
Simulation study of Sycomore++, a self-adapting
graph-based permissionless distributed ledger

Aimen Djari
University Paris-Saclay, CEA, List

Palaiseau, France
mohamed-aimen.djari@cea.fr

Emmanuelle Anceaume
CNRS / IRISA

France
emmanuelle.anceaume@irisa.fr

Sara Tucci-Piergiovanni
University Paris-Saclay, CEA, List

Palaiseau, France
sara.tucci@cea.fr

Abstract—The arrival of Bitcoin [1] drove the shift to de-
centralized ecosystems through the exchange of transactions
without intermediary. However, one of the main challenges
that need to face permissionless blockchains are scalability and
security. In this paper, we present a performance evaluation
of Sycomore++, a permissionless graph-based distributed ledger
whose main feature is to dynamically self-adapt the number of
created blocks to the current number of submitted transactions,
and compare them with the ones of Bitcoin and Sycomore, a
graph-based distributed ledger. Our evaluation relies on agent-
based simulations to evaluate the capability of these distributed
ledgers to address the aforementioned challenges, within different
execution contexts.

Index Terms—Graph-based distributed ledger, scalability, dis-
tributed ledger quality, agent-based simulation

I. INTRODUCTION

A recent evolution in blockchain technology seeks to ad-
dress the performance issue of permissionless chain-based
ledgers, in particular the small number of transactions con-
firmed per second – around 7tx/s for Bitcoin. While some
new efforts are dedicated to replace the proof-of-work (PoW)
consensus mechanisms with mechanisms such as proof-of-
stake and BFT consensus (such as [2]–[5]) reaching 102−103

tx/s, it is undeniable that Bitcoin has shown a great longevity,
validating on the ground its good design and security proper-
ties in these last 10 years. For this reason other proposals
are exploring how to leverage the same design principles, and
in particular the simplicity, of Bitcoin protocol. In this line
of work some proposals, including [6]–[8], called second-
layer protocols, propose to implement a protocol on top of
Bitcoin that hits the blockchain only from time to time. In
this way second-layer transactions are handled at the Internet
speed, while only special transactions, needed occasionally
to open/close sessions and solve disputes, are translated into
Bitcoin transactions. While the idea of off-loading transactions
is interesting, these proposals do not specifically address the
problem of scalability of the ledger-based PoW itself. In this
respect, and to the best of our knowledge (see Section II),
Sycomore [9] has been the first Nakamoto-style Proof-of-
Work protocol that addresses Bitcoin’s scalability issues by
making its graph-structure dynamically adapt to fluctuations
in transaction submission rates. Specifically, when the last
blocks appended to a given chain C of the graph exceed some
maximal load threshold, subsequent blocks of transactions are

partitioned over two created sibling chains referencing C, and
these blocks are mined in parallel. Conversely, when the last
blocks of two sibling chains Ci and Cj fall short of a minimal
load threshold, subsequent blocks will belong to a unique
chain, referencing both C1 and C2. The decisions to split a
chain of the graph or to merge two sibling ones is locally taken
by each miner, and soundness of this decision is verifiable by
everyone at any time [9].

A. Motivation for this Work

By dynamically adapting the number of chains of the graph
to the actual transaction load of the network, one might
expect that Sycomore would guarantee an almost optimal
scalability in terms of confirmed transactions per second
(TPS). Actually, the rate at which transactions are confirmed
fully depends on the mining difficulty, i.e., the difficulty to
create the next block. To cope with variations of the network
computational power (i.e., hashrate of the system), the mining
difficulty is periodically readjusted to guarantee both security
and acceptable latency. In Bitcoin, such a readjustment is
executed every time the height of the blockchain has been
increased by 2016 blocks, i.e., every 14 days. Sycomore has
a similar readjusting scheme, proceeding to a readjustment
of the difficulty every time the height of the graph has
been increased by Hmax = 2016 blocks since the previous
readjustment. Since Sycomore can have more than one chains
in the graph, the mining difficulty is adjusted to fit the width
of the graph, i.e., the number of leaf chains in the graph.
Unfortunately, the number of leaf chains between any two
readjustments of the difficulty can dynamically vary to cope
with variations of transaction submission rates. Hence, the
mining difficulty which was computed to fit both the hashrate
of the network and number of chains at the last readjustment
may currently be either under-estimated or over-estimated. To
illustrate this point, let us consider the scenario where, at
the time readjustment took place, the graph’s width was very
large, but subsequently the number of submitted transactions
significantly dropped, leading to a progressive diminution
of the number of leaf chains, and thus an under-estimated
mining difficulty. Such a scenario shows a possible breach
of security: adversarial miners can take advantage of a too
low mining difficulty to degrade the ledger quality [10],
that is the maximal proportion of blocks contributed by the

adversary in a sufficiently long part of the ledger maintained
by a honest node. The opposite scenario may also happen,
where a sudden augmentation of the transaction rate will give
rise to an over-estimated mining difficulty, which in the worst
case will require a power consumption equal to Bitcoin’s one.
Transaction throughput will drastically decreases until the next
readjustment of the difficult takes place.

B. Contributions of this Work

This work presents a twofold contribution. First we
present Sycomore++, a scalable Nakamoto-style Proof-of-
Work protocol that solves the critical issues mentioned above.
Sycomore++ inherits the main mechanisms of Sycomore,
while adding a new adaptive adjustment mechanism that
continuously adapts the number of confirmed transactions per
second (TPS) to the actual rate at which transactions are
submitted to the network. Secondly, we propose fine-grained
simulations to evaluate the capacity of Nakamoto-style Proof-
of-Work protocols, i.e., Bitcoin, Sycomore and Sycomore++,
to scale. We have implemented these protocols on an agent-
based simulator and we have compared the scalability of
these protocols in the presence of large communication delays
and sudden and substantial variations of the system workload
demand. These experiments show that Sycomore++ guaran-
tees an optimal throughput, i.e., transactions are confirmed
at the rate at which they are submitted by clients, whatever
their submission rate, and transaction latency is constant.
One of the consequences is that users can safely predict
the time at which their (valid) transaction will be confirmed
in Sycomore++. Furthermore Sycomore++ shows a drastic
reduction of “lost” hashrate w.r.t Bitcoin since concurrent
blocks are not necessarily in a fork situation. Finally, we have
designed sophisticated attacks that an adversary may elaborate
to hinder the ledger quality property. Experiments show that
Sycomore++ is resistant to these adversarial behaviors.

