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UNIFORM Za-LARGE DEVIATIONS FOR THE
DELTA-SEQUENCE METHOD DENSITY ESTIMATOR

By Noureddine Berrahou and Djamal Louani

L.S.T.A., Université de Paris 6

In this paper we obtain uniform L\-distance large déviations re-
sults for the delta-sequence method density estimator. More precisely,
we consider uniformity over classes of density functions fulfilling some

regularity conditions. It results from our study that the rate function
is distribution free and also does not dépend upon the delta-sequence
used to estimate the density. A general resuit pertaining to any reg-
ular delta-sequence is stated and a discussion of hypothèses for the
most usual methods is given.

1. Introduction. Let X be an open interval of the real line R that
may be the whole real line. A sequence {<5m(x, w)} of bounded measurable
functions on X x X is a delta-sequence on X if, for each x G X and each
C°°-function <p with support in A, we hâve

/ ôm(x, u)(p(u)du = <p(x)Jx
lim /

m->oo J#

Let X\,X2i • • • , Xn be a sequence of i.i.d real random variable defined on a

probability space (H, T, P) and taking values in a set X. Dénoté by / its
probability density function with respect to the Lebesgue measure (i over X.
We shall associate an estimator of / with the sequence {Sm(x, «)} by letting

where m = mn is a sequence of positive real numbers that tends to infinity
with n.

Several estimation methods of an unknown density function / by mean
of functions of i.i.d random variables Ai, X2, • • • , Xn hâve been proposed in
the last five décades. These methods include the kernel method studied by
Rosenblatt [13] and Parzen [11], the orthogonal sériés methods introduced
by Chencov [3] and studied by Schwartz [14], Kronmal and Tarter [8] and
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Walter [15] and the eharacteristic function approach studied by Blum and
Susarla [2], The delta-sequence method gathers several density estimation
methods including among others the following ones

(i) Kernel estimator. For (x,u) G R2, set

6rn(x,u) = mK(m(x — u)),
where K is a positive bounded function such that ff°O0K(x)dx = 1
and lim^oo |x| K(x) = 0. Parzen [I I] showed that {<5m} constitutes a
delta-sequence.

(ii) Histogram estimator. For (x,u) G [0, l]2, set
m

ôm(x, u) = m Xj(z)xj(u),
j=l

where xi is the indicator function of the set (0, l/m), and Xj is the
indicator function of the interval [(j — l)/m,j/m[ for j = 2, • • • ,m.
It is easily seen that this case corresponds to be the usual histogram
estimator.

(iii) Orthogonal sériés estimator. Let {ipm(x)} be a complété orthonormal
System on an interval (a, b) consisting of eigenfunctions of a compact
operator on L2(a, 6). For (x,u) G {a, b)2, set

rn

ôm(x,u) =^ÿj{x)ll)j{u).
3=1

Walter [15] stated that the sequence (5m(x,u)) is a delta-sequence.
The sequence ('ipm{x)) may represent the trigonométrie functions, the
Legendre polynomials, the Haar orthogonal System, the Hermite func-
tions.

(vi) Estimator of density type. Let {Tm} be a sequence of i.i.d. random
variables with mean 0 and finite variance, having a bounded density.
Let gm(x) be the density of the sample mean. Then, the sequence of
functions

Sm(x, u) = gm(x - u) x, u G R,
is a delta-sequence. This may be shown by using the Chebychev’s
inequality.

(v) Fejér kernel estimator. Consider the Fejér kernel defined, for any u G
[—TT, tt], by

__ sin2((m + l)u/2)
m

2-k (m + 1) sin2(u/2)
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Winter [1.6] showed that the sequence of function 5m(x,u) = Fm(x — u)
constitutes a delta-sequence.

In this paper, we are concerned with uniform Li-distance large déviations
results of ChernofF-type for the delta-sequence rnethod density estimator.
More precisely, we consider uniformity over a class of density functions fui-
filling some regularity conditions that will be given later on. A general resuit
pertaining to any regular delta-sequence is stated and a discussion of hy-
potheses for the most usual methods is given. One of the most important
application of large déviations results in statistical analysis is the compari-
son of tests via their asymptotic efficiency from the Bahadur point of view.
This question has been previously addressed by Louani [9] where it is shown
that the kernel density Li-error based goodness-of-fit test achieves better
performances than the well-known Kolomogorov-Smirnov test when testing
a simple hypothesis. The results we obtain here allow to consider composite
hypothèses.

