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Abstract
We study a variant of the Fisher-KPP equation with nonlocal dispersal. Using the

theory of large deviations, we show the emergence of a “Bramson-like” logarithmic delay
for the linearised equation with step-like initial data. We conclude that the logarithmic
delay emerges also for the solutions of the nonlinear equation. Previous papers found
very precise results for the nonlinear equation with strong assumptions on the decay of
the kernel. Our results are less precise, but they are valid for all continuous symmetric
thin-tailed kernels.

1 Introduction
We are concerned with the spreading properties of the solution of the Fisher-KPP equation
with nonlocal dispersal{

∂tv(t, x) = [J ∗ v(t, x) − v(t, x)] + f(v(t, x)) t > 0, x ∈ R,

v(0, x) = 1(−∞,0](x) x ∈ R,
(1)

where
J ∗ v(t, x) =

∫
R

J(y)v(t, x − y) dy.

We shall look for the emergence of a “Bramson-like” logarithmic delay. Here, the reaction
term f is monostable and satisfies the KPP condition, and the dispersal kernel J is thin-tailed.
These assumptions are precised and explained below.

The Cauchy problem (1) is akin to the classical (local) Fisher-KPP equation [15, 23]{
∂tw(t, x) = ∂xxw(t, x) + f(w(t, x)) t > 0, x ∈ R,

w(0, x) = 1(−∞,0](x) x ∈ R,
(2)

but the diffusion term ∂xxw is replaced by the nonlocal dispersal term J ∗ v − v.
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In both Cauchy problems (1) and (2), under suitable assumptions on the reaction term
f , the maximum principle holds and implies that 0 ⩽ v ⩽ 1 and 0 ⩽ w ⩽ 1 (see [23] for the
local equation and [40] for the nonlocal equation). Therefore, in biological models, one can
see v(t, x) and w(t, x) as the environment occupancy by an invading species at time t and at
location x. For example, the Cauchy problem (1) arises in [16] as the infinite particle limit
of a stochastic process modelling the range expansion of a plant. In this model, which stems
from [5, 26], the reaction term f(v) corresponds to the demography (birth and death) of
individuals subject to competition, while the dispersal term J ∗ v − v (which is the generator
of a jump process) describes the dispersal of the seeds. As 1

2∆ is the generator of Brownian
motion, the local equation (2) usually models small and frequent movements, as in the model
of Fisher [15]. See also [36, 38] for related models.

Although our primary interest lies in the Cauchy problem (1), we shall focus on the
linearised equation{

∂tu(t, x) = [J ∗ u(t, x) − u(t, x)] + ru(t, x) t > 0, x ∈ R,

u(0, x) = 1(−∞,0](x) x ∈ R,
(3)

where r := f ′(0) > 0. The behaviour of the linear equation seems simpler to understand.
From the study of the solutions of (3), we shall deduce a similar (weaker) result on the
solutions of (1).

Now, let us focus on known results about the local equation, which has already been
widely studied. We say that the reaction term f is monostable when it satisfies

f ∈ C1([0, 1]), f ′(0) > 0, f(0) = f(1) = 0, ∀u ∈ (0, 1) , f(u) > 0. (4)

We assume throughout that the reaction term f is monostable. The solution w of the local
Cauchy problem (2) is then known to propagate with a finite speed c∗ > 0 ([3], Theorems
4.1 and 4.3), in the sense that

lim
t→+∞

w(t, c′t) = 0 for all c′ > c∗,

lim
t→+∞

w(t, c′′t) = 1 for all c′′ ∈ (0, c∗).
(5)

The speed c∗ that satisfies (5) is called the critical speed. A travelling wave of speed c is a
solution w of the local equation that can be written in the form w(t, x) := W (x − ct), where
W : R → [0, 1] satisfies W (−∞) = 1 and W (+∞) = 0. The function W is called the profile
of the travelling wave, and has the shape of an interface between the invaded zone, where
W ≃ 1, and the non-invaded zone, where W ≃ 0. The solution of the Cauchy problem (2)
converges “in shape” to the unique positive travelling wave of critical speed c∗ [23, 39]. We
thus say that an invasion front appears in the solution.

Now, we might wonder where exactly the invasion front is: is it really “near” the travelling
wave? More precisely, given any level ρ ∈ (0, 1), let θρ

loc(t) be the largest position such that
w(t, θρ

loc(t)) = ρ. The goal is to compare θρ
loc(t), which represents the position of the invasion

front, to c∗t, which is the position of the travelling wave with minimal speed.
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The KPP condition on the reaction term f is defined by

∀u ∈ [0, 1] , f(u) ⩽ f ′(0)u. (6)

The KPP condition means that the per-capita growth rate f(u)/u is maximal at 0. In
biological models, it implies that there is no Allee effect (e.g., [38]). When the KPP condition
is satisfied, the critical speed is known to be c∗ = 2λ, with λ =

√
f ′(0) [23]. Bramson, in

[9], showed that if f ′(u) is maximal at u = 0 (which implies that the KPP condition is
satisfied), and if the initial condition is 1(−∞,0], then the invasion front is located well behind
the position x = c∗t. More precisely, he showed