Finally, the main shortcoming of this work is to have
specifically focused on Bitcoin, Sycomore and Sycomore++,
and not on other DAG-based PoW protocols. We have started
the implementation of both Ghost [11] and Spectre [12] in our
simulator to analyze the impact of their transaction handling
and to compare their scalability and resilience properties with
Bitcoin, Sycomore and Sycomore++’s ones.

The remaining of the paper is organized as follows. Sec-
tion II discusses related work on simulation and graph-based
distributed ledgers. Sycomore++ is presented in Section III
together with an analytical performance study. Section IV
highlights the main lessons learnt from the experiments we
have conducted. Finally, Section V concludes the paper.

II. RELATED WORK

Modeling and Simulation. To shed some light on the dynam-
ics of blockchain systems, recent research focused on suitable
simulation models to capture their behavior. The different
proposals differ in the level of abstraction of the model, the
simulation type and the properties under study. Kaligotla et
al. [13] propose an agent-based framework for evaluating

distributed ledgers, modelling a blockchain at a very abstract
level as a simple append-only queue where a block is added
when verified by enough agents. Agents issue transactions
and verify them through atomic actions (no messages are
exchanged) with associated costs, fees and energy costs,
respectively. In the present work we consider a simulation
model at a finer granularity level, in the sense that the proof-
of-work is simulated for each agent according to its hashrate,
and a large range of transaction submission rates, network
delays, and adversarial strategies are considered. Piriou et
al. [14] propose a stochastic simulation model and Monte-
Carlo simulations to evaluate the performance of a blockchain
when the communication system loses messages. Double-
spending attacks are modeled by a simplified append-only
queue model (which considers instantaneous communication).
Alharby et. al. [15], Rosa et al. [16] and Faria et al. [17]
propose discrete-event simulators for distributed ledgers that
resemble to Bitcoin and Ethereum, but not adapted to simulate
graph-based distributed ledgers. On the other hand, Bottone
et al. [18] present a simulation model for Tangle-like DAG
ledgers [19] aiming at studying the grow of the graph of
transactions. The simulation model is instrumented on the
NetLogo [20] agent-based simulator. Due to the complexity of
the computational model, simulated strategies are very simple
and network effects are not taken into account.

Graph-based protocols. Many graph-based protocols have
been explored in the last years. Proposals such as
HashGraph [21], BYTEBALL [22], and Iota [19], [23] do not
use blocks, i.e., a graph is formed by transactions pointing
to each other. However, these solutions are not fully decen-
tralised because they leverage the presence of central or trusted
nodes. Ghost [11] and Spectre [12] protocols keep blocks,
modifying the blockchain data structure from a totally ordered
sequence of blocks to a directed graph of blocks. Note that in
these approaches, the absence of mechanisms to prevent the
presence of conflicting records (i.e., blocks with conflicting
transactions) or the presence of cycles in the directed graph
(Spectre [12] organises blocks in a directed, but not acyclic,
graph of blocks) require that participants execute a complex
algorithm to extract from the graph the set of accepted (i.e.,
valid) transactions [12]. In Sycomore [9] neither a chain of
blocks nor a set of transactions are extracted from the graph
to become the valid blockchain or the valid set of transactions.
Instead, the full graph is the ledger. Blocks are built so that
they commit the state of the directed graph at the time blocks
were created, which decreases the opportunity for powerful
attackers to create blocks in advance.

III. SYCOMORE++

Sycomore++ is a Nakamoto-style Proof-of-Work protocol.
It builds a permisionless cryptocurrency ledger whose structure
is a dedicated balanced directed acyclic graph of blocks,
called SYC-DAG, introduced in Sycomore [9]. Sycomore++

enjoys a set of properties inherited from Sycomore, and thanks
to a new adaptive adjustment mechanism, it guarantees an
optimal scalability: the rate at which transactions are deeply

2

confirmed equals their submission rate in the system. To make
the paper self-contained, we highlight the design principles
of Sycomore, and then present the new adaptive adjustment
mechanism of Sycomore++.

A. Overview of Sycomore

Sycomore has been designed to meet the following proper-
ties [9]:

Property P1: Dynamic adaptation of the structure of the
ledger. This has been implemented by introducing the notion
of splittable and mergeable blocks, which are a dynamic
response to respectively a rise or a drop in the number of
transactions inserted in the last blocks appended to the SYC-
DAG. Both notions refer to block load, i.e., the ratio between
its number of bytes and its maximal load (e.g., 1 MByte
in Bitcoin prior to the date of SegWit activation). Hence, a
block b appended to the SYC-DAG is called splittable if the
average load of block b together with the load of its cmin − 1
predecessors on the chain exceeds the overload threshold
Γ (cmin and Γ are system parameters). When a block b is
splittable, miners will create subsequent blocks so that they
will form two parallel chains of blocks, called sibling chains,
such that the first block of each of the two chains refers
to b. Conversely, when the block load decreases Sycomore
progressively reduces the number of chains in the SYC-DAG.
Hence, a block is called mergeable if the average load of
this block together with the load of its cmin − 1 successive
predecessors of its chain falls short of some given underload
threshold γ (γ is a system parameter). When two blocks
belonging to two sibling chains are mergeable, miners will
create subsequent blocks so that they will form a single merged
chain. Any block that is neither mergeable nor splittable is
regular. As argued in [9], everyone, and in particular miners,
can detect the instant at which a block is splittable or two
sibling blocks are mergeable. This is observable and verifiable
by anyone since it only depends on a publicly observable
quantity (i.e., block load). Note that for the interested reader,
an example of a SYC-DAG is provided in the appendix.