Let ©o be a class of density functions. Consider the problem of testing the
composite hypothesis Hq : “/ G ©o” against the alternative A : uf # ©o”
on the basis of observations Xi, X2, • • • , Xn. For this purpose, use the test
statistic

Vn = inf II fn-h ||Ll
hee0

which is naturally significant if larger than some positive threshold. The
results we State allow to obtain the Bahadur exact slope associated to the
statistic Vn and then to compare the test based on Vn with any other test
provided to hâve its Bahadur slope.

There exists an extensive large déviations literature involving various ar-
eas of probability and statistics. For a large corpus of results and applica-
tions, we refer to the book of Dembo and Zeitouni [5].

In the sequel, we introduce some notations and tools that allow to perform
oui* study. Define, for any 0 < a < 1 the following functions,

(l.lF+(A)=l(a+^l0g(1 + ^) + (1"'a”^)l0g(1""2(F^) if 0<A<2“2a’a \oo elsewhere.

(1BJ(A) = |(a~t)los(1-è) + (1"a+l)1°g(1 + 2fT^y) if 0< A<2a,[00 elsewhere.

Notice that T~(A) is a reflection of r+(A) about a = Ïj2 and T+(A) < r~(A)
(respect. T+(A) > r~(A)) whenever a < 1/2 (respect, a > 1/2). rf_a(A) =
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Ta (A), (see Louani [y]). Define now

ro(A) = min{rJ(A), r-(A)},
and

g{A) = inf{ra(A) : 0 < a < 1}.

2. Results. Prom now on, dénotés by B the «r-field of Borel subsets of
X. Let Àn be the empirical probability measure associated to the sample
Ai, X2, • • • , Xn and dénoté by À the probability measure associated to the
density / . Obviously, one has

fnipc) — I ^mn (*^) tt)dÀn(u).
Jx

and

E(fn(x)) = f Ômn(x,u)f(u)du.Jx
Consider a class © of density functions and set some hypothèses upon

this class and the delta-sequence (ômn) necessary to establish our results.
(Hi) For any u G X and any n G N,

/ 5mn{x,u)du= 1.Jx

(H2) For any u G X and any B G B, we hâve

/ \5mn(x,u)\dx < CB,JB

and

lim / ômri(x, u)dx = 1 o (u) almost everywhere,
i->ooJB nv b

O

where B is the interior of the set B and Cb is a constant depending
only the set B.

(H3) For any e > 0, there exists no such that Vn > no

sup || E(fn) - / ||lx< e.
/€©

(H4) For any e > 0 there exists a finite collection Vn of subsets of X such
that

f \fn(x)-E(fn(x))\dx< Y, | A„(B) - A(B) | +e,Jx
Bevn
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From now on, dénotés by N(Vn) the cardinality of Vn. The main resuit of
this paper is given in the following theorem.

Theorem

n—>oo n

2.1 Assume that the conditions (Himh4) are satisfied. If
= 0, then, for any À > 0, we hâve

(2.1) lim sup — log P(|| fn - f \\Ll > A) = -g(A).
n^°° fee n

Remark 2.1 The left hand side of the statement (2.1) is bounded from
below under only the condition (H2).

Discussion of the conditions

When a function h € Li([0,1]), it is well-known (see, for instance, Devroye
and Gyôrfi [b], page 291) that the Haar orthogonal System expansion of h
converges to h almost everywhere. Since for any B C [0,1], 1b G Li([0,1]),
it follows then that the condition (H2) is satisfied.

In Lemma 2.1, Lemma 2.2 and Proposition below, sufficient conditions
that allow hypothèses (H2) and (H3) to be satisfied are given. In the first
place, we enumerate these conditions.

(Bi) For n large enough, there exists a positive function 7n defined on X
such that for any (x,u) G X2, |<5mn(x, u)\ < 7n(æ — u).

(B2) For n large enough, there exists a positive C > 0 such that / 7n{y)dy <
C.

(B3) For any o > 0 limn^oo /iyj>a \in(y)\dy = 0.
(B4) Let s > 1 such that

J \y\3lmn{y)dy = 0 j = 1, • • • , s.
The following resuit,which is close to Bochner’s Theorem, gives sufficient

conditions for which (H2) is satisfied.