θρ
loc(t) = c∗t − s ln(t) + Ot→+∞(1) with s = 3

2λ
, (7)

where λ =
√

f ′(0). The term −s ln(t) is called the (Bramson) logarithmic delay. The same
year, Uchiyama [39] proved a slightly less precise result, but for much more general initial
conditions and more general reaction term: the KPP condition is almost sufficient. A few
years later, keeping the assumption that f ′(u) is maximal at u = 0, Bramson showed that
in fact the term O(1) can be turned into a term C + o(1) for some constant C ∈ R (which
depends on the initial condition). Moreover, he extended again the class of initial conditions
for which (7) holds, and for which the solution converges to a travelling wave. His proofs use
the so-called McKean representation with a branching Brownian motion [28, 37]. Lau [25]
gave a new proof of Bramson’s latter result, with the same assumptions, but using analytic
techniques. Likewise, more recently, the emergence of the logarithmic delay in (7) has been
proved thanks to interesting analytic techniques [22], for initial conditions with a support
bounded from above and for reaction terms satisfying the KPP condition. For example, the
techniques of [22] have been used in [29, 30] to prove refinements of (7) up to order 1√

t
(which

before had been found formally in [13]).
Bramson and Uchiyama’s results, with their extensions, induce that in the local equation,

when the KPP condition is satisfied and when the initial condition decreases sufficiently fast,
the shift between the position θρ

loc of the invasion front and the position c∗t is unbounded.
Such a situation does not always occur. See the works of Rothe [34] and of Fife and McLeod
[14] for the study of reaction terms that give rise to bounded shifts. See also the work of
Giletti [20] for the study of general monostable reaction terms (that is, satisfying (4) but not
necessarily (6)), which always give rise to unbounded shifts.

Much fewer articles have focused on nonlocal equations. The emergence of a logarithmic
delay has been shown for other nonlocal variants of the classical Fisher-KPP equation. The
case of a competition that is nonlocal in space has been studied in [31] (using probabilistic
arguments) and in [6] (using analytic arguments). In the latter, the authors also showed
that for a slowly-decaying competition kernel, the delay takes an algebraic form. The case
of a phenotype-dependent equation with a competition that is nonlocal in phenotype and a
diffusion rate that depends on the phenotype, the “cane-toad equation”, has been studied
in [7].
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We now turn our attention to the results we have at hand for the nonlocal Cauchy
problems of interest (1) and (3). Here, the nonlocality is on the movements, not on the
competition. Throughout this work, we assume that J satisfies the assumptions:

J ∈ C0(R), J ⩾ 0,
∫
R

J = 1, ∀x ∈ R, J(x) = J(−x), (8)

together with the assumption:

There exists L > 0 such that
∫
R

eL|x|J(x) dx < +∞. (9)

Assumption (9) means that the dispersal kernel is thin-tailed. It means that individuals
usually do not move too far away from their origin, and it implies that travelling waves do
exist. If the tail of J is too heavy, the invasion is accelerating [18, 24]. When the invasion is
accelerating, auto-similar travelling waves cannot exist due to a flattening of the solutions [19].
The assumption that J is symmetric is made for convenience but is not essential (see [11]).

Under those assumptions (8) and (9) on the dispersal kernel J and the monostability
assumptions (4) on the reaction term f , the Cauchy problem is well-posed (see e.g. the
argument at the beginning of [40]) and, as in the local case, there exists a minimal speed for
travelling waves, called the critical speed [10, 35]. For the nonlocal equation, we denote by c
the critical speed. When the KPP condition (6) is satisfied, the expression of c is explicit:

c = inf
λ>0

M(λ) + r − 1
λ

with M(λ) =
∫
R

eλxJ(x) dx. (10)

Since the function λ 7→ (M(λ) + r − 1)/λ is strictly convex and goes to infinity as λ → 0 and
as λ → +∞, the infimum is reached at a unique λr > 0, which thus satisfies

c = M(λr) + r − 1
λr

. (11)

Under mild additional assumptions on the kernel J , the critical speed c satisfies the propa-
gation property (5) for all nonzero solutions v with an initial support bounded from above
(replacing w by v in (5)). See [27], Theorem 3.2.

Recently, Graham [21] showed that the logarithmic delay (7) can also arise for the nonlocal
equation (1). He assumes that f satisfies the KPP condition. He also makes a slightly
technical assumption on the kernel J , which holds if J has a compact support or is Gaussian,
but may fail for other thin-tailed kernels. Roquejoffre [33], assuming that J has a compact
support, was able to turn the term O(1) into C + o(1) (for some C ∈ R). The techniques in
both works are close to those of [22] (Graham combines them with a probabilistic argument,
and Roquejoffre uses a refinement as in [29]). Our goal is to relax their conditions on J and
to treat the general case of thin-tailed kernels. A first step towards this goal is to work on
the linear Cauchy problem and, using the maximum principle, to find an upper bound for
the position of the invasion front for the nonlinear Cauchy problem.