Property P2: Balanced partitioning of transactions. It
aims at fully exploiting the gain brought by sibling chains,
and is implemented by introducing the notion of label. A
label is a binary string, and characterizes the common prefix
of the identifiers (i.e., fingerprints) of the set of transactions
embedded in a block. Any block when created is tagged
with the label of the chain it will belong to (affectation of
a block to a given chain is described in the next paragraph).
The genesis block b0 is labelled with the empty binary string
ε, and all the blocks from b0 to the first splittable block b
(if any) of the chain are labelled with the empty string ε
(this reflects Bitcoin’s behavior). Now all the blocks of two
sibling chains, appended to a splittable block b inherit b’s
label extended with 0 and 1 respectively, and will only contain
transactions whose identifier is prefixed by b’s label extended
with 0 (resp. extended with 1). Conversely, all the blocks
that belong to a merged chain inherit the largest common
prefix of its predecessor labels. As transactions’ identifiers can

be considered as random bit strings, transactions are evenly
partitioned over sibling chains, and cannot appear in more
than one block.

Property P3: Unpredictability of the predecessor. This
property is implemented by using the unpredictability and
randomness of the proof of work (PoW) to assign the predeces-
sor of any block b. To make such an assignment immutable,
verifiable by anyone and non-ambiguous, the header of any
block b mined by any miner u contains, among different
pieces of information, a set of (c + s) commitment tuples
{. . . , (H(b`j), `′j ,m

`′j), . . .} that (i) acknowledges or commits
u’s local view Lu of the SYC-DAG, and (ii) characterizes
b’s predecessor. If Lu contains c leaf blocks b`1 , . . . , b`c at
the time u starts b’s creation process, and among them, s
of them are splittable, then for j ∈ J1, cK, H(b`j) is a
cryptographic link to leaf block b`j , `′j is the label of the
block for which b`j will be the predecessor, and m`′j is the
Merkle root of the set of locally pending transactions whose
identifier is prefixed by `′j . If leaf block b`j is splittable
then two tuples (H(b`j), `j0,m

`j0) and (H(b`j), `j1,m
`j1)

commit the presence of block b`j in Lu. If leaf blocks b`j0

and b`j1 are both mergeable and belong to sibling chains then
two tuples (H(b`j0), `j ,m

`j) and (H(b`j1), `j ,m
`j) commit

the presence of those mergeable blocks in Lu. By doing this,
block b extends (c + s) commitment paths, one to each leaf
block of Lu, and recursively down to the genesis block. The
length of a commitment path (that is the number of blocks on
the path) is used to resolve forks if any (see Rule 1). Miner u
then engages in finding a nonce ν such that ν is the solution
of the PoW applied on b’s header (exactly as in Bitcoin). If
successful, the predecessor of block b is the leaf block b`i

in Lu closest to ν [9]. Miner u completes the creation of its
block b by embedding the appropriate set of transactions, that
is the set of transactions whose identifier is prefixed by `′i and
whose Merkle root is m`′i . Extracting b’s predecessor from the
PoW computed for b makes the choice of block’s predecessor
an unpredictable and random process. Notice that no specific
reference to b’s predecessor is added in b’s header: b’s header
is securely sealed with PoW ν, and thus when a node receives
block b, it derives b’s predecessor by using the information in
b’s header (i.e., ν and the set of tuples).

Property P4: chain fairness. This property aims at guar-
anteeing that with high probability, all the leaf chains of
the SYC-DAG grow at the same speed. It follows from the
assumption that the PoW is modeled by a random oracle,
and that transaction identifiers result from the SHA256 cryp-
tographic hash function.

Property P5: low probability of forks directly derives
from Properties P3 and P4: since each created block is
appended to a random leaf block, the probability that two
blocks with the same label share the same predecessor (this is
a fork situation) is equal to p/c, where p is the probability of
fork in Bitcoin, and c is the current number of leaf blocks in
the SYC-DAG.

Based on the above description, we have:

3

Definition 1 (SYC-DAG [9]). A graph G = (V,E) is a SYC-
DAG if G has a unique genesis block b0 and there exists a
partition P = {C`1 , . . . , C`n} of V such that ∀i ∈ J1, nK, C`i
is labelled `i (note that several chains in P may be assigned
the same label) and the following three properties hold:

∀C`i ∈ P,∀k ∈ J0, |`i| − 1K, C`
bk
i ∈ P (1)

∀C`i a merged chain ∈ P, C`i.0, C`i.1 ∈ P (2)
∀C`i , C`j ∈ P, `i = `j ⇒ [pred(C`i) 6= pred(C`j)] (3)

Similarly to all Nakamoto-style PoW protocols, the dis-
tributed block creation process may lead to forks, that is
the presence of at least two concurrent blocks appended to
the ledger. In Sycomore two blocks are concurrent if and
only if both blocks have the same label and the same block
predecessor (which differs from split situations). The presence
of forks gives rise to concurrent SYC-DAGs Lu and L′u (both
of them being rooted at the genesis block). To resolve forks,
that is to locally keep a single SYC-DAG L?u, i.e, L?u = Lu
or L?u = L′u, node u applies the fork rule described below.
This rule relies on the confirmation level of a SYC-DAG. By
definition, the confirmation level of a SYC-DAG is equal to the
number of blocks that belong to the longest commitment path
(as defined earlier in this section) that commit the presence of
the genesis block in this SYC-DAG.

Rule 1 (Fork rule [9]). At any time, keep the SYC-DAG L?
for which the confirmation level of the genesis block is the
largest.

Note that two concurrent SYC-DAGs may temporarily have
the same confirmation level. By convention, the oldest SYC-
DAG is kept as long as it is not superseded.