Lemma 2.1 Suppose that the conditions (Bi)-(B3) are satisfied. If h is
a continuous at a point u and sup^^ \h(x)\ < 00, then

/ h(x)ôrn (x,u)dx—*h(u) as n—> 00.Jx
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Remark 2.2 The conditions (Bi)-(B3) are satisfied for several usual
delta-sequences, including, the Fejér kernel, kernel and density type meth-
ods. Since for any B £ B, the function 1 o (x) satisfies the conditions of
Lemma 2.1, it follows then that the condition (H2) holds true.

We bcgin the discussion of the condition (H3) by an example relative to
the Haar orthogonal System estimate.

For a and P universal positive constants, let

Lip(a, 1, P) = {f G Li([0,1]) : wi(/, rj) < pr)a},

where

m(f,v)= sup { f \f(s + h)~ f(s)\ds\
0<h<r] UO J

is the modulus of continuity of th function /. It follows from Cicsielski [4],
whenever / £ Li([0,1]), that

Il Efn-J |Ll< 6wi(/, T),
mn

where /„ is the Haar orthogonal System estimate of /. Therefore, when
0 = Lip(a, 1, P), we hâve

sup || Efn - f || £,!-*■ 0 as n —> 00.
/€©

Consider now the class © of density functions defined as follows. For any
e > 0, there exists 7/ > 0, such that

(2.2) sup sup [ | f{x -y) - f(x)\dx < e.
/e© Iy|<7j J

The following resuit gives sufhcient conditions that allow the condition (H3)
to hold true.

Lemma 2.2 Assume that the conditions (Hi),(Bi)-(B3) are satisfied.
If © is the class defined by the statement (2.2), then

sup || Efn - f ||x,x—► 0 as n -* 00.
fee

Suppose now that © is a class of densifies with s absolutely continuous
dérivatives and that supj-e@ ||/^^(w)||l1 <00, j = !,-•• ,s. The following
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resuit gives sufficient conditions that allow the condition (H3) to hold true.

Proposition 2.1 Assume that the conditions (Hi), (Bi), (B4) are sat-
isfied. If 0 is the class of densities with s absolutely continuons dérivatives
and sup/G0 ||/^)(u)IIli <00, j = 1,- • • ,s, then

sup || Efn — f ||li—> 0 as n —► 00.
/€©

As for the condition (H3), we begin the discussion of the condition (H4)
by the case pertaining to the Haar orthogonal System.

Following Haar [7], whenever m = 21 +j with 1 < j < 2*, l = 0,1, • • •, the
explicit form of the Haar kernel is given by

where

tfc-k-i if e (**-!> ^)2’ for some , m,
0 elsewhere,

2iTT for i — 0, • • • , 2j,
21 for i = 2j + 1, • • • , m.

It is then clear that

[ \fn(x) - E(fn(x))\dx = f [ Smn(x, u){dAn{u) - dA(u))J 0 J 0 J0

rl ri

^E ^ 1 -/O

mn

- Y2 |An((4-l, 4)) ~ A((tfc_i, tfc))|.
fc=1

Therefore, the condition (H4) holds.

dx,

dx,

The following Lemma gives a sufficient condition for which hypothesis
(H4) is satisfied.

Lemma 2.3 Suppose that, forn large enough, there exists a positive fune-
tion 7n defined on X such that for any e > 0 and any u € X, fx \5mn(x, u) —
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yn(x — u)\dx < e and Jx'yn(y)dy < 1 + e. Then the condition (H4) holds
true.

Application

Large déviations results are useful and efficient tools to study the asymp-
totic efficiency of tests. This question has been widely investigated; we refer
to Bahadur [1] and the book of Nikitin [10] for an account of results on this
subject. In testing the composite i/o, the rejection région associated to the
test statistic Vn is given by

Rn = {Vn > C}

for some positive real number c. For any density / and any real number À, set
Dn{Kf) = Pf{Vn < À), where P/ dénotés the distribution of observations
when / is the underlying density. It is obvious that, under the null hypothesis
i/o, we hâve

For any À € R, define

A„(A) = inf{D„(A,/):/e0o}.

The P- value relative to the test statistic Vn is Ln = 1 — An(Vn). The
following corollary gives the asymptotic behavior of the P-value relative to
the statistic (V^).

