential Fisher-KPP equations[END_REF] which deals with the situation when J has compact support (see above).

Section 3 gives preliminary results about the theory of large deviations; we shall use these results in Subsection 4.2 to prove Theorem 2.2. Subsection 4.1 is devoted to the proof of Proposition 2.1. Finally, Subsection 4.3 is devoted to the proof of Corollary 2.4.

Preliminary results about large deviations

We first focus on the useful notions from large deviations theory. Let J be a dispersal kernel satisfying the hypotheses ( 8) and ( 9) and let X be a real random variable following the law As J decreases at least exponentially fast at ±∞, the set D contains a neighbourhood of 0. The Legendre-Fenchel transform of Λ is denoted by Λ * and plays a fundamental role in the statement of the theorem of Bahadur-Rao. It is defined, for all z ∈ R, by

J. Let D = ζ ∈ R / E e ζX <
Λ * (z) = sup ζ∈D [ζz -Λ(ζ)] ∈ [0, +∞] .
Figure 1 gives a graphical interpretation of the Legendre-Fenchel transform of a (symmetric) convex function.

The following lemma contains general properties of the functions Λ and Λ * (see [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], Lemma 2.2.5). Lemma 3.1. Assume that J satisfies the hypotheses (8) and [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF]. We then have: 

* : ζ m (z) := (Λ ′ ) -1 (z). We have, for all z ∈ D * , Λ * (z) = ζ m (z)z -Λ(ζ m (z)) (14) 
and

(Λ * ) ′ (z) = ζ m (z).
Proof. We sketch the proof of these classical properties (see also [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], Lemma 2.2.5).

• The nonnegativity of Λ comes from Jensen's inequality. Since J is continuous and thin-tailed, Λ is smooth in D;

• The strict convexity of Λ follows: for ζ ∈ D,

Λ ′′ (ζ) = E X 2 e ζX E e ζX -E Xe ζX 2 E [e ζX ] 2 = E (Xe ζX/2 ) 2 E (e ζX/2 ) 2 -E (Xe ζX/2 )(e ζX/2 ) 2 E [e ζX ] 2 > 0,
by the Cauchy-Schwarz inequality (the inequality is strict because X is nonconstant);

• We have

Λ ′ (ζ) = R xe ζx J(x) dx R e ζx J(x) dx → ζ→+∞ sup {supp(J)} , thus: sup ζ∈D Λ ′ (ζ) = sup {supp(J)}.
Moreover, Λ ′ is strictly increasing and smooth. Therefore, Λ ′ is a smooth bijection from D to D * with smooth converse (Λ ′ ) -1 ;

• For z ∈ D * , the supremum in the definition of Λ * (z) is reached when Λ ′ (ζ) = z. We get [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF]. We then deduce that Λ * is finite and smooth over D * . Using ( 14), we get:

(Λ * ) ′ (z) = ζ m (z). Finally, ζ m (z) is increasing, so Λ * is convex.
Let (X k ) k⩾1 be a sequence of independent and identically distributed random variables, following the law J, and define the corresponding random walk (S n ) n⩾1 as in the introduction. We are now ready to state, in our particular case, the theorem of Bahadur-Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF]. This theorem will be useful in the proof of Theorem 2.2. Recall that, for z ∈ D * , we have defined

ζ m (z) = (Λ ′ ) -1 (z).
Theorem 3.2 (Bahadur-Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF]). Take M 1 , M 2 ∈ D * with M 2 > M 1 > 0. The random walk defined above satisfies

P (S n ⩾ nz) = e -nΛ * (z) ζ m (z) 2nπΛ ′′ (ζ m (z)) (1 + o(1)) as n → +∞, ( 15 
)
uniformly in z ∈ [M 1 , M 2 ].
The uniformity is not present in the original paper of Bahadur and Rao, but it has been proved by Petrov in [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF].

Proofs of the main results

Proof of Proposition 2.1

Proof of Proposition 2.1. If u is a solution of the linear Cauchy problem (3), and if we set ũ := e -rt u, then ũ is a solution of the linear equation ∂ t ũ = J * ũũ with the same initial condition. Therefore, we may assume r = 0.