B. Adaptive Adjustment of the Difficulty

As motivated in the introduction, Sycomore++ improves
upon Sycomore by continuously adapting the block creation
difficulty D to the actual number of leaf chains of the SYC-
DAG. This guarantees that whatever the structure of the SYC-
DAG, a constant inter-block creation delay is maintained on
any of its chains. This adaptive adjustment does not replace
the periodic readjustment to the total hashrate of the system
present in any Nakamoto-style PoW protocols. The former
adapts the difficulty D to the structure of the SYC-DAG while
the latter adapts the difficulty D to the total hashing power of
the system. Specifically, periodically the mining difficulty D
is adjusted based on the current network hashrate (which is
reflected by the time it took to mine the last blocks of the SYC-
DAG) and the current number c of leaf blocks. This periodic
adjustment takes place every time tadj the height of the SYC-
DAG has been increased by h blocks with respect to the last
time the difficulty was adjusted, that is, when its height h
satisfies h = 0 mod Hmax, with Hmax = 2016. To cope with
the fact that some of the leaf chains may grow a little bit
slower than others, and thus leaf blocks do not reach height
h at the same instant, once a leaf chain has reached height h,
miners do not take this leaf chain into account to determine

the predecessor of their block, i.e., they only consider all the
leaf blocks whose height have not reached height h yet. Once
all the leaf chains have reached height h, miners readjust the
difficulty, if needed. If D represents the current difficulty, then
at time tadj , the new difficulty Dadj is calculated as Dadj =
(dn/d)D, where dn represents 14 days, and d is the time
needed to create and append 2016 blocks on each chain of the
SYC-DAG. Note that there is no incentive for an adversary
not to follow this rule since its new block will be rejected by
the other miners. In addition to this periodic readjustment, the
difficulty D is continuously adjusted to fit the current structure
of the SYC-DAG in order to cope with fluctuations in the
creation transaction rate (either due to normal peaks or drops
of activities or due to some adaptive adversarial strategies).
Hence, whenever the current number of leaf chains changes,
the new difficulty D is calculated as D = Dadj/c, where c is
new number of leaf chains, and Dadj computed as above.

Lemma 1 demonstrates the exemplary behavior of
Sycomore++: Both its SYC-DAG structure and the mining
difficulty self-adapt to the current number of transactions
submitted to the system. This behavior is confirmed by the
experimental evaluation presented in Section IV.

Lemma 1. The expected effort miners must exert in
Sycomore++ to successfully create a block decreases with the
number of leaf blocks of the SYC-DAG.

Proof. The interested reader is invited to read the proof in the
appendix.

The following lemma shows that the occurrence of forks
decreases exponentially with the number of leaf chains.

Lemma 2. Given a ledger L?v with c leaf chains C1, . . . , Cc,
each one being selected by the block creation process with
probability pi, with

∑c
i=1 pi = 1, the probability that two

blocks extend the very same chain Ci, i ∈ J1, cK, during an
interval of time [0, t] is pi(t) = 1 − e−λt/c(1 + λt/c), where
λ is the block creation rate.

Proof. The interested reader is invited to read the proof in the
appendix.

Lemma 3. For any correct node u, L?u does not contain
double-spending transactions.

Proof. The interested reader is invited to read the proof in the
appendix.

IV. SIMULATION STUDY

This section presents the agent-based simulation study we
have conducted to assess performance of Nakamoto-style
Proof-of-Work protocols and resiliency to sophisticated at-
tacks. The source codes of these protocols as well as all the
scripts of the experiments are publicly accessible [24].

A. Simulator and Experimental Environment

We have used an agent-based simulation framework dedi-
cated to blockchain systems, called Multi-Agent eXperimenter
(MAX) [25] based on the MaDKit framework [26]. MAX

4

offers generic libraries to develop distributed ledger protocols.
It is a discrete event simulator, where the unit of simulation
time is referred to as a tick. Message-passing libraries allow
us to configure different types of communication schemes and
message delays. In this work, the communication schema is
configured as a reliable broadcast with configurable delay.
Impact of message losses is left for future work. All the
experiments have been run on Grid’5000, a large-scale and
flexible test-bed for experiment-driven research [27].

B. Simulation Model

1) Block creation model: For straightforward reasons, min-
ers do not solve proof-of-works. Hence, to simulate the effort
needed to find the proof, each miner u ∈ U waits for a
certain amount of ticks, which depends on its hashrate Wu.
Wu is a fraction of the hashrate distributed among miners
according to a power law distribution (with parameter 3) such
as

∑
u∈U

Wu = 1. The probability for miner u to solve the proof-

of-work after ` successive independent draws is modeled as
a geometric distribution with parameters ` and pPOW , where
pPOW is the probability of successfully solving the Proof-of-
Work, i.e., pPOW = D/2k, where k is the security parameter
of the Proof-of-Work and D is the difficulty. Difficulty and
security parameters have been set such that for W = 1, the
time to solve the proof-of-work is 10 ticks in expectation. Note
that for both Sycomore++ and Sycomore, the selection of the
random predecessor in the model is achieved by computing the
distance between the block header fingerprint (since the PoW
nonce ν is not computed) and each leaf block of the SYC-
DAG. Calibration of our model has been set by using Bitcoin
real network statistics and by running our model with data
extracted from the real network using tools presented in [28].

2) Common parameters of the simulations:
- The block capacity, i.e., the maximal number of transactions
in a block, is set to 100 transactions to avoid the simulator
overload. Note that while in Bitcoin the block capacity is
approximately equal to 4, 000 transactions, reducing the block
capacity does not affect protocols behavior.
- A transaction is confirmed when the block b this transaction
belongs to has a confirmation level equal to k = 6. Note that
differently from Bitcoin, in both Sycomore and Sycomore++,
these blocks can belong to different chains of the SYC-DAG,
as long as these blocks form a path of commitment down to
block b (see Section III-A).
- cmin is set to 1. Impact of cmin on the structure of the SYC-
DAG and its performances is left for future work.
- For each experiment, we have run sufficiently many simula-
tions to get a confidence interval equal to 5±%.

C. Scalability Study

We evaluate the transaction confirmation rate, the transac-
tion latency (i.e., average time elapsed between the submission
of a transaction in the network and the time at which the
transaction is confirmed), and the average number of pending
transactions at the end of the simulation (i.e., waiting to be
embedded in a block) under high transaction submission rates.

The energy lost by each protocol is also measured. It is the sum
for each miner u and for each created block b not appended to
the ledger of the time spent working on b times the hashrate
cpu. In this section, we assume that forks do not occur.

1) Experiment setting: The overload threshold Γ, which
conditions the SYC-DAG splitting, varies from 90% to 100%.
Note that when Γ = 100%, splits never occur and thus both
Sycomore and Sycomore++ reduce to Bitcoin. The submission
rate of transactions ft varies from 1 to 160txs/tick. We tune
the PoW parameters to get one block mined every 10 ticks in
expectation. Thus in Bitcoin ft = 10txs/tick already exhausts
the system transaction treatment capacity, as the system mines
one block every 10 ticks in expectation and one block contains
100 transactions. From this observation, we might expect that
for ft > 10txs/tick, pending transactions will accumulate over
time in, at least, Bitcoin ledger. Note that to avoid the overload
of the simulator we were limited to ft = 160txs/tick. Anyway,
ft = 160txs/tick already severely stresses the three protocols.