Corollary 2.1 Under conditions of theorem 2.1, for any f ^ Bq, we
hâve with Pf-probability one,

lim — logLn = -g( inf II / - h ).
n—>00 yi & y7iee0 11 17

Remark 2.3 From Corollary above, we deduce that the Bahadur exact
slope relative to the statistic (Vn) is 2^(inf/iee0 \\ f - h \\lJ-

3. Proofs. Proof of Lemma 2.1 Using the conditions the (Bi), it
follows that

/ h(x)ômn (x, u)dx — h{u) 5mJx,u)dx
Jx Jx

< \h{u-\-y)-h{u)\in{y)dy
Jx

< / |(/i(x) - h(î/))<5mn(a:,u)|dx,Jx
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Since the function h is continuous at a point x, for any e > 0, there exists
a > 0 such that \h(u + y) - h(u)\ < e, providcd that \y\ < a.
Thus,

/ \(h(u + y) - h(u))yn(y)\dy < / |/i(it + y) - h(u)\'yn(y)dyJX J |y|<a

+ / \h(u)\'yn(y)dy + / |/i(w + y)\ ln{y)dy,7|y|>a 7|ul>a

|y|<a

|y|>«

IMm + î/) - Ku)\ln(y)dy

+2sup |/i(æ)| / ln(y)dy.
xex J\y\>(*

Making use of the conditions (B2)-(Bs), it follows that the first term is not
greater than e and the second term tends to zéro. ■

Proof of Lemma 2.2 Using the conditions the (Hi) and (Bi), it follows
that

f\f f(u)5mn(x,u)du — f(x) dx < [ [ (f(u) - f(x))ômn(x,u)Jx \Jx Jx Jx
dudx,

< / f \f(x-y)~ f(x)\'yn(y)dxdy.Jx Jx

Using the statement (2.2), it follows that for any e > 0 and any / G 0, there
exists r) > 0 such that

< e.sup f \f(x - y) - f(x)\dx
\y\<r]J

Therefore,

/ / I f(x -y) - f{x)\ ')n{y)dxdy < f f \f(x -y)- f(x)\'yn(y)dydx,JxJx J J\y\<r)

+ f(x~ y)ln{y)dxdy
J\y\>r) J

+ f{x)hn(y)\dxdy,
J\y\>,n J

sup / \f(x - y) - f{x)\dx / \^fn(y)\du
\y\<vJ J\y\<v

+2 f \ln(y)\dy.J\v\>n
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the first term is not greater than e for any / G © and the second term tends
to zéro as n —> oo. ■

Proof of Proposition 2.1 Using the Taylor’s formula, we hâve

f(u) - f(x) = J2 (u ~ X)'J + / —~-~f^s)(x + t(u-x))dt.“1 r- J o (s-i)!
Thus,

Efn{x)-f{x) = [ (f(u) - f(x))6mn(x,u)du,Jx

v^/0)w r, i]r ,= z2—xyÔmn(x,u)du%i j!
+ [ f àmn{x,u){u-x)s——t~--f{s){x + t(u - x))dudt,J o •/* (S - 1)!

and hence

\Efn(x) ~ f(x)\ < / \X-U\j^mn(x-U)du

+ [ dt f lmn(y)\y\s—(—%T~\f{s)(x-ty)\du,J o Jx {s — 1)!
we used here the inequality |£mn(&-, u)\ < 7mri(r — u) and set x — u — y.
Therefore, by Young’s and Minkowsky’s inequalities,

\\Efn(x) - f(x)\\Ll < ll/0)IUi / ^\-imn(y)dy
j=1 Jx J'

+ f {l, dt [ \y\a'ymn(y)\\f{a)ÏÏL1dy.J0 (S - Jx

Making use of the condition (B4) and the fact that s\ipfee ||/^(«)||l1<
00, j = 1, • • • , s, it follows that the condition (H3) is satisfied. ■

Proof of Lemma 2.3 Using the classical resuit about the approximation
of an intégrable function yn by a step function, for any n and any e > 0,
there exists a function

dn

Ln(y) = y^lAn(y),
3 = 1

(3.1)
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where dn is a finite integer, (a”) are non négative finite real numbers and
Aj is a partition of X such that