Let (Z t ) t⩾0 be a Poisson process with rate 1 and jump law J, and such that Z 0 = 0 almost surely. The infinitesimal generator of the process (Z t ) t⩾0 is

Gf = J * f -f and, therefore, the function u(t, x) := E [Z t ⩾ x] solves ∂ t u = J * u -u with initial condition u(0, •) = 1 (-∞,0]
. Upon partitioning events according to the number of jumps made by the process in [0, t], we conclude

u(t, x) = +∞ n=0 e -t t n n! P (X 1 + . . . + X n ⩾ x) ,
where e -t t n n!

is the probability that exactly n jumps occurred in [0, t]. This yields the result for r = 0. The conclusion follows by multiplying by e rt . Remark 4.1. An important feature of Proposition 2.1 is that it allows us to work on the discrete-time random walk (X 1 + . . . + X n ) n⩾0 = (S n ) n⩾0 rather than on the continuoustime random walk (Z t ) t⩾0 . In this situation, the theory of large deviations applies more easily. Another method to do the transformation from continuous time to discrete time is to consider the continuous-time random walk (Z t ) t⩾0 restricted to integer times, which gives the discrete-time random walk (Z n ) n⩾0 . The jump law of the process (Z n ) n⩾0 is found by conditioning on the number of jumps made by the process (Z t ) t⩾0 between the times 0 and 1. Hence the sum arising in Proposition 2.1 is directly incorporated into the jump law of (Z n ) n⩾0 . This second method, which is inspired from the introduction of [START_REF] Addario-Berry | Minima in branching random walks[END_REF], should lead to easier computations: one simply has to estimate the probabilities P Z n ⩾ cn -1 2λr ln(n) , and no more sum is involved. We shall rather concentrate on the first method, which seems more interesting from the point of view of modelling: indeed, it explicitly counts the jumps, i.e. the generations. Such a record can be helpful if one wants to take into account the fact, for example, that mutations can arise at each generation.

Proof of Theorem 2.2

Throughout Subsection 4.2, we assume for convenience that sup {suppJ} = +∞, so that Λ * is defined on D * = R (the proof is almost the same if sup {suppJ} < +∞). We consider a nonnegative function m(t) = o( √ t), and we note

x t = ct -m(t).
The function m is intended to represent the delay, while x t is intended to represent the position of the front at time t. Our goal is to estimate u(t, x t ) as t grows to infinity. The idea of the proof is to cut the sum expressing u(t, x t ) given by Proposition 2.1, and to estimate each partial sum independently. We will show that there exists a value α > 0 such that the dominant terms of the total sum are located around ⌊αt⌋. A large part of the proof is devoted to the estimation of those terms, that is, to the estimation of S α-ε,α+ε (t, x t ). We begin with a lemma that estimates the partial sums S a,b (t, x t ). We use a version of the theorem of Bahadur-Rao (Theorem 3.2) to turn the probability P (S n ⩾ x t ) into a more tractable expression. In the proofs, we will sometimes use the notation

u(t, x t ) = e (r-
p(t) = Θ(q(t))
to say that there exist 0 < K -< K + and t 0 > 0 such that for all t ⩾ t 0 , K -q(t) ⩽ p(t) ⩽ K + q(t). There exist K -(a, b), K + (a, b) > 0 such that for t large enough,

K -(a, b) ⌊bt⌋ n=⌊at⌋+1 h t, n t ⩽ S a,b (t, x t ) ⩽ K + (a, b) ⌊bt⌋ n=⌊at⌋+1 h t, n t .
Proof. We shall use the following property, resulting from Theorem 3.2: for every subset V ⊂ (0, +∞), there exists n 0 (V ) such that for all n ⩾ n 0 (V ), for all z ∈ V ,

e -nΛ * (z) 2ζ m (z) 2nπΛ ′′ (ζ m (z)) ⩽ P (S n ⩾ nz) ⩽ 2 e -nΛ * (z) ζ m (z) 2nπΛ ′′ (ζ m (z)) . ( 17 
)
Recall that ζ m (z) is defined in Lemma 3.1.