One specificity of this work is the use of the large deviation theory. In the works cited
above, there are essentially two kinds of proofs: those that use analytic tools, as in [14, 15,
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20, 22, 23, 25, 30, 33, 34] and those that use probabilistic tools, as in [8, 9, 28, 31, 39].
Graham and Uchiyama combine both kinds of proofs. The methods here are probabilistic.
We shall use a Feynman-Kac representation of the solution. Then, we shall use the large
deviation theory to estimate precisely the terms of the sum that will arise. In fact, it seems
natural to use the large deviation theory in the problem we have raised, because we are
mainly concerned with the extreme behaviour of individuals modelled by the solution of the
Cauchy problem – much as the large deviation theory is concerned with the extreme values
of random processes.

Note however that the use of the large deviation theory is not new in the study of local
or nonlocal Fisher-KPP equations. Freidlin [17] uses a large deviation principle over the
paths of a Brownian motion to determine the area covered by the solution in a heterogeneous
environment. A recent preprint [2] deals with an equation close to ours, but with bistable
or ignition reaction. The authors use the same Feynman-Kac representation as we do, the
terms of which are also estimated thanks to the large deviation theory. With such estimates
they are able to derive requirements on the initial condition so that the population persists.
Their problem, therefore, is different from ours but their methods are very close. Finally,
it is worth to mention [1], in which Addario-Berry and Reed deal with branching random
walks in discrete time. In his work, Graham [21] explains quickly how, from Addario-Berry
and Reed’s main result, one can deduce the emergence of the logarithmic delay (7) for the
solution of the nonlinear nonlocal Cauchy problem (1) for a restricted class of monostable
reaction terms and general dispersal kernels (he does not enter much into the details because
he focuses on general monostable reaction term).

2 Main results
The first result is a proposition that gives a representation of the solution u(t, x) of the
linear Cauchy problem (3). Let J be a kernel that satisfies the hypotheses (8) and (9). The
kernel J is therefore the density of a probability law. We consider a sequence (Xk)k⩾1 of
real independent and identically distributed random variables, following the law of density
J . Define the random walk

Sn =
n∑

k=1
Xk.

The following proposition is a Feynman-Kac representation of the solution of the linear
Cauchy problem (3).

Proposition 2.1. Let (Sn)n⩾1 be the random walk defined above. Let u(t, x) be a solution of
the linear Cauchy problem (3). Then, for all t ∈ [0, +∞), for all x ∈ R,

u(t, x) = e(r−1)t
+∞∑
n=0

tn

n!P (Sn ⩾ x) . (12)

As we look closely at each term of the sum (12), we observe that when x is near the
position ct, there is a trade-off between the two factors tn

n! and P (Sn ⩾ x):
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• for t ≃ n, the factor tn

n! is large, but the probability P (Sn ⩾ x) is small;

• for t ≫ n, the probability P (Sn ⩾ x) is large but the factor tn

n! is small;

• for t ≪ n, both the probability P (Sn ⩾ x) and the factor tn

n! are small.

In fact, we shall understand in the following that for x = ct + o(
√

t), the dominant terms
of the sum (12) are located around a position n ≃ αt proportional to t. Therefore, when
we study u(t, ct), we will have to deal with probabilities of the form P

(
Sn

n
⩾ c

α

)
, where c

α

is a constant. The theory of large deviation provides an interesting framework to estimate
precisely those very small probabilities as n → +∞, see e.g. the introduction of [12]. These
observations will allow us to prove the main result.

Theorem 2.2. Let J be a kernel that satisfies the hypotheses (8) and (9). Let u be a solution
of the linear Cauchy problem (3). Take ρ ∈ (0, 1) and denote by

σρ(t) = sup {x ∈ R / u(t, x) ⩾ ρ}

the position of the level ρ of u at time t. We have

σρ(t) = ct − s ln(t) + Ot→+∞(1) with s = 1
2λr

,

where λr is defined by (11).

Remark 2.3. Naturally, as we are currently considering the linear equation, we are not ex-
pecting to find exactly the same result as in Equation (7). However, we do get the same
result with the local counterpart of the linear Cauchy problem (3),

∂tz = ∂xxz + rz, r = f ′(0), (13)

together with the initial condition z(t, 1) = 1
4π

e−x2/4. We then have a simple explicit expres-
sion for the solutions of Equation (13), z(t, x) = erx

√
4πt

e−x2/4t. We now look for the position
σρ

loc(t) such that z(t, σρ
loc(t)) = ρ. A short computation yields, as t → +∞,

σρ
loc(t) = 2

√
rt − 1

2
√

r
ln(t) + O(1) = c∗t − 1

2λ
ln(t) + O(1),

which implies the same result as in Theorem 2.2 but for the local equation. Note also that
the values λ =

√
f ′(0) and λr play a symmetric role for, respectively, the local equation and

the nonlocal equation.
Thanks to the maximum principle, we then deduce the following corollary about the

nonlinear equation.
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Corollary 2.4. Let J be a kernel that satisfies the hypotheses (8) and (9). Let f be a reaction
term that satisfies the monostability conditions (4) and the KPP condition (6). Let v be a
solution of the nonlinear Cauchy problem (1). Take ρ ∈ (0, 1) and denote by

θρ(t) = sup {x ∈ R / v(t, x) ⩾ ρ}

the position of the level ρ of v at time t. We have

θρ(t) ⩽ ct − s ln(t) + Ot→+∞(1) with s = 1
2λr

,

where λr is defined by (11).

Remark 2.5. This corollary is consistent with the main result of Graham [21] which deals
with the situation when J has compact support (see above).

