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UNIFORM L;-LARGE DEVIATIONS FOR THE
DELTA-SEQUENCE METHOD DENSITY ESTIMATOR

By NOUREDDINE BERRAHOU AND DJAMAL LOUANI
L.5.T.A., Université de Paris 6

In this paper we obtain uniform L,;-distance large deviations re-
sults for the delta-sequence method density estimator. More precisely,
we consider uniformity over classes of density functions fulfilling some
regularity conditions. It results from our study that the rate function
is distribution free and also does not depend upon the delta-sequence
used to estimate the density. A general result pertaining to any reg-
ular delta-sequence is stated and a discussion of hypotheses for the
most usual methods is given.

1. Introduction. Let X be an open interval of the real line R that
may be the whole real line. A sequence {6,,(z,u)} of bounded measurable
functions on X x X is a delta-sequence on X if, for each z € X and each
C*-function ¢ with support in X', we have

Jim [ 5@ wp(w)du = o(a).
Let X1, X5,---, X, be a sequence of i.i.d real random variable defined on a
probability space (€2, F, P) and taking values in a set X. Denote by f its
probability density function with respect to the Lebesgue measure u over X.
We shall associate an estimator of f with the sequence {d,,(z,u)} by letting

.fn(x) o % zn: om(z, Xi),
=]

where m = m,, is a sequence of positive real numbers that tends to infinity
with n.

Several estimation methods of an unknown density function f by mean
of functions of i.i.d random variables X, Xs,--- , X,, have been proposed in
the last five decades. These methods include the kernel method studied by
Rosenblatt [1:3] and Parzen [11], the orthogonal series methods introduced
by Chencov [] and studied by Schwartz [11], Kronmal and Tarter [] and
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Walter [!7] and the characteristic function approach studied by Blum and
Susarla [2]. The delta-sequence method gathers several density estimation
methods including among others the following ones

(1)

(ii)

(iii)

(vi)

(v)

Kernel estimator. For (z,u) € R?, set
Om(z,u) = mK(m(z — u)),

where K is a positive bounded function such that [% K(z)dz = 1
and lim, o |z| K(z) = 0. Parzen [! 1] showed that {,,} constitutes a
delta-sequence.

Histogram estimator. For (z,u) € [0,1]?, set

Sm(z,u) =m Y x;()x;(u),

j=1
where x1 is the indicator function of the set (0,1/m), and x; is the
indicator function of the interval [(j —1)/m,j/m|[ for j = 2,--- ,m.

It is easily seen that this case corresponds to be the usual histogram
estimator.

Orthogonal series estimator. Let {1, (z)} be a complete orthonormal
system on an interval (a,b) consisting of eigenfunctions of a compact
operator on L2(a,b). For (z,u) € (a,b)?, set

m(Z,u) = Z‘pa "‘/’J(u

Walter [17] stated that the sequence (6, (z,u)) is a delta-sequence.
The sequence (¢, (z)) may represent the trigonometric functions, the
Legendre polynomials, the Haar orthogonal system, the Hermite func-
tions.

Estimator of density type. Let {Y;,} be a sequence of i.i.d. random
variables with mean 0 and finite variance, having a bounded density.
Let g (z) be the density of the sample mean. Then, the sequence of
functions

Om(z,u) = gm(z — u) z,u € R,

is a delta-sequence. This may be shown by using the Chebychev’s
inequality.
Fejér kernel estimator. Consider the Fejér kernel defined, for any u €
[_ﬂ'v ﬂ']% by

sin?((m + 1)u/2)
27(m + 1) sin®(u/2)

Fn(u) =
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Winter [16] showed that the sequence of function &,,(z,u) = Fp,(z—u)
constitutes a delta-sequence.