Step 1: Application of [START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF]. Take

V = c 2b , 2c a . Recall that x t = ct -m(t) where m(t) = o( √ t) is nonnegative.
Therefore, for t large enough and for all integer n between ⌊at⌋ + 1 and ⌊bt⌋, we have x t /n ∈ V . Let n 0 (V ) be the index given by Property [START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF]. Consider t 0 ⩾ 0 such that for all t ⩾ t 0 , both ⌊at⌋ + 1 ⩾ n 0 (V ) and x t /n ∈ V hold. Take t ⩾ t 0 and apply Property [START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF] to each integer n between ⌊at⌋ + 1 and ⌊bt⌋, each time with z n = xt n ∈ V . We find that there exist two constants 0 < K 0 < K 1 independent of t such that for each integer n between ⌊at⌋ + 1 and ⌊bt⌋,

K 0 e -nΛ * ( x t n ) ζ m (x t /n) 2nπΛ ′′ (ζ m (x t /n)) ⩽ P (S n ⩾ x t ) ⩽ K 1 e -nΛ * ( x t n ) ζ m (x t /n) 2nπΛ ′′ (ζ m (x t /n))
. By Lemma 3.1, the function ζ m is continuous and positive over (0, +∞). Since V is a compact subset of (0, +∞), we have

0 < inf z∈V 1 ζ m (z) 2πΛ ′′ (ζ m (z)) ⩽ sup z∈V 1 ζ m (z) 2πΛ ′′ (ζ m (z)) < +∞.
Thus, summing over n, as t → +∞,

S a,b (t, x t ) = Θ (T a,b (t, x t )) (18) 
where

T a,b (t, x t ) := e (r-1)t ⌊bt⌋ n=⌊at⌋+1 t n n! √ n e -nΛ * ( x t n ) .
Our goal is now to estimate the sum T a,b (t, x t ).

Step 2: Estimation of Λ * . Take t ⩾ t 0 and an integer n such that ⌊at⌋

+ 1 ⩽ n ⩽ ⌊bt⌋. Recall that x t = ct -m(t) where m(t) = o( √ t). We have Λ * x t n = Λ * ct n - m(t) n = Λ * ct n -(Λ * ) ′ ct n m(t) n + O m/n→0 m(t) 2 n 2 .
Thus there exists a time t 1 ⩾ t 0 and a constant K 2 > 0 such that for all t ⩾ t 1 and for every integer n such that ⌊at⌋ + 1 ⩽ n ⩽ ⌊bt⌋, we have

Λ * x t n -Λ * ct n -(Λ * ) ′ ct n m(t) n ⩽ K 2 m(t) 2 n 2 .
We rewrite this as

Λ * ct n -(Λ * ) ′ ct n m(t) n -K 2 m(t) 2 n 2 ⩽ Λ * x t n ⩽ Λ * ct n -(Λ * ) ′ ct n m(t) n + K 2 m(t) 2 n 2 . ( 19 
)
Step 3: Estimation of each single term of the sum T a,b (t, x t ). By Stirling's formula,

as n → +∞, n! = Θ √ n exp(n ln(n/e)) .
Using the second inequality in [START_REF] Garnier | Transition fronts and stretching phenomena for a general class of reaction-dispersion equations[END_REF], we obtain a constant K 3 > 0 and a time t 2 ⩾ t 1 such that, for all t ⩾ t 2 , for all integer n such that ⌊at⌋ + 1 ⩽ n ⩽ ⌊bt⌋,

e (r-1)t t n n! √ n e -nΛ * (xt/n) ⩾ K 3 n exp n ln e t n -Λ * (ct/n) + (r -1)t exp (Λ * ) ′ (ct/n)m(t) -K 2 m(t) 2 n = K 3 n exp tg n t exp (Λ * ) ′ (ct/n)m(t) -K 2 m(t) 2 n .
Since m(t) = o( √ t), we have m(t) 2 = o(t). Therefore there exist K 4 > 0 and t 3 ⩾ t 2 such that for all t ⩾ t 3 , for all integer n such that ⌊at⌋ + 1 ⩽ n ⩽ ⌊bt⌋,