Section 3 gives preliminary results about the theory of large deviations; we shall use these
results in Subsection 4.2 to prove Theorem 2.2. Subsection 4.1 is devoted to the proof of
Proposition 2.1. Finally, Subsection 4.3 is devoted to the proof of Corollary 2.4.

3 Preliminary results about large deviations
We first focus on the useful notions from large deviations theory. Let J be a dispersal kernel
satisfying the hypotheses (8) and (9) and let X be a real random variable following the law
J . Let D =

{
ζ ∈ R / E

[
eζX

]
< +∞

}
. The cumulant generating function of the law of

density J is defined at all ζ ∈ D by

Λ(ζ) = ln
(
E
[
eζX

])
= ln

(∫
R

J(x)eζx dx
)

.

As J decreases at least exponentially fast at ±∞, the set D contains a neighbourhood of 0.
The Legendre-Fenchel transform of Λ is denoted by Λ∗ and plays a fundamental role in the
statement of the theorem of Bahadur-Rao. It is defined, for all z ∈ R, by

Λ∗(z) = sup
ζ∈D

[ζz − Λ(ζ)] ∈ [0, +∞] .

Figure 1 gives a graphical interpretation of the Legendre-Fenchel transform of a (symmetric)
convex function.

The following lemma contains general properties of the functions Λ and Λ∗ (see [12],
Lemma 2.2.5).

Lemma 3.1. Assume that J satisfies the hypotheses (8) and (9). We then have:

1. The function Λ is smooth (i.e. C∞) over D. Let A = sup {supp(J)}. The function Λ∗

is finite and smooth over D∗ = (−A, A);
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Figure 1: Graphical interpretation of the Legendre-Fenchel transform of Λ (inspired from
[12]). The curve in blue looks like Λ, the dotted line in red is the line tangent to the blue
curve and with slope z. The dotted line in red crosses the vertical axis at −Λ∗(z), the
opposite of the Legendre-Fenchel transform of Λ at z.

2. The functions Λ and Λ∗ are nonnegative and strictly convex on, respectively, D and
D∗. Moreover, Λ(0) = Λ∗(0) = 0;

3. The function Λ′ is a bijection from D to D∗. We define, for z ∈ D∗: ζm(z) := (Λ′)−1(z).
We have, for all z ∈ D∗,

Λ∗(z) = ζm(z)z − Λ(ζm(z)) (14)
and

(Λ∗)′(z) = ζm(z).

Proof. We sketch the proof of these classical properties (see also [12], Lemma 2.2.5).

• The nonnegativity of Λ comes from Jensen’s inequality. Since J is continuous and
thin-tailed, Λ is smooth in D;

• The strict convexity of Λ follows: for ζ ∈ D,

Λ′′(ζ) =
E
[
X2eζX

]
E
[
eζX

]
− E

[
XeζX

]2
E [eζX ]2

=
E
[
(XeζX/2)2

]
E
[
(eζX/2)2

]
− E

[
(XeζX/2)(eζX/2)

]2
E [eζX ]2

> 0,

by the Cauchy-Schwarz inequality (the inequality is strict because X is nonconstant);

• We have
Λ′(ζ) =

∫
R xeζxJ(x) dx∫
R eζxJ(x) dx

→
ζ→+∞

sup {supp(J)} ,
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thus: supζ∈D Λ′(ζ) = sup {supp(J)}. Moreover, Λ′ is strictly increasing and smooth.
Therefore, Λ′ is a smooth bijection from D to D∗ with smooth converse (Λ′)−1;

• For z ∈ D∗, the supremum in the definition of Λ∗(z) is reached when Λ′(ζ) = z. We
get (14). We then deduce that Λ∗ is finite and smooth over D∗. Using (14), we get:
(Λ∗)′(z) = ζm(z). Finally, ζm(z) is increasing, so Λ∗ is convex.

Let (Xk)k⩾1 be a sequence of independent and identically distributed random variables,
following the law J , and define the corresponding random walk (Sn)n⩾1 as in the introduction.
We are now ready to state, in our particular case, the theorem of Bahadur-Rao [4]. This
theorem will be useful in the proof of Theorem 2.2. Recall that, for z ∈ D∗, we have defined
ζm(z) = (Λ′)−1(z).
Theorem 3.2 (Bahadur-Rao [4]). Take M1, M2 ∈ D∗ with M2 > M1 > 0. The random walk
defined above satisfies

P (Sn ⩾ nz) = e−nΛ∗(z)

ζm(z)
√

2nπΛ′′(ζm(z))
(1 + o(1)) as n → +∞, (15)

uniformly in z ∈ [M1, M2].
The uniformity is not present in the original paper of Bahadur and Rao, but it has been

proved by Petrov in [32].

4 Proofs of the main results

4.1 Proof of Proposition 2.1
Proof of Proposition 2.1. If u is a solution of the linear Cauchy problem (3), and if we set
ũ := e−rtu, then ũ is a solution of the linear equation ∂tũ = J ∗ ũ − ũ with the same initial
condition. Therefore, we may assume r = 0.