(3.2) f l'yn(y) Ln(y)\dy < e.Jx

Hence, for any u G X

/ a) — Ln(x — a)|da: < 2e.Jx

For e > 0, choose dn, a?, aj» * * • > ûan et * * * » ^dn suc^ t^iat tAe state"
ments (3.1)-(3.2) are satisfied. Define fn as fn with the function Ln instead
of 7n. It follows easily that

[ I fn(x) - E(fn(x)) | dx < f | fn(x) - fn(x) | dxJx Jx

+ f I fn(x) - E(fn(x)) I dx+ f I E(fn(x)) - £(/„(*)) | dx,Jx Jx

< [ | fn(x) - E(fn{x)) I dx + 4e.Jx

It is clear that

/ I fn{x) - E(fn(x)) \dx <^2 \a]\ f I An(^ + A”) - A(x + Aj) | dx,J x
j=i J ^

where x + A = {z = x + y:y£ A}.
Consider the partition Yli of the real line into intervals of length 1 /lmn,
where / is a positive real number that will be chosen later on. For any x G R
and any 1 < j < dn, define Kxj n as the union of ail sets B £ fli such that
B C x + AJ and consider the set given by Sjn = (x + A”) — Rxn. It is easily
seen that SJn is a subset of x -F (A™ — Rj,n) for some set Rj,n included in
Anj. Thus

| An(x + A”)-A(x + Aj) |< £ |A„(S)-A(S)|+(An+A)(Sï„),
BeUrBCx+A7

and then,

/ I /„(*) - £(/«(*)) I < f>"l /( E I A„(B) - A(B) I* 3=1 JX BG.Yii>BCx+Aj
+(Àn + A)(Sjn))dx.
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Using the Young’s inequality, we obtain

J I fn(x) - E(fn(x)) | dx < EKI E |An(B)-A(S)
J=1 Ben,

+2 X>"l
3=1

< E E |A„(B)-A(B)
J=1 Ben,
dn

+2 ^ l°ÿ - Rj,n).
j=i

/,

The second term in the last inequality may be made smaller than e by
choosing l large enough such that for any 1 < j < dn, ^(A^ — Rj^n) <
Thus, since J \Ln(x)\dx = Ylf= i |a”|^{A7-) < 1 + e, it follows that

/ I /»(*) - £(/»W) I d* < E E I A„(B) - A(B) | +6e
•>=i

< y I A»(B) - A(fi) I +8e-
Bevt

where Vi is the collection of the sets of J]/ having nonempty intersection
with X. Remark that if fi(X) < oo, then N(Vi) < ii{X)lmn.
If i-i(X) — oo, the collection of sets Vi is infinité and therefore is not usable
as it is. It is necessary to eut off the tails of the distribution to reduce
the cardinality of Vi. To this end, consider a finite collection of sets Qrj
consisting of those sets of Vi having nonempty intersection with [—7*, r],
where r > 0 is a real number to be chosen later on. Define now the collection

Vr,i to be Qrj U {(—oo, —r) U (r, oo)}. It is clear that

£ | A„(B) - A (B) | < Y I A„(B)-A(B) |+(An + A)((-oo, -r) U (r,oo))
BeVi BeQr,i

< | An(B) - A(B) | +2A((-oo, -r) U (r,oo))
Bevr<i

< Y I An(B) - A(B) |+2e,
BeVrtl

since for r large enough, supjee A((—oo, —r) U (r, oo)) < e. Note in this
case that N(Vrj) < 2rlmn + 2. ■
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Proof of Theorem 2.1 Observe first that, using Scheffé’s Theorem, one

may write

fn ~ f ||li= 2 sup
BeB

[ fn(x)dx — [ f{x)dxJb Jb

The lower bound. For any set B E B and any À > 0, we hâve

p(p1 j^{fn(x) - f(x))dx > ^j=p(^2 Jb àmn(æ> Xi)dx>n Q + J^f{x)dx
Dénoté by the moment generating function of Ya=i Jb ^mn(x, Xi)dx
which is given by

= E exp < tU Ômn (X,Xi)dx

Thus,

Note that, by condition (H2), we hâve

/ àmn(x, u)dx —* Io(u) almost everywhere as n —> 00,
Jb b

Therefore, using the dominated convergence theorem, this yields

lim (t) = 1 + (e* - 1) [ f(u)du.
n—*00 JB

Hence

lim - log (t) = log
n—*oo fi

1 + (e* - 1) [ f(u)duJb
:=

The remainder of the proof of the resuit of large déviations when dealing with
the probability P(2 fB(fn(x) ~ f(x))dx > A) uses essentially Chebychev’s
inequality for deriving the upper bound and an exponential change of mea-
sure to obtain the lower bound (see for instance, Plachky and Steinebach,
[12]). The rate function is given in (1.1) where we hâve set JB f(u)du = a.
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The négative version resuit corresponding to the probability