e (r-1)t t n n! √ n e -nΛ * (xt/n) ⩾ K 4 n exp tg n t exp [(Λ * ) ′ (ct/n)m(t)] ⩾ K 4 b h t, n t .
Thus, summing on all n between ⌊at⌋ + 1 and ⌊bt⌋, we obtain an estimation of T a,b (t, x t ) that yields, together with Equation ( 18), the existence of a constant K -(a, b) such that for all

t ⩾ t 3 , S a,b (t, x t ) ⩾ K -(a, b) ⌊bt⌋ n=⌊at⌋+1 h t, n t .
Using the first inequality in [START_REF] Garnier | Transition fronts and stretching phenomena for a general class of reaction-dispersion equations[END_REF], we proceed to the same reasoning with reversed inequalities, and we obtain the existence of a constant K + (a, b) and a time t ′ 3 ⩾ t 2 such that for all t ⩾ t ′ 3 ,

S a,b (t, x t ) ⩽ K + (a, b) ⌊bt⌋ n=⌊at⌋+1 h t, n t .
The lemma is proved. Now, we introduce the value α, which is constructed so that the most important terms of the sum [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF] expressing u(t, x t ) are located around the position n ≃ αt. Then α > 0 and

λ r = (Λ * ) ′ c α . ( 20 
)
Moreover, the function g defined in Lemma 4.2 is strictly concave on (0, +∞) and is maximal at α. Finally, we have g(α) = 0, g ′ (α) = 0, and, for y > 0, y ̸ = α, we have g(y) < 0.

Remark 4.4. We can write h(t, y) in the form h(t, y) = C(t, y)e tg (y) , where C(t, y) is not too large as t → +∞. Hence, Lemmas 4.2 and 4.3 entail that when a < b < α or b > a > α, the partial sum S a,b (t, x t ) contains only terms that are exponentially small in t, thus the partial sum S a,b (t, x t ) is also exponentially small in t. Therefore, the dominant terms of the whole sum [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF] expressing u(t, x t ) are located around n ≃ αt.

Proof of Lemma 4. Hence α > 0. Since λ r is positive and A is smooth and minimal at λ r , we have A ′ (λ r ) = 0, that is

1 λ 2 r (λ r M ′ (λ r ) -M (λ r ) -(r -1)) = 0. Recall Λ = ln M . Thus, differentiating, λ r Λ ′ (λ r ) = λ r M ′ (λ r ) M (λ r ) = 1 + r -1 M (λ r ) , which implies Λ ′ (λ r ) = 1 λ r + r -1 λ r M (λ r ) = M (λ r ) + r -1 λ r M (λ r ) = c M (λ r ) = c α . Lemma 3.1 tells us that (Λ * ) ′ = ζ m = (Λ ′ ) -1
. Equality [START_REF] Giletti | Monostable pulled fronts and logarithmic drifts[END_REF] follows.

We also have

Λ * c α = ζ m c α c α -Λ ζ m c α = λ r c α -Λ(λ r )
so, using the fact that α = M (λ r ),

Λ * c α + ln(α) - cλ r α = 0. ( 21 
)
With equalities ( 20) and ( 21) at hand, we are ready to conclude. Recall that

g(y) = y ln e y -Λ * c y + r -1.
We have, by [START_REF] Graham | The Bramson correction for integro-differential Fisher-KPP equations[END_REF],

g(α) = α (1 -ln(α) -Λ * (c/α)) + r -1 = α 1 - cλ r α + r -1.
Hence, since α = cλ r -(r -1), we conclude that g(α) = 0. Furthermore,

g ′ (y) = -ln(y) -Λ * c y + c y (Λ * ) ′ c y .
Therefore, by ( 20) and ( 21), we get g ′ (α) = 0. Finally, we have, for all y > 0,

g ′′ (y) = - 1 y - c 2 y 3 (Λ * ) ′′ c y < 0.
These elements allow us to conclude.

Lemma 4.5. The following asymptotic properties hold as t → +∞.