In this paper, we are concerned with uniform L;-distance large deviations
results of Chernoff-type for the delta-sequence method density estimator.
More precisely, we consider uniformity over a class of density functions ful-
filling some regularity conditions that will be given later on. A general result
pertaining to any regular delta-sequence is stated and a discussion of hy-
potheses for the most usual methods is given. One of the most important
application of large deviations results in statistical analysis is the compari-
son of tests via their asymptotic efficiency from the Bahadur point of view.
This question has been previously addressed by Louani [!)] where it is shown
that the kernel density Li-error based goodness-of-fit test achieves better
performances than the well-known Kolomogorov-Smirnov test when testing
a simple hypothesis. The results we obtain here allow to consider composite
hypotheses.

Let ©g be a class of density functions. Consider the problem of testing the
composite hypothesis Hy : “f € ©” against the alternative A : “f ¢ Q¢”
on the basis of observations X, X5, -, X,,. For this purpose, use the test
statistic

Vo= inf || fo=h L,

which is naturally significant if larger than some positive threshold. The
results we state allow to obtain the Bahadur exact slope associated to the
statistic V;, and then to compare the test based on V, with any other test
provided to have its Bahadur slope.

There exists an extensive large deviations literature involving various ar-
eas of probability and statistics. For a large corpus of results and applica-
tions, we refer to the book of Dembo and Zeitouni [7].

In the sequel, we introduce some notations and tools that allow to perform
our study. Define, for any 0 < a < 1 the following functions,

A A A .
(1-1])':()\)2{(&_'_ 5)log(1+5:)+(1—a—3)log(1- 2—(1"?) if0<A<2-2aq,
0 elsewhere.

apy( < {@- 2 loed-5)+(1-a+3) log(l+zi) if 0<A<2a,
id elsewhere.

Notice that 'z (A) is a reflection of I'j (A) about a = 1/2 and T’} (A) < I’z (A)
(respect. I'y (A) > I';())) whenever a < 1/2 (respect. a > 1/2). T} (A) =
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I, (XA), (see Louani [J]). Define now

La(A) = min{l'7 (\), Tz (M)},
and

g(A) =inf{lu(\): 0<a<1}.

2. Results. From now on, denotes by B the o-field of Borel subsets of
X. Let A, be the empirical probability measure associated to the sample
X1, X9, -+, X, and denote by A the probability measure associated to the
density f . Obviously, one has

$u(@) = [ 6o (@, 0)dAn(w),
and
B(fa(&)) = [ bma (o) (w)d

Consider a class © of density functions and set some hypotheses upon
this class and the delta-sequence (d,,, ) necessary to establish our results.

(H;) For any u € X and any n € N,

/ Oy (8, )it = 1.
X

(Hz) For any u € X and any B € B, we have

/B 16m. (2, w)ldo <Gl

and
lim / bpulEsm)de = Ig(u) almost everywhere,
B

n—oo

o
where B is the interior of the set B and Cp is a constant depending
only the set B.
(H3) For any € > 0, there exists ng such that ¥Yn > ng

sup || E(fn) = f L, < e
=)

(Hy) For any € > 0 there exists a finite collection P, of subsets of X such
that

fx | fa(@) — E(fa(z)) |dz < D | Aa(B) — A(B) | +e,

BePn




13

From now on, denotes by N(P,) the cardinality of P,. The main result of
this paper is given in the following theorem.

Theorem 2.1 Assume that the conditions (Hp)-(H4) are satisfied. If

N(Py
Jerolo wu(-T?—) = 0, then, for any A > 0, we have

_ 1
(2.1) Jim e log P(|| fo = £ ll,> A) = —g().

Remark 2.1 The left hand side of the statement (2.1) is bounded from
below under only the condition (Hz).

Discussion of the conditions

When a function h € L;([0, 1]), it is well-known (see, for instance, Devroye
and Gyorfi [6], page 291) that the Haar orthogonal system expansion of h
converges to h almost everywhere. Since for any B C [0,1], I € Ly([0, 1]),
it follows then that the condition (Hp) is satisfied.