Let (Zt)t⩾0 be a Poisson process with rate 1 and jump law J , and such that Z0 = 0 almost
surely. The infinitesimal generator of the process (Zt)t⩾0 is

Gf = J ∗ f − f

and, therefore, the function
u(t, x) := E [Zt ⩾ x]

solves ∂tu = J ∗ u − u with initial condition u(0, ·) = 1(−∞,0]. Upon partitioning events
according to the number of jumps made by the process in [0, t], we conclude

u(t, x) =
+∞∑
n=0

e−ttn

n! P (X1 + . . . + Xn ⩾ x) ,

where e−ttn

n! is the probability that exactly n jumps occurred in [0, t]. This yields the result
for r = 0. The conclusion follows by multiplying by ert.
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Remark 4.1. An important feature of Proposition 2.1 is that it allows us to work on the
discrete-time random walk (X1 + . . . + Xn)n⩾0 = (Sn)n⩾0 rather than on the continuous-
time random walk (Zt)t⩾0. In this situation, the theory of large deviations applies more
easily. Another method to do the transformation from continuous time to discrete time is
to consider the continuous-time random walk (Zt)t⩾0 restricted to integer times, which gives
the discrete-time random walk (Zn)n⩾0. The jump law of the process (Zn)n⩾0 is found by
conditioning on the number of jumps made by the process (Zt)t⩾0 between the times 0 and
1. Hence the sum arising in Proposition 2.1 is directly incorporated into the jump law of
(Zn)n⩾0. This second method, which is inspired from the introduction of [1], should lead to
easier computations: one simply has to estimate the probabilities P

(
Zn ⩾ cn − 1

2λr
ln(n)

)
,

and no more sum is involved. We shall rather concentrate on the first method, which seems
more interesting from the point of view of modelling: indeed, it explicitly counts the jumps,
i.e. the generations. Such a record can be helpful if one wants to take into account the fact,
for example, that mutations can arise at each generation.

4.2 Proof of Theorem 2.2
Throughout Subsection 4.2, we assume for convenience that sup {suppJ} = +∞, so that Λ∗

is defined on D∗ = R (the proof is almost the same if sup {suppJ} < +∞). We consider a
nonnegative function m(t) = o(

√
t), and we note

xt = ct − m(t).

The function m is intended to represent the delay, while xt is intended to represent the
position of the front at time t. Our goal is to estimate u(t, xt) as t grows to infinity. The
idea of the proof is to cut the sum expressing u(t, xt) given by Proposition 2.1,

u(t, xt) = e(r−1)t
+∞∑
n=0

tn

n!P (Sn ⩾ xt) (16)

into partial sums Sa,b(t, xt) of the form

Sa,b(t, xt) := e(r−1)t
⌊bt⌋∑

n=⌊at⌋+1

tn

n!P (Sn ⩾ xt) ,

and to estimate each partial sum independently. We will show that there exists a value α > 0
such that the dominant terms of the total sum are located around ⌊αt⌋. A large part of the
proof is devoted to the estimation of those terms, that is, to the estimation of Sα−ε,α+ε(t, xt).

We begin with a lemma that estimates the partial sums Sa,b(t, xt). We use a version of
the theorem of Bahadur-Rao (Theorem 3.2) to turn the probability P (Sn ⩾ xt) into a more
tractable expression. In the proofs, we will sometimes use the notation

p(t) = Θ(q(t))

to say that there exist 0 < K− < K+ and t0 > 0 such that for all t ⩾ t0, K−q(t) ⩽ p(t) ⩽
K+q(t).
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Lemma 4.2. Let b > a > 0. Define

g(y) := y

(
ln
(

e

y

)
− Λ∗

(
c

y

))
+ r − 1

and
h(t, y) := e(Λ∗)′(c/y)m(t)

t
etg(y).

There exist K−(a, b), K+(a, b) > 0 such that for t large enough,

K−(a, b)
⌊bt⌋∑

n=⌊at⌋+1
h
(

t,
n

t

)
⩽ Sa,b(t, xt) ⩽ K+(a, b)

⌊bt⌋∑
n=⌊at⌋+1

h
(

t,
n

t

)
.

Proof. We shall use the following property, resulting from Theorem 3.2: for every subset
V ⊂ (0, +∞), there exists n0(V ) such that for all n ⩾ n0(V ), for all z ∈ V ,

e−nΛ∗(z)

2ζm(z)
√

2nπΛ′′(ζm(z))
⩽ P (Sn ⩾ nz) ⩽ 2 e−nΛ∗(z)

ζm(z)
√

2nπΛ′′(ζm(z))
. (17)

Recall that ζm(z) is defined in Lemma 3.1.

Step 1: Application of (17). Take V =
[

c
2b

, 2c
a

]
. Recall that xt = ct − m(t) where

m(t) = o(
√

t) is nonnegative. Therefore, for t large enough and for all integer n between
⌊at⌋ + 1 and ⌊bt⌋, we have xt/n ∈ V . Let n0(V ) be the index given by Property (17).
Consider t0 ⩾ 0 such that for all t ⩾ t0, both ⌊at⌋ + 1 ⩾ n0(V ) and xt/n ∈ V hold. Take
t ⩾ t0 and apply Property (17) to each integer n between ⌊at⌋ + 1 and ⌊bt⌋, each time with
zn = xt

n
∈ V . We find that there exist two constants 0 < K0 < K1 independent of t such

that for each integer n between ⌊at⌋ + 1 and ⌊bt⌋,

K0
e−nΛ∗(xt

n )

ζm(xt/n)
√

2nπΛ′′(ζm(xt/n))
⩽ P (Sn ⩾ xt) ⩽ K1

e−nΛ∗(xt
n )

ζm(xt/n)
√

2nπΛ′′(ζm(xt/n))
.

