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Predicting the response of aqueous droplets in a microfluidic trap using neural network modeling
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Simulations and predictions are now the essential driving tools for design of materials, processes, and products. Rapid digitalization of information has allowed virtual models to be built for cost-effective testing of functional capabilities and validating operating parameters to achieve optimal efficiencies in dynamic environments. These models are usually derived from the laws of physics, mathematical equations, or empirical relations from the observed behavior of the system in the form of data. Various constraints could cause hindrance to generation of data beyond the safe limits of operation, which insists for model-based predictions. Presented here is a similar attempt to develop a Neural Network to describe a MEMS system with limited dataset of simulated outcomes, where aqueous droplets are aimed to be trapped at a designated zone for interaction studies in a microchip. A classical neural network built using Keras Sequential library in Python gave a maximum fitting accuracy of 97.22%. Although the main objective of the study is to understand the sensitivity of geometry, owing to the manufacturing tolerances, in deciding the fate of droplet-trapping, this approach of neural networks paved path for a different advantage.

I. INTRODUCTION

Trapping and Assisted Pairing (TAP) chip is a MEMS design of a Lab-on-Chip that facilitates the trapping and pairing of aqueous microdroplets for biomedical applications. There are many investigations available, focused on drop impact with different surfaces, different flow parameters, and different Weber and Reynolds numbers. Moreover, there is growing interest on variable fluid droplet trapping and pairing studies reflecting many practical applications such as conducting cellto-cell interaction studies in a lab-on-chip configuration. To better understand the influence of fluid properties and droplet flow conditions on the droplet trapping capabilities of the Trapping and Assisted Pairing (TAP) chip, a 2-D Multiphysics model is developed to perform simulations using Computation Fluid Dynamics (CFD). The model assumes wetted wall condition and employs level-set method to track the motion of the droplet and its interface. Based on the good agreement of numerical and experimental investigations regarding the droplet trapping process, our droplet simulation model has been developed with the modelling program in COMSOL Multiphysics software to investigate the different droplet parameters of the TAP process. This simulation model can be used to predict the behaviour of the droplets in the trapping and pairing processes. The parameters of the droplet physical properties, its flow relative to the medium and other passing droplets will be analysed to also elaborate on improved trapping conditions.

The numerical simulations are initiated using a laminar-twophase flow function setting and a level set interface. All stages from an adjacent droplet entering the trapping zone to its exit through the bypass channel, along with its interaction with the main droplet in the trap are considered. With the developed model, it is possible to import any geometry of the TAP chip and simulate for different operating conditions in order to study their influence on the trapping and the merging of the bypassing droplet [START_REF] Mcdaniel | A Preliminary Design of a Hydrodynamic Microtrap for Capturing Aqueous Droplets in Oil Media[END_REF]. By incorporating an analysis of the simulation data, the system's performance under geometric changes caused by manufacturing tolerances could be investigated, thereby emphasizing attention towards the critical design parameters.

II. DATA GENERATION

The aim is to examine the sensitivity of the properties of the chip (shape, dimensions, orifice parameters, microfluid dynamics) that determine the size and velocity of the droplet formed and the circumstances of microdroplets. The design and flow parameters considered for simulations and the corresponding results will be used as the necessary datasets for training and testing of a numerical model. As per the requirements of this study, explained here is an attempt to create a numerical model in terms of classical algorithms and then a quantum model to apply algorithms of quantum computation for comparison of performance.

A. CFD Simulation Data

The geometry of the chip is defined by the length and width of the channels in and around the trap zone as labelled in Figure 1(a), among which only a set of four parameters are strictly 2 critical in resisting the flow of droplets. The four shortlisted geometric parameters are -width of trap zone entrance (t1) and exit (t2), width of the bypass channel (b), width of the interaction gap (c) between microtrap #1 and microtrap #2.

The intrinsic properties of the fluid such as its surface tension at given temperature plays a major role in droplet formation and shape retention, that is varied from 2 mN/m to 500 mN/m for simulations. Flow of the droplets is also regulated by controlling the relative velocity of aqueous droplets with respect to the oil media, which is also crucial in determining the droplet size and the trapping success (as in Figure 1(b)). The relative velocity tested for simulations is in the range of 0.005 m/s and 0.5 m/s over the sweep of surface tension as mentioned earlier, that is given by a non-dimensional quantity called capillary number to represent the combined effect. Figure 2 presents a sample of results obtained from the CFD simulations for a given geometry.