In Lemma 2.1, Lemma 2.2 and Proposition below, sufficient conditions
that allow hypotheses (H2) and (Hz3) to be satisfied are given. In the first
place, we enumerate these conditions.

(B1) For n large enough, there exists a positive function 7, defined on X
such that for any (z,u) € X2, |6, (z,u)| < Yu(z — u).

(B2) For n large enough, there exists a positive C' > 0 such that [ y,(y)dy <
C.

(B3) For any a > 0 lim, o Jyiza I (y)ldy = 0.

(B4) Let s > 1 such that

bk f|y|3'7m,, @dy =R, . FR4T G

n—oo

The following result,which is close to Bochner’s Theorem, gives sufficient
conditions for which (Hj) is satisfied.

Lemma 2.1 Suppose that the conditions (B1)-(B3) are satisfied. If h is
a continuous at a point u and sup,cy |h(z)| < oo, then

f h(z)om, (z, u)dz — h(w) as n — oo.
X
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Remark 2.2 The conditions (B;)-(Bj3) are satisfied for several usual
delta-sequences, including, the Fejér kernel, kernel and density type meth-
ods. Since for any B € B, the function Ig(m) satisfies the conditions of

Lemma 2.1, it follows then that the condition (Hz) holds true.

We begin the discussion of the condition (H3) by an example relative to
the Haar orthogonal system estimate.
For o and /3 universal positive constants, let

Lip(e, 1,8) = {f € L1([0,1]) : wi(f,n) < Bn°},
where

wi(fim) = sup { / £ 1) = F(5)ds

is the modulus of continuity of th : function f. It follows from Ciesielski [4],
whenever f € Li([0,1]), that

il
Il Efnimif |L1§ 6wl(f1 m_)’

where f, is the Haar orthogonal system estimate of f. Therefore, when
© = Lip(ey, 1, 3), we have

sup || Efp — f |lL,— 0  asn — oo.
feB

Consider now the class © of density functions defined as follows. For any
€ > 0, there exists n > 0, such that

(2.2) sup sup [ |f(z —y) — f(z)|dz < e.
fedlyl<n

The following result gives sufficient conditions that allow the condition (Hz)
to hold true.

Lemma 2.2 Assume that the conditions (H;),(B1)-(B3) are satisfied.
If © is the class defined by the statement (2.2), then

sup || Efn — fl,—» 0 asn— oco.
feod

Suppose now that © is a class of densities with s absolutely continuous
derivatives and that supscg ||fY)(u)||L, < 00, j = 1,---,s. The following
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result gives sufficient conditions that allow the condition (H3) to hold true.

Proposition 2.1 Assume that the conditions (H;), (B1), (B4) are sat-
isfied. If © is the class of densities with s absolutely continuous derivatives
and SUPyseco ”fU)(u)”Ll <00, j=1,-+,8, then

sup | Efn— f||z,— 0 asn — oo.
fee

As for the condition (H3), we begin the discussion of the condition (Hy)
by the case pertaining to the Haar orthogonal system.

Following Haar [7], whenever m = 2! +j with 1 < j < 2t 1=0,1,:--, the
explicit form of the Haar kernel is given by

1 . 2 g el
e u):{ o if (z,u) € (tk-1, tx)*, for some k=1,---,m,

elsewhere,

where

1 51%;1- fori =0,---,2j,
ot =t hri=2341,--.om

It is then clear that

f |fa(z) = E(fa(z))|dz = (z, u)(dAn(u) — dA(u))|dz

<f; / >
<L f T, @)

< Z |An((tk-1, t&)) — A((tk—1, ti))I.
k=1

oty M, 10 (O, 1) (4)(dAn(u) — dA(u))\do

_/ I[(tk 1 fk)('u‘) (dAn(u) dA(‘U.

Therefore, the condition (H4) holds.

The following Lemma gives a sufficient condition for which hypothesis
(H4) is satisfied.