By Lemma 3.1, the function ζm is continuous and positive over (0, +∞). Since V is a compact
subset of (0, +∞), we have

0 < inf
z∈V

1
ζm(z)

√
2πΛ′′(ζm(z))

⩽ sup
z∈V

1
ζm(z)

√
2πΛ′′(ζm(z))

< +∞.

Thus, summing over n, as t → +∞,

Sa,b(t, xt) = Θ (Ta,b(t, xt)) (18)

where

Ta,b(t, xt) := e(r−1)t
⌊bt⌋∑

n=⌊at⌋+1

tn

n!
√

n
e−nΛ∗(xt

n ).

Our goal is now to estimate the sum Ta,b(t, xt).

11



Step 2: Estimation of Λ∗. Take t ⩾ t0 and an integer n such that ⌊at⌋ + 1 ⩽ n ⩽ ⌊bt⌋.
Recall that xt = ct − m(t) where m(t) = o(

√
t). We have

Λ∗
(

xt

n

)
= Λ∗

(
ct

n
− m(t)

n

)
= Λ∗

(
ct

n

)
− (Λ∗)′

(
ct

n

)
m(t)

n
+ Om/n→0

(
m(t)2

n2

)
.

Thus there exists a time t1 ⩾ t0 and a constant K2 > 0 such that for all t ⩾ t1 and for every
integer n such that ⌊at⌋ + 1 ⩽ n ⩽ ⌊bt⌋, we have∣∣∣∣∣Λ∗

(
xt

n

)
−
(

Λ∗
(

ct

n

)
− (Λ∗)′

(
ct

n

)
m(t)

n

)∣∣∣∣∣ ⩽ K2
m(t)2

n2 .

We rewrite this as

Λ∗
(

ct

n

)
− (Λ∗)′

(
ct

n

)
m(t)

n
− K2

m(t)2

n2

⩽ Λ∗
(

xt

n

)
⩽ Λ∗

(
ct

n

)
− (Λ∗)′

(
ct

n

)
m(t)

n
+ K2

m(t)2

n2 . (19)

Step 3: Estimation of each single term of the sum Ta,b(t, xt). By Stirling’s formula,
as n → +∞,

n! = Θ
(√

n exp(n ln(n/e))
)

.

Using the second inequality in (19), we obtain a constant K3 > 0 and a time t2 ⩾ t1 such
that, for all t ⩾ t2, for all integer n such that ⌊at⌋ + 1 ⩽ n ⩽ ⌊bt⌋,

e(r−1)ttn

n!
√

n
e−nΛ∗(xt/n)

⩾
K3

n
exp

[
n
(

ln
(

e
t

n

)
− Λ∗(ct/n)

)
+ (r − 1)t

]
exp

[
(Λ∗)′(ct/n)m(t) − K2

m(t)2

n

]

= K3

n
exp

[
tg
(

n

t

)]
exp

[
(Λ∗)′(ct/n)m(t) − K2

m(t)2

n

]
.

Since m(t) = o(
√

t), we have m(t)2 = o(t). Therefore there exist K4 > 0 and t3 ⩾ t2 such
that for all t ⩾ t3, for all integer n such that ⌊at⌋ + 1 ⩽ n ⩽ ⌊bt⌋,

e(r−1)ttn

n!
√

n
e−nΛ∗(xt/n) ⩾

K4

n
exp

[
tg
(

n

t

)]
exp [(Λ∗)′(ct/n)m(t)] ⩾ K4

b
h
(

t,
n

t

)
.

Thus, summing on all n between ⌊at⌋ + 1 and ⌊bt⌋, we obtain an estimation of Ta,b(t, xt) that
yields, together with Equation (18), the existence of a constant K−(a, b) such that for all
t ⩾ t3,

Sa,b(t, xt) ⩾ K−(a, b)
⌊bt⌋∑

n=⌊at⌋+1
h
(

t,
n

t

)
.

12



Using the first inequality in (19), we proceed to the same reasoning with reversed inequalities,
and we obtain the existence of a constant K+(a, b) and a time t′

3 ⩾ t2 such that for all t ⩾ t′
3,

Sa,b(t, xt) ⩽ K+(a, b)
⌊bt⌋∑

n=⌊at⌋+1
h
(

t,
n

t

)
.

The lemma is proved.

Now, we introduce the value α, which is constructed so that the most important terms
of the sum (16) expressing u(t, xt) are located around the position n ≃ αt.

Lemma 4.3. Set

α = cλr − (r − 1).

Then α > 0 and
λr = (Λ∗)′

(
c

α

)
. (20)

Moreover, the function g defined in Lemma 4.2 is strictly concave on (0, +∞) and is maximal
at α. Finally, we have g(α) = 0, g′(α) = 0, and, for y > 0, y ̸= α, we have g(y) < 0.