B. Data Preparation for Classification

For a given set of geometric and operational flow parameters of fluid in the TAP chip, the aqueous droplets either get trapped, merged, or as marked in Figure 2, where the undisturbed trapping of a droplet without being affected by the other droplets bypassing is considered as the only desired outcome. However, the most probable outcome of these three possibilities needs to be predicted for any given set of input parameters. The available data of simulation results as represented by a heatmap (Figure 2(b)) consists of three different geometries. The data for two geometries is considered for training the models and the data for one geometry is used for testing and validation.

Thereby, the data is prepared by classifying the outcomes into one output variable, that is in binary form with digit values one and zero respectively being favorable and unfavorable.

The output data of simulation results is fed as input data to develop and train a Neural Network based on data analysis for automated analytical model building to relate physical geometry of chip design and operational parameters to its effective performance. The generation and preparation of necessary input data for one geometry necessitates a minimum of four weeks of high-speed computational access and regular supervision, despite the CFD model development and the build debugging process. Artificial Neural Networks are made of layers of nodes interconnected such that it replicates a human-brain with a network of neurons that predicts and takes multiple decisions in daily activities. A network is usually made of an input layer and an output layer each with nodes representing input and output variable(s), respectively. For finding an appropriate relation between the inputs and outputs, hidden layers are introduced with diverse nodes and connection patterns, such that apt weight and bias linked with each node are activated to ensure that the overall network best represents the select system.

A. Network Architecture Description

Beginning with the addition of a linear stack of layers one after the other, the network architecture is created using Sequential model in Keras, an open-source deep learning API in Python which makes it very easy to build a NN. Corresponding to the six input variables, the input layer is made of six nodes and the output layer is made of one node for the output variable. Two hidden layers with six and three nodes each are further added between the input layer and output layer. All these layers are chosen to be fully connected by using Dense class among available core layers. The input and hidden layers are activated using Rectified Linear Unit (ReLU) function that outputs the input value itself unless the input value is zero or negative. Finally, the output layer is activated using sigmoid function to ensure the net output is between 0 and 1, that can be mapped to the respective classes using a threshold value.

B. Data Exploration

Before proceeding with the estimate of number of hyperplanes required, the data was explored to observe any distinct clustering of the datapoints within combinations of input pairs. Displayed in Fig. 4 are the scatter plots of datapoints for select two dimensions from inputs. It is observed that the outcome datapoints are intricately overlapped with no mild distinction for all the combinations except for Component 4 and Component 5, as they refer to the fluid property and relative velocity, respectively. Figure 4(d) plot clearly shows the clustering with two possible hyperlines that can distinguish the desired and undesired outcomes, which is the direct reflection of heatmap discussed in Figure 2(d) in previous sections. This is an important note taken for the minimum number of nodes to be considered in the hidden layers. 

C. Performance Metrics

In order to compile the defined model with the network architecture defined above, a set of random weights need to be assigned to the inputs initially. To further estimate and update the values of weights in every iteration, a loss function is needed to estimate the error in prediction and an optimizer is used to compute better network weights aiming to reduce the loss in the next iteration [START_REF] Brownlee | Deep Learning with Python[END_REF]. For binary classification in Keras, the crossentropy function is used to evaluate the loss as average difference in the probability distributions of actual and predicted classes. For updating the network weights, Adaptive Moment Estimation (Adam) optimizer is employed that computes individual learning rates for each parameter and adapts its learning rate during training [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF].

IV. RETRAINING AND RESULTS

Building a Neural Network for any given purpose naturally demands quality training for improvement in performance. Among the multiple factors that define the training process, the amount of information available determines the extent of opportunity the model has to learn and perceive. The first stage of training consisted of data from first two geometries mentioned in Table 1 and testing on third geometry. Owing to the prediction accuracy obtained, the simulation data for additional two geometries was generated to retrain the network.

A. Training, Tuning and Prediction -3 Geometries

After executing the training process for 150 iterations (epochs) with a batch size of 10 rows to update the weights of the network, the maximum accuracy obtained is 61.11% with loss around 0.67. The same model was used on the testing dataset to predict the outcome of simulations for the third geometry, with the classification threshold of 0.5 for crisp binary prediction. As per the results obtained, referring to Figure 4 and Table 2, about 60-65% of the rows are correctly predicted.

B. Training, Tuning and Prediction -3 Geometries

Reconsidering the note on minimum number of nodes from Figure 3, the second hidden layer of the current model that contains three nodes is disconnected. The model was thence trained with a single hidden layer composed of nodes more than or equal to six. The maximum training accuracy obtained with less than ten nodes is 69%, which is a sign of improvement although not considerably significant. The iterations were continued forward with 10, 12 and 14 nodes, which resulted in fitting accuracies on training data in the range of 95% -97% after repeated runs and 1500-2500 epochs. Although this training accuracy is more than 95%, the prediction accuracy on testing dataset is found to be 74% and only 59% specifically on ones, the favourable outcomes.