Lemma 2.3 Suppose that, for n large enough, there exists a positive func-
tion v, defined on X such that for any € > 0 and anyu € X, [y |0, (z,u) —
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Yn(z — u)ldz < € and [, ya(y)dy < 1+ €. Then the condition (Hy) holds
true.

Application

Large deviations results are useful and efficient tools to study the asymp-
totic efficiency of tests. This question has been widely investigated; we refer
to Bahadur [1] and the book of Nikitin [10)] for an account of results on this
subject. In testing the composite Hy, the rejection region associated to the
test statistic V;, is given by

R, ={V, > c}

for some positive real number ¢. For any density f and any real number A, set
Dn(A, f) = Pg(Vn < A), where Py denotes the distribution of observations
when f is the underlying density. It is obvious that, under the null hypothesis
Hy, we have

Dn(')‘sf) T Pf(“ =T ”L1S A).
For any A € R, define
An(A) =inf{Dy(\, f) : f € 60}

The P- value relative to the test statistic V;, is L, = 1 — Ap(Vy). The
following corollary gives the asymptotic behavior of the P-value relative to
the statistic (V;,).

Corollary 2.1 Under conditions of theorem 2.1, for any f & ©g, we
have with Ps-probability one,

G :
lim —logL, = —g(hlenefo | = hllz,)-

n—00 N,

Remark 2.3 From Corollary above, we deduce that the Bahadur exact
slope relative to the statistic (V;) is 2g(infree, || f — R ||L,)-

3. Proofs. Proof of Lemma 2.1 Using the conditions the (B1), it
follows that

|/X h(x)om, (z,u)dz — h(u)./xé,,,,n (z,u)dz

< /X |(h(2) = h(w)) Spn, (, w)| da,

< f |2 (u + y) = h(u)| m(y)dy
X
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Since the function h is continuous at a point z, for any € > 0, there exists
a > 0 such that |h(u + y) — h(u)| < €, provided that |y| < a.
Thus,

[, 1) = ) vy < [ s+ ) = @)l (o)
i) | (w)| v (y)dy + /M)a h(u + )| 7 (y)dy,

ly|Za

< /lylga h(u+y) — h(w)| Y (y)dy

Making use of the conditions (B2)-(B3), it follows that the first term is not
greater than e and the second term tends to zero. |

Proof of Lemma 2.2 Using the conditions the (H;) and (B), it follows
that

]-:Y‘/.:Y f(w)dm, (z,w)du — f(z)|dzx

IA

/ ‘f (f(u) = f(x))om, (z,u)| dudz,
/X /A, |f(z — y) = f(z)| Yu(y)dzdy.

Using the statement (2.2), it follows that for any € > 0 and any f € ©, there
exists > 0 such that

IA

sup [ |f(z —y) — f(z)|dz < e
lyl<n

Therefore,

[ [ 1@ =) - f@lm@dedy < [ [ 1@ =) - f@)] wm(w)dya,
& lyl<n
[ [ 1= vrn)dady

+f [ 1@ sy
< sw [1f@-1) - f@)ldo [ )l du
lyl<n

ly|<n

+2 [¥n(y)| dy.
lylZn
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the first term is not greater than e for any f € © and the second term tends
to zero as n — oo. 3]

Proof of Proposition 2.1 Using the Taylor’s formula, we have

s=1 r(4) - s—1
ORI o D=y [ w-or =2 0 1 (e
Thus,

Efn(z) - f(z)

Il

/ (£(4) = £(2))bma (2w}

(7)
= fj I)f ) 6, (2, w)du

4 f f G, W)l :1:)"( )) FO (@ + t(u - 2))dudt,

and hence

(B z) - £(2) Z f

'Ymﬂ- ("E oF u)du

+ / dtf Ymn y)IyI’ )1)—, |£) (2 — ty)|du,

we used here the inequality |6y, (x, u)| < Y, (z —u) and set z — u = y.
Therefore, by Young’s and Minkowsky’s inequalities,

1B - @)l < an“)u [ )

8 S s (s)
- [ o W @Il dy.
Making use of the condition (B4) and the fact that supjcg ||fU)(u)|[r,.<

00, j=1,---,s, it follows that the condition (Hj) is satisfied. [ ]

Proof of Lemma 2.3 Using the classical result about the approximation
of an integrable function <, by a step function, for any n and any € > 0,
there exists a function

dn
(3.1) La(y) = > o} Tan(y),
j=1
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where d,, is a finite integer, (o) are non negative finite real numbers and
A7 is a partition of X such that

(3.2) [X o) = La(v)ldy < e.