2) Experiment results: Note that in all the plots in Figure 1,
points are linked together with lines for readability reasons.

Figure 1a shows the confirmation rate of transactions as
a function of their submission rate ft. The main observa-
tion regarding Bitcoin and Sycomore is that whatever the
network hashrate, no more than 10txs/tick are confirmed,
which illustrates the impact of the globally constant inter-
block delay (i.e., a block is mined every 10 ticks in average).
Sycomore shows slightly worse results than Bitcoin due to the
augmentation of the number of chains, in which blocks can
be moderately loaded. On the other hand, by continuously
adapting the mining difficulty to the number of leaf blocks,
and thus to ft, Sycomore++ exhibits an optimal throughput:
∀ft, the transaction confirmation rate equals ft.

Figure 1b shows the average number of transactions that
accumulate at miners before being embedded in blocks. It
clearly shows that for both Bitcoin and Sycomore, this num-
ber linearly increases with ft once ft exceeds 10txs/tick
as this corresponds to the global inter-block creation delay.
In contrast, by adapting the number of created blocks to
ft, Sycomore++ drastically reduces the average number of
pending transactions. For example, for ft = 10txs/tick, this
number is equal to 432 transactions, and for ft = 160txs/tick,
it is equal to 1, 957 transactions, compared to the 154, 000
ones in both Bitcoin and Sycomore.

Figure 1c illustrates the lost energy as a function of ft. In
Bitcoin, as the inter-block delay, the number of miners, and
the difficulty do not vary during each experiment, the same
amount of energy is lost regardless of ft. While this setting
also applies to Sycomore, the fact that the SYC-DAG becomes
larger with increasing values of ft gives rise to a uniform
distribution of the total hashrate over the leaf chains, and thus
decreases miners’ competition. Thus less work is wasted w.r.t
Bitcoin. Regarding Sycomore++, for increasing values of ft,
the SYC-DAG becomes larger and blocks are created faster
(as the mining difficulty adapts to the SYC-DAG structure),
which allows Sycomore++ to reach an optimal number of leaf
chains faster than Sycomore does. We get a better parallelism

5

(a) Transaction confirmation rate as a
function of the transaction submission rate.

(b) Number of pending transactions as a
function of their submission rate.

(c) Lost energy as a function of their submis-
sion rate.

(d) Transaction average latency as a
function of their submission rate.

(e) Reactivity of both Sycomore and
Sycomore++ in presence of a peak of load.

Fig. 1: Scalability of the three protocols (Γ = 90%, γ = 0%) and Reactivity of both Sycomore and Sycomore++ (Γ = 90%,
γ = 10%).

of miners’ work, and thus a drastic reduction of energy loss.
Figure 1d illustrates the average transaction latency as a

function of ft. The transaction latency measures the time
elapsed between the instant at which a transaction is submitted
to the network and the time it becomes confirmed in the ledger.
In contrast to all the other experiments, transaction latency has
been measured as follows: transactions are submitted at ft for
a while, then ft is set to 0, and simulations stop once all the
submitted transactions have been confirmed. In Bitcoin, once
ft ≥ 10 txs/tick, transaction latency linearly increases with ft,
which clearly corroborates both Figures 1a and 1b. Regarding
Sycomore, the loss of performance w.r.t Bitcoin is due to the
fact that blocks in all the sibling chains are not necessarily
fully loaded, which delays accordingly transaction latency.
On the other hand, Sycomore++ enjoys an average constant
latency, which is equal to 50 ticks regardless of ft. Essentially,
the more transactions are submitted, the more blocks are filled
until the optimal shape of the graph is reached.

Results shown in Figures 1a, 1b and 1d clearly demon-
strate the exemplary behavior of Sycomore++: transactions are
confirmed at the rate at which they are submitted by clients,
and their latency is constant whatever their submission rate,
meaning that users can safely predict the time at which their
transaction, if valid, will be confirmed in Sycomore++.

D. Reactivity Study

This study aims at assessing the capacity of both Sycomore
and Sycomore++ to react to sudden and abrupt fluctuations of
ft. We omit Bitcoin from this evaluation since Bitcoin chain
does not adapt to transaction demand.

1) Experiments setting: As presented in Section III, when
ft shrinks, the SYC-DAG reacts by progressively decreasing
the under loaded sibling chains. Thus each merge divides by
almost two the number of blocks that will be subsequently
created. By the randomness of transaction identifiers, if one
chain becomes under loaded, then soon after, all the chains will
become under loaded, and thus merges will occur in cascade.

2) Experiments results: Figure 1e illustrates the reactivity
of both protocols in presence of a transaction load peak
(illustrated by the red constant function from t = 1 to t = 11
ticks with ft = 100txs/tick). Both Sycomore and Sycomore++

initially undergo a series of splits, and then progressively move
on to a series of merge up to converging to a single chain of
blocks. Sycomore++ differs from Sycomore in its rapidity to
react: Sycomore++ succeeds in coping with the load pick 75%
faster than Sycomore does, and 33% faster than Sycomore to
cope with the sudden shrink of load. Observe that those results
combined with the one in Section IV-C, assess the capability
of these protocols to meet Properties P1 and P4.

E. Adversarial environment

We study the impact of high communication delays on the
fork number and the time it takes for the three protocols to
resolve them. We suppose that all miners are honest and thus
do not design adversarial strategies to create forks (this is
studied in Section IV-F). Simultaneous events are not possible,
thus if communication delays are null, fork can never occur
(once a miner receives a block b that would be appended to
the same leaf block as its own currently created block b′, it
does not broadcast b′). When communication delays increase,

6

(a) Impact of a ledger attack on
the ledger quality. Hmax = ∞.

(b) Impact of a ledger attack on
the ledger quality. Hmax = 2.