1. For 0 < a < b < α, there exists χ > 0 such that S a,b (t, x t ) = o(e -χt );

2. For B > A > α, there exists χ > 0 such that S A,B (t, x t ) = o(e -χt );

3. There exists ε > 0, two constants K -, K + > 0 and a time t 0 > 0 such that for all t ⩾ t 0 ,

K - e λrm(t) √ t ⩽ S α-ε,α+ε (t, x t ) ⩽ K + e λrm(t) √ t .
Proof. Let 0 < a < b < α and let χ = -1 2 sup y∈[a,b] g(y). Then, by Lemma 4.3, χ is positive. From Lemma 4.2 and the fact that m(t) = o( √ t), we deduce that the first point holds for this value of χ. The same reasoning is valid for the second point as well. Now we prove the third point, which is more involved due to the equality g(α) = 0.

Step 1: Estimation of the partial sum S α-ε,α+ε (t, x t ); simple integrals arise. Take ε ∈ (0, α/2). By Lemma 4.2, there exist K 0 , K 1 > 0 such that for t large enough,

K 0 t   1 t ⌊(α+ε)t⌋ n=⌊(α-ε)t⌋+1 h t, n t   ⩽ S α-ε,α+ε (t, x t ) ⩽ K 1 t   1 t ⌊(α+ε)t⌋ n=⌊(α-ε)t⌋+1 h t, n t   .
By Lemma 4.3, there exists a neighbourhood W of α such that for all t > 0, the function y → h(t, y) is decreasing on W . Up to reducing ε > 0, we may assume that [α -2ε, α + 2ε] is included in W . Therefore, for all t > 0, Thus, there exist K 2 , K 3 > 0 such that for t large enough,

K 2 t ε -ε h(t, α + y) dy ⩽ S α-ε,α+ε (t, x t ) ⩽ K 3 t ε -ε h(t, α + y) dy. ( 22 
)
Step 2: Estimation of the integral arising in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF] and conclusion. At the light of Equation ( 22), we wish to estimate h(t, α + y) for y close to 0. By Lemma 4.3, we have g ′′ (α) < 0 and g(α + y) = O(y 2 ). Therefore we can take A ′ , A ′′ > 0, and reduce ε > 0 if necessary, so that for all y ∈ (-ε, ε),

-A ′ y 2 ⩽ g(α + y) ⩽ -A ′′ y 2 .
Then, we have for some constants K 5 , K 6 > 0 and for t large enough,

K 5 ε -ε e (Λ * ) ′ ( c α+y )m(t) t e -tA ′ y 2 dy ⩽ ε -ε h(t, y) dy ⩽ K 6 ε -ε e (Λ * ) ′ ( c α+y )m(t) t e -tA ′′ y 2 dy. (23) 
Now, note that

(Λ * ) ′ c α + y m(t) = λ r m(t) + O y→0 (ym(t)).
Thus, there are random variables Equation ( 24), together with Equation ( 22), proves that the third point of the statement holds for the values of ε that we have selected in the beginning of Step 2.

Z t ∼ N O m(t) t , 1 2tA ′ such that as t goes to infinity, ε -ε e (Λ * ) ′ ( c α+y )m(t) t e -tA ′ y 2 dy = Θ   e λrm(t) t ε -ε exp   -tA ′ y + O m(t) t 2   dy   = Θ e λrm(
We are now ready to conclude the proof of the main theorem. 

Now, we estimate the first and last part of the sum (the other three will be estimated thanks to Lemma 4.5). First, for a > 0 small enough and χ 1 > 0 small enough, we have, as t → +∞, ⌊at⌋ n=0 e (r-1)t t n n! P (S n ⩾ x t ) ⩽ e rt P S ⌊at⌋ ⩾ x t = o(e -χ 1 t ).

The last estimation is obtained thanks to the Theorem 3.2 with z = c/a (which becomes large when a > 0 becomes small). Second, we have, as t → +∞, +∞ n=⌊Bt⌋+1 e (r- 

Proof of Corollary 2.4

Proof of Corollary 2.4. We denote by v the solution of the nonlinear Cauchy problem [START_REF] Addario-Berry | Minima in branching random walks[END_REF] and by u the solution of the linear Cauchy problem (3) with r = f ′ (0). As the reaction term satisfies the KPP condition (6), the function v is a subsolution of the linear Cauchy problem (3). As u and v have the same initial condition, the maximum principle tells us that v ⩽ u. Finally, when we apply Theorem 2.2 to the function u, we get the conclusion of Corollary 2.4.