Hence, for any u € X

/ |6, (2, u) — Lp(z — u)|dr < 2.
X

For ¢ > 0, choose dp,af,03, - ,a} et AT,---, A7 such that the state-
ments (3.1)-(3.2) are satisfied. Define f, as f,, with the function L, instead
of 4. It follows easily that

J 1 5@ = Bt | do < [ | fu(a) = @) | da
+ ]X | Fa@) ~ BUn(@)) | do+ [ | E(fa(@) - E(Fu(a) | de,
< [ 1 7ale) — E(Fue)) | do + .

It is clear that
o + dn
f, 1 7o) = B @) 1 do < 31051 [ | Anla+ A7) = Ao+ 43) | do,
J:

wherez+ A={z=z+y:y€ A}.

Consider the partition []; of the real line into intervals of length 1/m,,
where [ is a positive real number that will be chosen later on. For any z € R
and any 1 < j < dy, define R}, as the union of all sets B € []; such that
B C z+ A} and consider the set given by = (z+A}) - R} ,,. It is easily
seen that SI‘ is a subset of = + (A} — R;, n) for some set R;, included in
A?%. Thus

| An(z+ A7) —A(z+ A7) |< 3 | An(B) = A(B) | +(An+A)(ST0)
Be[],,BCz+A7
and then,
[, 1 7ule) - Ba(@)) | < E|a“| /. | Au(B) - A(B) |

Be[‘[,.BCx+A"
+(An A A ( j,n) d:ﬂ
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Using the Young’s inequality, we obtain

f | fa@) = E(fu(@)) | dz < Zla"l 2. |4a(B) - (B)'fgcm‘“

Jj=1 Be[],

dn
+2 ) |of|u(A} - Rjn),

j=1
dn
> loflu(43) 3 | Aa(B) - A(B) |
i=1 Bel],
+2 Zla"IM(A Rjn).
i=1

The second term in the last inequality may be made smaller than e by
choosing [ large enough such that for any 1 < j < dj,, u(A7—Rjn) < eu(A7).

Thus, since [ |L,(z)|dz = Ed"l laj|u(AT) <1 +e¢, it follows that

[ 1@ - BGata)) 1z < Zla"fn(A" ) & 1 An(B) ~ A(B) | +6¢
Be[],

< D | Ap(B) = A(B) | +8¢,
BeP,

where P, is the collection of the sets of [], having nonempty intersection
with . Remark that if u(X’) < oo, then N(P}) < u(X)lm,.
If 4(X) = oo, the collection of sets P, is infinite and therefore is not usable
as it is. It is necessary to cut off the tails of the distribution to reduce
the cardinality of P;. To this end, consider a finite collection of sets Qr
consisting of those sets of P, having nonempty intersection with [—r, 7],
where r > 0 is a real number to be chosen later on. Define now the collection
Pry to be QU {(—00, —1) U (r, 00)}. It is clear that

>_ 1 8a(B) = A(B) | < 37 | An(B)—A(B) [HAn + A)((~00, —7) U (r, 00))
BeP, BEQ,,
< Y. | An(B) = A(B) | +2A((~00, —7) U (r, 00))
BePy,
Y | Aa(B) - A(B) | +2¢,

Bepr.l
since for r large enough, supscg A((—00, —7) U (1, 00)) < €. Note in this
case that N(P,;) < 2rim, + 2. [ |
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Proof of Theorem 2.1 Observe first that, using Scheffé’s Theorem, one
may write

[ @z~ [ f(@)da].