Fig. 2: Impact of ledger attacks

miners broadcast their blocks before detecting the potential
presence of concurrent ones, giving rise to forks. Let ∆ be the
communication delay, and tb and tb′ be the instants at which
two concurrent blocks b and b′ are respectively broadcast, then
forks can occur only if ∆ > |tb − tb′ |.

1) Experiment settings: The overload threshold Γ varies
from 90% to 100% and the underload threshold γ equals 0%,
so that merges do not happen. ft = 160txs/tick to provoke
numerous splits. ∆ ranges from 0 (no fork) to 5 ticks. Note
that ∆ = 5 ticks is very large compared to the average
block creation time (i.e., 10 ticks). Indeed, we want to stress
the system under constant and very high submission rates to
provoke splits, and large transmission delays to study their
impact on the occurrence and resolution of forks.

2) Experiment results: Table 1 shows the impact of ∆ on
the the number of forks f and their resolution time tr (in
ticks). Forks are alternative stories, that is having n forks
in a simulation means having n + 1 alternative ledgers. The
fork resolution time tr is equal to the time elapsed between
the creation of an alternative chain (Bitcoin) or SYC-DAG
(Sycomore and Sycomore++) and the instant at which a
ledger has the best confirmation level of the genesis block
(see Rule 1). Clearly, the number of forks f increases with
∆. As Sycomore and Sycomore++ differ in their capacity to
adjust the difficulty to the actual number of leaf blocks, fork
occurrence differs: decreasing (resp. increasing) the mining
difficulty reduces (resp. enlarges) the standard deviation be-
tween any two blocks b and b′ submission times, and therefore
impacts the probability with which ∆ > |tb−tb′ | holds or not.
On the other hand, as blocks are created faster, fork resolution
is quicker in Sycomore++ than in Sycomore. Hence, if sellers
adopt the same rule as in Bitcoin to wait for a given period of
time T before sending their goods to buyers, both Sycomore
and Sycomore++ drastically reduce T w.r.t. Bitcoin: T/3 for
Sycomore and T/6 for Sycomore++ for ∆ = 5 ticks.

F. Adversarial strategies

We now study the resilience of the three protocols in
presence of adversarial strategies that aims at hindering the
chain quality property [10]. This property, defined in the
context of Bitcoin, states that the adversary may control at
most a µ/(1−µ) percentage of the blocks in the chain, where
µ represents the ratio of the network hashing power owned
by the adversary. In Sycomore and Sycomore++, miners can

neither foresee nor choose the leaf chain to which their block
will be appended prior to having irremediably completed
the construction of their block’s header (see Property P3).
This prevents an adversary from devoting all its hashrate to
the growing of a specific chain. Thus the only way for the
adversary to target a specific chain is to repeatedly generate
blocks until a valid header for the targeted chain is produced.
This process is computationally intensive and thus, the objec-
tive of these experiments is to determine how much mining
power the adversary should exert to have an effective impact
on targeted chains. We have designed and implemented two
attacks. In the ledger attack, the attacker tries to undermine
the whole ledger quality, i.e., maximize the proportion of
blocks it has contributed in Bitcoin chain, or in each chain
of the SYC-DAG. In the chain attack, the adversary targets a
specific chain of the SYC-DAG and tries to maximize the
proportion of blocks it has contributed in this chain. This
requires for the adversary to only keep blocks that match the
targeted leaf chain. Honest miners feed all leaf chains equally,
including the one targeted by the adversary. Note that the chain
attack does not make sense in Bitcoin. It is important to note
that blocks contributed by the adversary are valid otherwise
they would not appear in the ledger. However, they possibly
favour particular transactions submitted by the adversary, or
in contrast do not contain transactions the adversary wishes to
exclude from the ledger.

a) Experiments setting: Both attacks share the same
experiment settings. We set ft = 40 txs/tick to provoke splits.
The proportion of hashrate µ owned by the adversary ranges in
[0%, 50%]. Operationally, we divide miners into two groups,
the honest and malicious ones, and allocate each group with a
proportion of the total computational power W , i.e., W (1−µ)
for the honest group and Wµ for the malicious one.

1) Ledger attack: Figures 2a and 2b illustrate the impact of
the ledger attack for the three protocols. The main observation
drawn from the plots is the fact that the ledger quality prop-
erty [10] always holds in Bitcoin, Sycomore and Sycomore++

whatever the proportion µ of malicious hashrate: the adversary
cannot control more than µ/(1−µ) percent of the blocks in the
ledgers. Furthermore the impact of Hmax value is negligible in
both Sycomore and Sycomore++ since the adversary has no
better strategy than appending the maximum number of blocks
on each chain of the SYC-DAG.

2) Chain attack: The impact of the chain attack on the
quality of the targeted chain is illustrated in Figure 3a. This
attack is implemented as follows: the malicious group focuses
on the leaf chain with the lowest label (this could be any
existing leaf label) and only appends blocks to it, which
requires for the adversarial group to discard all the blocks
they have mined that do not match the lowest label. Both
Sycomore and Sycomore++ guarantee the chain quality: the
adversary cannot control more than µ/(1− µ) percent of the
blocks in the targeted chain. The impact of the chain attack on
the ledger quality is shown in Figures 3b and 3c. Both figures
assess the very low impact of this attack on both Sycomore
and Sycomore++’s quality. For instance, if the adversary owns

7

(a) Impact of a chain attack on the
targeted chain quality. Hmax = ∞.

(b) Impact of a chain attack on
the ledger quality. Hmax = ∞.

(c) Impact of a chain attack on
the ledger quality. Hmax = 2

Fig. 3: Impact of chain attacks

50% of the hashing power, then it will control no more
than 10% of the blocks in the honest players’s ledger (see
Figure 3b). The impact of Hmax value on the ledger quality is
noticeable: when Hmax =∞, the adversary continuously tries
to append its contributed blocks to its targeted chain at the ex-
pense of throwing away all its blocks that do not fit this chain.
Now, when Hmax = 2, the adversary must periodically feed
the other chains when its targeted chain has been increased by
2 before all the other ones. As a consequence, the percentage
of blocks contributed by the adversary in the ledger augments
in both Sycomore and Sycomore++. Note however that the
ledger quality property [10] still holds.