Remark 4.4. We can write h(t, y) in the form h(t, y) = C(t, y)etg(y), where C(t, y) is not too
large as t → +∞. Hence, Lemmas 4.2 and 4.3 entail that when a < b < α or b > a > α, the
partial sum Sa,b(t, xt) contains only terms that are exponentially small in t, thus the partial
sum Sa,b(t, xt) is also exponentially small in t. Therefore, the dominant terms of the whole
sum (16) expressing u(t, xt) are located around n ≃ αt.

Proof of Lemma 4.3. Let M(λ) =
∫
R eλxJ(x) dx. Let A(λ) = M(λ)+r−1

λ
. With this notation,

c = infλ>0 A(λ) = A(λr) and

α = cλr − (r − 1) = M(λr).

Hence α > 0. Since λr is positive and A is smooth and minimal at λr, we have A′(λr) = 0,
that is

1
λ2

r

(λrM
′(λr) − M(λr) − (r − 1)) = 0.

Recall Λ = ln M . Thus, differentiating,

λrΛ′(λr) = λr
M ′(λr)
M(λr)

= 1 + r − 1
M(λr)

,

which implies

Λ′(λr) = 1
λr

+ r − 1
λrM(λr)

= M(λr) + r − 1
λrM(λr)

= c

M(λr)
= c

α
.

13



Lemma 3.1 tells us that (Λ∗)′ = ζm = (Λ′)−1. Equality (20) follows.
We also have

Λ∗
(

c

α

)
= ζm

(
c

α

)
c

α
− Λ

(
ζm

(
c

α

))
= λr

c

α
− Λ(λr)

so, using the fact that α = M(λr),

Λ∗
(

c

α

)
+ ln(α) − cλr

α
= 0. (21)

With equalities (20) and (21) at hand, we are ready to conclude. Recall that

g(y) = y

(
ln
(

e

y

)
− Λ∗

(
c

y

))
+ r − 1.

We have, by (21),

g(α) = α (1 − ln(α) − Λ∗(c/α)) + r − 1 = α

(
1 − cλr

α

)
+ r − 1.

Hence, since α = cλr − (r − 1), we conclude that g(α) = 0. Furthermore,

g′(y) = − ln(y) − Λ∗
(

c

y

)
+ c

y
(Λ∗)′

(
c

y

)
.

Therefore, by (20) and (21), we get g′(α) = 0. Finally, we have, for all y > 0,

g′′(y) = −1
y

− c2

y3 (Λ∗)′′
(

c

y

)
< 0.

These elements allow us to conclude.
Lemma 4.5. The following asymptotic properties hold as t → +∞.

1. For 0 < a < b < α, there exists χ > 0 such that

Sa,b(t, xt) = o(e−χt);

2. For B > A > α, there exists χ > 0 such that

SA,B(t, xt) = o(e−χt);

3. There exists ε > 0, two constants K−, K+ > 0 and a time t0 > 0 such that for all
t ⩾ t0,

K−
eλrm(t)

√
t

⩽ Sα−ε,α+ε(t, xt) ⩽ K+
eλrm(t)

√
t

.

Proof. Let 0 < a < b < α and let χ = −1
2 supy∈[a,b] g(y). Then, by Lemma 4.3, χ is positive.

From Lemma 4.2 and the fact that m(t) = o(
√

t), we deduce that the first point holds for
this value of χ. The same reasoning is valid for the second point as well. Now we prove the
third point, which is more involved due to the equality g(α) = 0.

14



Step 1: Estimation of the partial sum Sα−ε,α+ε(t, xt); simple integrals arise. Take
ε ∈ (0, α/2). By Lemma 4.2, there exist K0, K1 > 0 such that for t large enough,

K0t

1
t

⌊(α+ε)t⌋∑
n=⌊(α−ε)t⌋+1

h
(

t,
n

t

) ⩽ Sα−ε,α+ε(t, xt) ⩽ K1t

1
t

⌊(α+ε)t⌋∑
n=⌊(α−ε)t⌋+1

h
(

t,
n

t

) .

By Lemma 4.3, there exists a neighbourhood W of α such that for all t > 0, the function
y 7→ h(t, y) is decreasing on W . Up to reducing ε > 0, we may assume that [α − 2ε, α + 2ε]
is included in W . Therefore, for all t > 0,

1
t

⌊(α+ε)t⌋∑
n=⌊(α−ε)t⌋+1

h
(

t,
n

t

)
⩾

⌊(α+ε)t⌋∑
n=⌊(α−ε)t⌋+1

∫ n
t

n−1
t

h (t, y) dy

and
1
t

⌊(α+ε)t⌋∑
n=⌊(α−ε)t⌋+1

h
(

t,
n

t

)
⩽

⌊(α+ε)t⌋∑
n=⌊(α−ε)t⌋+1

∫ n+1
t

n
t

h (t, y) dy.

Thus, there exist K2, K3 > 0 such that for t large enough,

K2t
∫ ε

−ε
h(t, α + y) dy ⩽ Sα−ε,α+ε(t, xt) ⩽ K3t

∫ ε

−ε
h(t, α + y) dy. (22)

Step 2: Estimation of the integral arising in (22) and conclusion. At the light of
Equation (22), we wish to estimate h(t, α + y) for y close to 0. By Lemma 4.3, we have
g′′(α) < 0 and

g(α + y) = O(y2).
Therefore we can take A′, A′′ > 0, and reduce ε > 0 if necessary, so that for all y ∈ (−ε, ε),

−A′y2 ⩽ g(α + y) ⩽ −A′′y2.