P (2 J (f(x) - fn(x))dx > A^j
is obtained similarly. The rate function is given in (1.2). The resuit corre-
sponding to the absolute déviation between fj3 fn(u)du and jB f(u)du fol-
lows from the fact that

max

> À I <

P (2 JB(f(x) - fn(x))dx > ; P (2 Jg(fn(x) - f(x))dx > X
< P (2 Jb f(x) - fn(x)d.

2 max | P (2 J^(f(x) - fn(x))dx > A^J ; P (2 j^{fn{x) - f(x))dx > A^J j .

Using the Scheffé’s Theorem, it follows that for any B e B,

lim inf ilogP (j| fn - /11Ll> Xj = lim inf~logP ^2 sup J^fn(x)dx -J^ f{x)dix> A),

>lim inf—logP (2 [ fn(x)dx— [ f(x)dx >aV
n—*°o n \Ub Jb J

>-r«(A).

Thus,

lim inf — log P(|| fn-f ||Ll> A) > ~g{A)n—*oo 77,

The upper bound. From conditions (H3)-(H4), it follows that there exists
e > 0 indcpendent of /, such that for any / G 0,

P(ll fn - f ||i,> A) < p( £ |A„(B) - A(B)| > A - 2e).
Again by Scheffé’s Theorem, we obtain from the previous that

C(||/«-/!!£,> A) < p( sup |A„(B)-A(B)|>^-^),
\BePn 2 J

< ^ pf|An(B)-A(B)|>^î),
where Pn is the set of ail possible sets given by unions of éléments of the
collection Vn.
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The probability of large déviation version corresponding to absolute de-
viation between measures Àn and A over borel set B follows by the same

arguments as for the absolute déviation between intégrais, over some interval
B, of the functions fn and /. Hence,

p(\An(B) - A(B)| >

Therefore,

•Pdl/n-ZII^A) < Y,
BeP*

< N(Pn) sup exp<! -nTA(B)(A - 2c)(1 + o(l)) \
B&Pn l J

< 2N('Pn^ exp{—ng(X — 2e)(l 4- o(l))}.

Since (N(Vn)/n) —► 0 as n —» oo, it suffices then to tend n to infinity and to
make use the fact that g is an increasing and continuous function to achieve
the proof. ■

< exp j-nrA(B)(À - 2c)(1 + o(l)) j.

exp j-nrA(B)(À - 2e)(l + o(l))|

Proof of Corollary 2.1 Making use of the Li-consistency of the esti-
mator /n, it follows that

Vn —* inf II h - f II n —> oo.n
hee0 11 J 11

Therefore, for / fixed arbitrarily in the complementary of ©o and e > 0, we

hâve, for n large enough

P/( inf || h - / || -e < Vn < inf || h - f || +e) > 1 - 5«-€0o

with S > 0 arbitrarily small. Since Dn is monotone, we hâve for any f G ©o

1 - £>„( inf || h - f || +£, /) < 1 - Dn(V„, f) < 1 - D,
o

(inf || h-f || -c,/)
nGB o

with Py-probability 1 — 8. Therefore, with P/-probability 1 — <5, we hâve

sup [1 - Dn( inf
/€0o /l€0o

h- f || +e,/)] <

<

sup [1 - Dn(Vn,f)],
/G0o

sup [1 - Dn{ inf
/€©o he0o

Il h-f || -e,/)],
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and

1 - An( inf
hee0

h-} || -£,/)< Ln<l An (inf
^€©o

h- f || +e,/).

Since

1 - An(A) = sup Pf(Vn > A) = sup P/dl /„ - / ||£l> A),
/e©o /ee0

making use of Theorem, it follows that

-g( inf || h - f || -e) < lim inf - log(Ln)
^€©0 ^ T&

< lim sup — log(Ln) < —g( inf || h — f || +e).
n—* oo Tl h£Qo

Since g is continuous, we achieve the proof by making e tend to zéro. ■
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