V. CONCLUSIONS

We have presented an advanced experimental study to assess
the properties of three permissionless PoW-based distributed
ledgers under high or chaotic submission transaction rate, and
adversarial environments. Experimental results show impres-
sive results of Sycomore++ compared to both Bitcoin and
Sycomore in terms of scalability, energy loss, reactivity, re-
silience, and quality of the distributed ledger. We are currently
developping Ghost [11] and Spectre [12] in our simulator so
that to provide a comprehensive experimental study of DAG-
based protocols, and will focus on adversarial strategies in
presence of transient network partitions.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” 2016. [Online]. Available: https://atrium.lib.uoguelph.ca/
xmlui/handle/10214/9769

[3] B. M. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
EUROCRYPT, 2018.

[4] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theor. Comput. Sci., vol. 777, pp. 155–183, 2019.

[5] L. Aştefănoaei, P. Chambart, A. Del Pozzo, T. Rieutord, S. Tucci-
Piergiovanni, and E. Zălinescu, “Tenderbake - A Solution to Dynamic
Repeated Consensus for Blockchains,” in Symposium on Foundations
and Applications of Blockchain (FAB), 2021.

[6] J. Poon and T. Dryja, The bitcoin lightning network, 2016. [Online].
Available: https://lightning.network/lightning-network-paper.pdf

[7] C. Burchert, C. Decker, and R. Wattenhofer, “Scalable funding of bitcoin
micropayment channel networks,” in Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), 2017.

[8] A. Ranchal-Pedrosa, M. G. Potop-Butucaru, and S. T. Piergiovanni,
“Scalable lightning factories for bitcoin,” ACM/SIGAPP Symposium on
Applied Computing (SAC), 2019.

[9] E. Anceaume, A. Guellier, R. Ludinard, and B. Sericola, “Sycomore:
A permissionless distributed ledger that self-adapts to transactions de-
mand,” in Symposium on Network Computing and Applications (NCA),
2018.

[10] J. A. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone
Protocol: Analysis and Applications,” in Conference on the Theory and
Applications of Cryptographic Techniques - Advances in Cryptology
(EUROCRYPT), 2015.

[11] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction
processing. fast money grows on trees, not chains.” [Online]. Available:
https://eprint.iacr.org/2013/881.pdf

[12] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast
and scalable cryptocurrency protocol.” [Online]. Available: https:
//eprint.iacr.org/2016/1159.pdf

[13] C. Kaligotla and C. M. Macal, “A generalized agent based framework
for modeling a blockchain system,” in Winter Simulation Conference
(WSC), 2018.

[14] P.-Y. Piriou and J.-F. Dumas, “Simulation of stochastic blockchain
models,” in European Dependable Computing Conference (EDCC),
2018.

[15] M. Alharby and A. van Moorsel, “Blocksim: A simulation framework
for blockchain systems,” ACM SIGMETRICS Performance Evaluation
Review, vol. 46, pp. 135–138, 01 2019.

[16] E. Rosa, G. D’Angelo, and S. Ferretti, “Agent-based simulation of
blockchains.” [Online]. Available: https://arxiv.org/pdf/1908.11811.pdf

[17] C. Faria and M. Correia, “Blocksim: Blockchain simulator,” in IEEE
International Conference on Blockchain (Blockchain), 2019.

[18] M. Bottone, F. Raimondi, and G. Primiero, “Multi-agent based sim-
ulations of block-free distributed ledgers,” in Advanced Information
Networking and Applications Workshops (WAINA), 2018.

[19] S. Popov, “The tangle. iota white paper,” 2015. [Online]. Available:
https://iota.org/

[20] U. Wilensky, “Netlogo.” [Online]. Available: http://ccl.northwestern.
edu/netlogo/

[21] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance,” Tech. Rep., 2016. [Online]. Available:
http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

[22] A. Churyumov, “ByteBall : A decentralized system for storage
and transfer of value,” 2017. [Online]. Available: https://byteball.org/
Byteball.pdf

[23] G. Bu, Ö. Gürcan, and M. Potop-Butucaru, “G-IOTA: fair and
confidence aware tangle.” [Online]. Available: https://www.arxiv-vanity.
com/papers/1902.09472/

[24] Sycomore++, “Source code,” https://anonymous.4open.science/r/
Sycomorepp-412D.

[25] N. Lagaillardie, M. A. Djari, and O. Gurcan, “A computational study
on fairness of the tendermint blockchain protocol,” Information, vol. 10,
no. 12, 2019. [Online]. Available: https://www.mdpi.com/2078-2489/
10/12/378

[26] O. Gutknecht and J. Ferber, “The madkit agent platform architecture,”
in Workshop on Infrastructure for Multi-Agent Systems, 2000.

[27] D. Balouek et al., “Adding virtualization capabilities to the Grid’5000
testbed,” in Cloud Computing and Services Science (CLOSER), 2013.

[28] B. H. Distribution, 2020. [Online]. Available: https://blockchair.com/
bitcoin/charts/hashrate-distribution

8

https://bitcoin.org/bitcoin.pdf
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2013/881.pdf
https://eprint.iacr.org/2016/1159.pdf
https://eprint.iacr.org/2016/1159.pdf
https://arxiv.org/pdf/1908.11811.pdf
https://iota.org/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://byteball.org/Byteball.pdf
https://byteball.org/Byteball.pdf
https://www.arxiv-vanity.com/papers/1902.09472/
https://www.arxiv-vanity.com/papers/1902.09472/
https://anonymous.4open.science/r/Sycomorepp-412D
https://anonymous.4open.science/r/Sycomorepp-412D
https://www.mdpi.com/2078-2489/10/12/378
https://www.mdpi.com/2078-2489/10/12/378
https://blockchair.com/bitcoin/charts/hashrate-distribution
https://blockchair.com/bitcoin/charts/hashrate-distribution

Fig. 4: An example of a SYC-DAG built by Sycomore. This figure has been borrowed from [9]. System parameters: overload threshold
Γ = 95%, underload threshold γ = 15%, and cmin = 2.