C. Retraining and Prediction -5 Geometries

With the prospect of improving prediction accuracy with better learning, additional datapoints are generated for two more geometries, allowing us to have four geometries for training and one for testing. In view of the model performance at its last best configuration, that is one hidden layer made of 12 nodes, the network is trained on upgraded dataset.

After executing the training process for 1500 iterations (epochs) with the same batch size of 10, the maximum training accuracy achieved is 93.06%. Figure 6 displays the resultant confusion matrix showing Type I and Type II errors within the acceptable values expected. The prediction accuracy obtained for all outcomes on testing is 82.86%, for ones (favourable outcomes) is 76.92% and for zeroes (unfavourable outcomes) is 82.61%. The overall prediction accuracy has increased significantly with a very few outcomes incorrectly predicted, given by the red dots in Figure 7.

CONCLUSIONS AND FUTURE WORK

The fitting and prediction accuracy obtained after reducing the hidden layers and maintaining the minimum number of nodes as per the input dimension space is notably higher. There are certainly more options and combinations of activation functions, number of nodes and layers, and types of neural networks to try on the system, that can further improve the prediction accuracy and input range of neural network. Even though the complexity of the problem is not comprehensively known, that is the underlying actual relation between the geometric inputs and trapping outputs, the fitting accuracy on limited training data is impressive. With another limitation on the knowledge of complex learning algorithm, that is the mapping function among the variables, the retraining of model with more datapoints resulted in best predictions, further emphasizing the role of quantity of data in training a neural network. As all the incorrect predictions marked in red lie near the left corner of the plot (Figure 7), where the operational inputs are closely spaced, the values are probably not distinguishable enough for the model that is trained over sparse values with determination on minimizing the global loss. The predictability of the system can certainly be further improved with data that is inclusive of less scattered datapoints, applying the concepts of DOE. Nonetheless, the current model does provide a scope to understand the geometric sensitivity of the system which needs to be quantified in terms of the manufacturing tolerances of the chip design.

In the perspective of data analysis, there are novel implementations of custom physics-aided deep-learning methods that can be employed with a better understanding of the input correlations. The way the non-dimensional capillary number captures the fluid material and operational flow parameters in one quantity, the geometry parameters could also be brought together for characterization into a dimensional or non-dimensional representation. Thereafter, the input domain would condense to two dimensions instead of six, facilitating an opportunity to visualize any existence of distinct hyperplanes for classification and further enable a comprehensive definition of the design space for similar chips considered for various applications, accordingly. 
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 1 Fig. 1 (a) Geometric parameters that define the microtrap design, (b) Dynamics of interaction between trapped droplet and its co-passenger droplets near the trap-zone.
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 2 Fig. 2 (a) Outcomes observed from the CFD simulations plotted across the non-dimensional capillary number, (b) Heatmap of the simulation results for a given geometry over the sweep of surface tension and relative velocity ranges [2].
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 4 Fig. 4. Predicted results in comparison with the expected outcomes on test geometry, after training the neural network for first two geometries' data. Data values of 1 and 0 respectively represent favorable and unfavorable outcomes.
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 35 Fig. 3. Scattered outputs for select combinations of pairs from input dimension space to identify any distinctive clustering in the data (a) Input #1 vs. Input #2, (b) Input #2 vs. Input #3, (c) Input #3 vs. Input #4, (d) Input #4 vs. Input #5.

Fig. 6 .

 6 Fig. 6. Confusion matrix displaying 9% of Type I error and 2.7% of Type II error in classification of training data for the TAP system Fig. 7. Prediction results of all five geometries in one map where the green and blue dots represent correctly predicted favorable and unfavorable outcomes, respectively, while the red dots represent incorrectly predicted outcomes.

Dataset Input Variables (Features) Geometry {t1, t2, b, c} (μm)

  

			Fluid	Flow
			(mN/m)	(m/s)
	Training	#1 -{30, 15, 20, 27}	2-500	0.005-0.5
	Training	#2 -{28, 12.5, 22, 22}	2-500	0.005-0.5
	Training	#3 -{29.4, 14.5, 22, 22.4}	2-500	0.005-0.5
	Training	#4 -{29.4, 14.5, 22, 22.4}	2-500	0.005-0.5
	Testing	#5 -{29.4, 14.5, 22, 22.4}	2-500	0.005-0.5
	III. NEURAL NETWORK CLASSIFIER MODEL

Table 1 .

 1 Data preparation from simulation results for specified input variables (features) with identification of training and testing datasets.
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