The lower bound. For any set B € B and any A > 0, we have

P(?]B(fn(z:) —f(x))dx>A)=P(ijlfaamn(:c,x,-)dmn(%+[E f(a:)da:)).

Denote by ¢2(t) the moment generating function of 31, [ 6m, (z, Xi)dx
which is given by

G NC S )
= (pn ()"

Thus,

| fo = f llz,= 2 sup
BeB

on(t) = E

2 (t) =f exp{t/ Jmn(x,u)dm}f(u)du.
x B
Note that, by condition (H2), we have
f Om, (z, u)dz — IB(U) almost everywhere as n — oo,

B

Therefore, using the dominated convergence theorem, this yields
: B g
Jim pB() =1+ (¢ - 1) [ f(wdu.
Hence
G Y

lim, Liog 62(9) = log[1+ (¢~ 1) [ fw)du] := %),
The remainder of the proof of the result of large deviations when dealing with
the probability P(2 [g(fn(z) — f(x))dz > A) uses essentially Chebychev’s
inequality for deriving the upper bound and an exponential change of mea-

sure to obtain the lower bound (see for instance, Plachky and Steinebach,
[12]). The rate function is given in (1.1) where we have set [z f(u)du = a.
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The negative version result corresponding to the probability

P(2 [ (@) - ful@)de > )
is obtained similarly. The rate function is given in (1.2). The result corre-

sponding to the absolute deviation between [g fn(u)du and [z f(u)du fol-
lows from the fact that

max {P (2 [ (f(@) = fu@Nio > 3); P (2 [ (1ale) - @)z > 1)}
<P (2 ‘ | #@) = fa(@)da
2ma.x{P (2 /B(f(;r:) - bl s )\) ;B (2/B(fn(a:) — f(@))dz > )\) }

Using the Scheffé’s Theorem, it follows that for any B € B,

>A)5

S| L b e
lﬂgfalogP(||fn~f||Ll>A) =hf{13}£f;l()gP(2 ;-;;ép Bfn(:c)d:c—/ﬂf(x)d:n{> )\),

>lim. ioréf%logP (2VB Fol2)dz— fB f(s:)d::' 4 ,\),
>—Ta(N).

Thus,

ol
liming = log Pl fu ~ 1 llz,> X) > ~g()

The upper bound. From conditions (Hjz)-(Hy), it follows that there exists
€ > 0 independent of f, such that for any f € ©,

Pl fa= > N < P T [An(B) - A(B)| > ,\-26).

B€Pn

Again by Scheffé’s Theorem, we obtain from the previous that

A—2
Pl = £ 11> %) < P sup IAn(B) - AB)| > 25,

> P(Ina(8) - AB) > 255,

BeP,

IA

where P,, is the set of all possible sets given by unions of elements of the
collection Py,.
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The probability of large deviation version corresponding to absolute de-
viation between measures A, and A over borel set B follows by the same
arguments as for the absolute deviation between integrals, over some interval
B, of the functions f,, and f. Hence,

P(|An(B) ) e 26) < exp{—nFA(B)(A T 0(1))}.
Therefore,
PUlfn=7ln>N) < 3 ep{-nTam( - 2001+ o(1)}
BeP,
< N(P,) sup exp{wnI‘A(B}(,\ —2¢)(1 +o(1))}
BeP,

< 2N(Pn) exp{—ng(A — 2¢)(1 + o(1))}

Since (N(Pp)/n) — 0 as n — o0, it suffices then to tend n to infinity and to
make use the fact that g is an increasing and continuous function to achieve
the proof. m