APPENDIX

Figure 4 illustrates the different notions introduced in Sec-
tion III. The number of bars in each block is representative
of block load, and colors of the bars illustrate the prefix
of transaction identifiers. This provides an intuitive way to
see when chains split or merge, and how transactions are
partitioned over the SYC-DAG: When the SYC-DAG is made
of a single chain due to a very light load (e.g., chain Cε1),
each block contains transactions whose identifiers are prefixed
with the empty binary string label (denoted by ε), which
explains the multitude of colors of the blocks. This exactly
reflects Bitcoin’s chain. When the chain must split into two
sibling chains because of an increasing transaction load, the
new appended blocks partition the transactions into two sets:
those whose prefix match label ε concatenated with 0, i.e,
label 0, and those whose prefix match label ε concatenated
with 1, i.e, label 1. This explains the partitioning of block
colors in the upper and lower chains respectively. A similar
argument applies when sibling chains merge to a single chain:
subsequent blocks of this chain will contain transactions whose
identifier is prefixed by the largest common prefix of the labels
of these sibling mergeable chains (e.g., label 0 in chain C08).
Chains C009 , C0110 , C106 , and C117 are called leaf chains, as blocks
br, bs, bm1 and bm2 are the leaf blocks of the SYC-DAG. Note
that this SYC-DAG does not contain any fork.

Lemma 1 The expected effort miners must exert in
Sycomore++ to successfully create a block decreases with the
number of leaf blocks of the SYC-DAG.

Proof. Let U be the current set of miners that participate to
the construction of the SYC-DAG. We suppose that the total
hashrate of the network is uniformly distributed among all
the miners in U . Producing a proof of work is a random
process with low probability of success so that a lot of trials
and errors are required on average before a valid proof of
work is generated. Let ppow be the success probability of
each trial. The Geometric distribution models the number of

failures before the first success. Thus, if random variable X
represents the number of failures before the first success,
P (X = q) = (1− ppow)q−1ppow. Let W be the total hashrate
of the system, and c the current number of leaf chains. The
probability p of successfully mining a block is thus given
by p = ppowcW , and at a miner, this probability is equal
to pu = p/|U|. The probability for a miner to work on a
given chain is 1/c, and the average number nc of miners
working on a chain is equal to |U|/c. Thus the probability pc
of successfully mining a block on a given leaf chain is equal
to pc = p/c. Let Xc be the random variable representing the
number of trials before the first success on a given leaf chain,
we have E(Xc) = 1/pc = 1/(ppowW), and consequently,
E(X) = 1/p = 1/(ppowcW). This completes the proof.

Lemma 2 Given a ledger L?v with c leaf chains C1, . . . , Cc,
each one being selected by the block creation process with
probability pi, with

∑c
i=1 pi = 1, the probability that two

blocks extend the very same chain Ci, i ∈ J1, cK, during an
interval of time [0, t] is pi(t) = 1− e−λt/c(1 + λt/c), where
λ is the block creation rate.

Proof. We model the block creation process as a Poisson
process. In the following an event represents the creation of
a block. The events produced by the Poisson process can
be of c different types, c being the number of leaf blocks
b`11 , . . . , b

`c
c . An event of type i represents the creation of a

block that matches chain C`ii . The probability pi for a newly
created block to have b`ii as predecessor depends on b`ii ’s
header. The events produced by the Poisson process can be
of c different types. An event of type i represents the creation
of a block that matches chain C`ii . Each event produced is of
type i with probability pi = 1/c, for i ∈ J1, cK. The successive
choices for the types are supposed to be independent of each
other and also independent of the Poisson process. For every
i ∈ J1, cK, let {Ni(t), t ≥ 0} be the number of events
of type i produced by the Poisson process in the interval
(0, t). It is well-known that {Ni(t), t ≥ 0} is a also Poisson
process with rate λpi and that these c Poisson processes are

9

independent. We denote by pi(t) the probability that at least
two events of type i occur in the interval (0, t) (i.e., a fork
occurs in the interval (0, t)). We then have, for every i ∈ J1, cK,
pi(t) = P{Ni(t) ≥ 2} = 1− e−λt/c(1 + λt/c). Note that this
probability holds in Sycomore only at the instants at which
periodic readjustments of the difficulty occur.

Lemma 3 For any correct node u, L?u does not contain
double-spending transactions.

Proof. The proof is by contradiction. Suppose that L?u contains
two transactions T1 = (I1, O1) and T2 = (I2, O2) such that
T1 and T2 redeem a common UTXO o, where o belongs to the
output set of some transaction T ∈ L?u. Suppose that T1 and T2
respectively belong to blocks valid blocks b1 and b2. Two cases
must be considered. Case 1: b1 = b2. This case is impossible
since it would mean that block b1 = b2 is invalid (i.e., it
contains conflicting transactions T1 and T2). Case 2: b1 6=
b2. Suppose without loss of generality that node u already

appended b1 to L?u by the time it wishes to append b2. Two
sub-cases are possible. Sub-case 1: b2’s header commits the
existence of b1 in L?u, that is b2’s header extends at least one
commitment path that acknowldges the presence of b1 in one
of the chains of L?u. This contradicts the assumption that b2 is
valid. Sub-case 2: b1 and b2 have been concurrently mined, that
is at the time both blocks were mined their respective miners
did not know the existence of the other block. By assumption,
b1 ∈ L?u at the time node u wishes to append b2. Since the
presence of b1 ∈ L?u makes block b2 invalid, node u will reject
block b2. This contradicts the assumptions that b2 ∈ L?u. Note
that another node v may have first appended b2 to its ledger
L?v , and thus will reject block b1. Eventually, either L?v or L?u
will contain the longest commitment path to the genesis block,
and thus by Rule 1, the ledger with the longest commitment
path to the genesis block will be kept by all the nodes, which
completes the proof.

10

	Introduction
	Motivation for this Work
	Contributions of this Work

	Related Work
	Sycomore++
	Overview of Sycomore
	Adaptive Adjustment of the Difficulty

	Simulation Study
	Simulator and Experimental Environment
	Simulation Model
	Block creation model
	Common parameters of the simulations

	Scalability Study
	Experiment setting
	Experiment results

	Reactivity Study
	Experiments setting
	Experiments results

	Adversarial environment
	Experiment settings
	Experiment results

	Adversarial strategies
	Ledger attack
	Chain attack

	Conclusions
	References