  +∞ . The cumulant generating function of the law of density J is defined at all ζ ∈ D by Λ(ζ) = ln E e ζX = ln R J(x)e ζx dx .

1 .

 1 The function Λ is smooth (i.e. C ∞ ) over D. Let A = sup {supp(J)}. The function Λ * is finite and smooth over D * = (-A, A);

Figure 1 :

 1 Figure 1: Graphical interpretation of the Legendre-Fenchel transform of Λ (inspired from[START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]). The curve in blue looks like Λ, the dotted line in red is the line tangent to the blue curve and with slope z. The dotted line in red crosses the vertical axis at -Λ * (z), the opposite of the Legendre-Fenchel transform of Λ at z.

Lemma 4 . 2 .

 42 Let b > a > 0. Define g(y) := y ln e y -Λ * c y + r -1 and h(t, y) := e (Λ * ) ′ (c/y)m(t) t e tg(y) .

Lemma 4 . 3 .

 43 Set α = cλ r -(r -1).

3 . 1 λ.

 31 Let M (λ) = R e λx J(x) dx. Let A(λ) = M (λ)+r-With this notation, c = inf λ>0 A(λ) = A(λ r ) and α = cλ r -(r -1) = M (λ r ).

  The last line holds because m(t) = o(t), so that Z t converges to 0 in probability, as t → +∞. Injecting twice this estimation into (23) (once as such and once replacing A ′ by A ′′ ), we deduce that there exist constants K 7 , K 8 > 0 such that for t large enough,

	K 7	e λrm(t) t √ t	⩽	ε -ε	h(t, y) dy ⩽ K 8	e λrm(t) t √ t	.	(24)
						t)		
				t √	t	× P (-ε < Z t < ε)
		= Θ	e λrm(t) t √ t	.	

  Proof of Theorem 2.2. Let ε > 0 be defined as in Lemma 4.5. Take a, B such that 0 < a < α < B. By Proposition 2.1, we have u(t, x t ) = e (r-1)t

	+∞ n=0 P (S  t n n! ⌊at⌋ ⌊(α-ε)t⌋ ⌊(α+ε)t⌋
		+	+
	n=0	n=⌊at⌋+1	n=(α-ε)+1
		⌊Bt⌋
		+	
		n=⌊(α+ε)t⌋+1

n ⩾ x t ) , so, cutting the sum into five parts, we have

u(t, x t ) = + +∞ n=⌊Bt⌋+1   e (r-1)t t n n! P (S n ⩾ x t ) .

  1)t t n n! P (S n ⩾ x t ) ⩽ -χ 2 t )for B > 0 large enough and χ 2 > 0 small enough. Therefore, thanks to Lemma 4.5 and the decomposition (25), we conclude that there exist constants K -, K + > 0 and χ 3 > 0 such that for t large enough, , there exists t 0 > 0 such that for all t ⩾ t 0 , as t → +∞. (Recall that ρ is the level in which we are interested). Thus for t large enough, σ ρ (t) -1 2λr ln(t) < C. The conclusion of the theorem follows.

	+∞ n=⌊Bt⌋+1 e (r-1)t t ⌊Bt⌋ e (r-1)t t n n! ⌊Bt⌋! +∞ n=0 t n n! = o(e K -⩽ = e rt t ⌊Bt⌋ ⌊Bt⌋! e λrm(t) √ t 2 K -e λrm(t) √ t ⩽ u(t, x t ) ⩽ 2K + e λrm(t) √ t . Hence, upon choosing m(t) = 1 2λr ln(t) ± C for a large C, we have: u t, ct -1 2λ r ln(t) + C ≪ ρ, ⩽ u(t, x Hence1 u t, ct -1 2λ r ln(t) -C ≫ ρ,

t ) ⩽ K + e λrm(t) √ t + o(e -χ 3 t ).
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