Proof of Corollary 2.1 Making use of the L;-consistency of the esti-
mator f,, it follows that

inf || h— i
Voo jnf |h=f] n—oo

Therefore, for f fixed arbitrarily in the complementary of ©¢ and € > 0, we
have, for n large enough

i wf he g Mo = =
Pr(inf I1h=f | €< Va < nt [[h=f ]+ > 18
with § > 0 arbitrarily small. Since D,, is monotone, we have for any f € g
s i £ T | T : i .
1 Dn(hlenefn lh=f 1l +& ) < 1= Dn(Va, f) < 1= Du( inf | A=f Il =€ f)
with Py-probability 1 — d. Therefore, with Pg-probability 1 — 4, we have

sSup [1 i Dﬂ(hlenef ” h - f “ €, f)] = sSup [1 i Dﬂ(Vn! f)]!
2 J€Bo

JEBg
< sup|l-—D,(inf || h- e i
2 afg 0[ (heeo || f || f)]
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and
B i i - U <1-— i — .
1= A(inf [h=1 1| ~6f) < Lo <1-Aninf 5=l +6.5)
Since

= An(’\) = sup Pf(vn = ’\) = sup Pf(" In=1f ”L1> )\)!
f€6g f€Bq

making use of Theorem, it follows that

1
A o 108 ~ A)iss T L
.czf(h}enefU el el lim inf ~ log(Ln)

1
< limsup —log(L,) < —g( inf || h — +e€).
< limsup = log(L,) < ~g(,inf ||~ || +¢)
Since g is continuous, we achieve the proof by making € tend to zero. [ |
References.

(1] BAHADUR, R.R. (1971). Some Limit Theorems in Statistic. SIAM,
Philadelphia, Pennsylvania.

(2] BLuM, J. and SUSARLA, V. (1977). A Fourier inversion method for the
estimation of a density and its derivatives. J. Austral. Math. Soc. 22,
166-171.

[3] CuENCOV, N.N. (1962). Evaluation of an unknown distribution density
from observations. Soviet. Math. 3, 1559-1562.

[4] CIESIELSKI, Z. (1966). Properties of the orthonormal Franklin system.
II. Studia. Math. 27, 289-323.

(5] DEMBO, A. and ZEITOUNI, O. (1993). Large deviations techniques and
applications. Jones and Bartelett Publishers.

[6] DEVROYE, L. and GYORFI, L. (1985). Nonparametric Density Estima-
tion. The Ly-View. John Wiley, New York.

[7] HAAR, A.(1910). Zur Theorie der orthogonales Funcktionen-systeme.
Math. Ann. 69, 331-371.

[8] KRONMAL,R. and TARTER, M. (1968). the estimation of probability
densities and cumulatives by Fourier series methods. J. Amer. Statist.
assoc. 63, 925-952.

[9] Louani, D. (2000). Large deviations for the L;-distance in kernel density
estimation. Journal of Statistical Planning and Inference. 90, 177-182.




28

(10] NIKITIN, Y. (1995). Asymptotic efficiency of nonparametric tests. Cam-
bridge University Press.

[11] PARZEN, E. (1962). On the estimation of a probability density function
and mode. Ann. Math. Statist. 33, 1065-1076.

(12] PLACHKY, D. and STEINEBACH, J. (1975). A Theorem about proba-
bilities of large deviations with application to queuing theory. Period.
Math. Hungaria. Vol, 6, 343-345.

[13] ROSENBLATT, M. (1956). Remarks on some nonparametric estimates
of a density function. Ann. Math. Statist. 27, 832-837.

[14] ScawARTzZ, S.C. (1967). Estimation of probability density by orthog-
onal series. Ann. Math. Statist. 38, 1261-1265.

[15] WALTER, G. (1965). Expansions of distributions. Trans. Amer. Math.
Soc. 116, 492-510.

[16] WINTER, B.B. (1975). Rate of strong consistency of two nonparametric
density estimators. Ann. Statist. 3, 759-766.

175, RUE DU CHEVALERET, BEME ETAGE,

BATIMENT A, 75013 PARIS FRANCE

E-MAIL: louani@ccr.jussieu.fr
berrahou@ccr.jussieu.fr