Then, we have for some constants K5, K6 > 0 and for t large enough,

K5

∫ ε

−ε

e(Λ∗)′( c
α+y )m(t)

t
e−tA′y2 dy ⩽

∫ ε

−ε
h(t, y) dy ⩽ K6

∫ ε

−ε

e(Λ∗)′( c
α+y )m(t)

t
e−tA′′y2 dy. (23)

Now, note that

(Λ∗)′
(

c

α + y

)
m(t) = λrm(t) + Oy→0(ym(t)).

Thus, there are random variables Zt ∼ N
(
O
(

m(t)
t

)
, 1

2tA′

)
such that as t goes to infinity,

∫ ε

−ε

e(Λ∗)′( c
α+y )m(t)

t
e−tA′y2 dy = Θ

eλrm(t)

t

∫ ε

−ε
exp

−tA′
(

y + O

(
m(t)

t

))2
 dy


= Θ

(
eλrm(t)

t
√

t
× P (−ε < Zt < ε)

)

= Θ
(

eλrm(t)

t
√

t

)
.
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The last line holds because m(t) = o(t), so that Zt converges to 0 in probability, as t → +∞.
Injecting twice this estimation into (23) (once as such and once replacing A′ by A′′), we
deduce that there exist constants K7, K8 > 0 such that for t large enough,

K7
eλrm(t)

t
√

t
⩽
∫ ε

−ε
h(t, y) dy ⩽ K8

eλrm(t)

t
√

t
. (24)

Equation (24), together with Equation (22), proves that the third point of the statement
holds for the values of ε that we have selected in the beginning of Step 2.

We are now ready to conclude the proof of the main theorem.

Proof of Theorem 2.2. Let ε > 0 be defined as in Lemma 4.5. Take a, B such that 0 < a <
α < B. By Proposition 2.1, we have

u(t, xt) = e(r−1)t
+∞∑
n=0

tn

n!P (Sn ⩾ xt) ,

so, cutting the sum into five parts, we have

u(t, xt) =
⌊at⌋∑

n=0
+

⌊(α−ε)t⌋∑
n=⌊at⌋+1

+
⌊(α+ε)t⌋∑

n=(α−ε)+1

+
⌊Bt⌋∑

n=⌊(α+ε)t⌋+1
+

+∞∑
n=⌊Bt⌋+1

 e(r−1)ttn

n! P (Sn ⩾ xt) . (25)

Now, we estimate the first and last part of the sum (the other three will be estimated thanks
to Lemma 4.5). First, for a > 0 small enough and χ1 > 0 small enough, we have, as t → +∞,

⌊at⌋∑
n=0

e(r−1)ttn

n! P (Sn ⩾ xt) ⩽ ertP
(
S⌊at⌋ ⩾ xt

)
= o(e−χ1t).

The last estimation is obtained thanks to the Theorem 3.2 with z = c/a (which becomes
large when a > 0 becomes small). Second, we have, as t → +∞,

+∞∑
n=⌊Bt⌋+1

e(r−1)ttn

n! P (Sn ⩾ xt) ⩽
+∞∑

n=⌊Bt⌋+1

e(r−1)ttn

n!

⩽
e(r−1)tt⌊Bt⌋

⌊Bt⌋!

+∞∑
n=0

tn

n! = ert t⌊Bt⌋

⌊Bt⌋! = o(e−χ2t)

for B > 0 large enough and χ2 > 0 small enough.
Therefore, thanks to Lemma 4.5 and the decomposition (25), we conclude that there exist

constants K−, K+ > 0 and χ3 > 0 such that for t large enough,

K−
eλrm(t)

√
t

⩽ u(t, xt) ⩽ K+
eλrm(t)

√
t

+ o(e−χ3t).
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Hence, there exists t0 > 0 such that for all t ⩾ t0,

1
2K−

eλrm(t)
√

t
⩽ u(t, xt) ⩽ 2K+

eλrm(t)
√

t
.

Hence, upon choosing m(t) = 1
2λr

ln(t) ± C for a large C, we have:

u
(

t, ct − 1
2λr

ln(t) + C
)

≪ ρ,

u
(

t, ct − 1
2λr

ln(t) − C
)

≫ ρ,

as t → +∞. (Recall that ρ is the level in which we are interested). Thus for t large enough,∣∣∣σρ(t) − 1
2λr

ln(t)
∣∣∣ < C. The conclusion of the theorem follows.

4.3 Proof of Corollary 2.4
Proof of Corollary 2.4. We denote by v the solution of the nonlinear Cauchy problem (1)
and by u the solution of the linear Cauchy problem (3) with r = f ′(0). As the reaction
term satisfies the KPP condition (6), the function v is a subsolution of the linear Cauchy
problem (3). As u and v have the same initial condition, the maximum principle tells us
that v ⩽ u. Finally, when we apply Theorem 2.2 to the function u, we get the conclusion of
Corollary 2.4.
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