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a b s t r a c t 

MRI has been extensively used to identify anatomical and functional differences in Autism Spectrum Disorder 
(ASD). Yet, many of these findings have proven difficult to replicate because studies rely on small cohorts and are 
built on many complex, undisclosed, analytic choices. We conducted an international challenge to predict ASD 

diagnosis from MRI data, where we provided preprocessed anatomical and functional MRI data from > 2,000 in- 
dividuals. Evaluation of the predictions was rigorously blinded. 146 challengers submitted prediction algorithms, 
which were evaluated at the end of the challenge using unseen data and an additional acquisition site. On the 
best algorithms, we studied the importance of MRI modalities, brain regions, and sample size. We found evidence 
that MRI could predict ASD diagnosis: the 10 best algorithms reliably predicted diagnosis with AUC ∼0.80 – far 
superior to what can be currently obtained using genotyping data in cohorts 20-times larger. We observed that 
functional MRI was more important for prediction than anatomical MRI, and that increasing sample size steadily 
increased prediction accuracy, providing an efficient strategy to improve biomarkers. We also observed that de- 
spite a strong incentive to generalise to unseen data, model development on a given dataset faces the risk of 
overfitting: performing well in cross-validation on the data at hand, but not generalising. Finally, we were able 
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Autism Spectrum Disorder (ASD) is a life-long neurodevelopmen-
al disorder which affects more than 1% of the population. Its sever-
ty differs vastly amongst individuals, however, they all share per-
istent deficits in social communication and restricted, repetitive and
tereotyped behaviours. ASD is heritable, and influenced by common
enetic variation as well as rare mutations ( Krumm et al., 2015 ;
ourgeron, 2015 ; Sandin et al., 2017 ; Weiner et al., 2017 ). Early in-
ervention has a significant positive impact on the patient’s outcome,
hich makes early diagnosis a research priority ( Dawson et al., 2010 ). 

Magnetic resonance imaging (MRI) is an important tool to explore
he brain of individuals with ASD: it is a widely available, fast, and non-
nvasive method to measure brain anatomy and function. By providing
etailed measurements of an individual’s brain, MRI brings the promises
f precision psychiatry, adapting therapy to patients ( Insel, 2014 ). But
an MRI be used to characterise ASD in general? For more than 30 years,
RI studies have described anatomical and functional differences be-

ween individuals with ASD and unaffected controls: enlarged brain vol-
me and cortical surface area ( Piven et al., 1995 ; E. Courchesne et al.,
001 ), decreases in brain volume and neocortical thinning during ado-
escence and adulthood ( Lange et al., 2015 ; Zielinski et al., 2014 ),
maller corpus callosum ( Egaas et al., 1995 ; Wolff et al., 2015 ), ab-
ormal cerebellar volume ( Courchesne, 1987 ; Hodge et al., 2010 ;
atemi et al., 2012 ), and global and regional increases and decreases in
unctional connectivity ( Just, 2004 ; Belmonte, 2004 ; Di Martino et al.,
014a ; Cheng et al., 2017 ). 

Many of these findings are, however, controversial and have proven
ifficult to replicate ( Haar et al., 2016 ; Lefebvre et al., 2015 ; Traut et al.,
018 ; Picci et al., 2016 ; Mohammad-Rezazadeh et al., 2016 ). Most stud-
es have relied on sample sizes far too small to reach reliable conclusions
sometimes just a few dozen subjects, and up to a few hundreds at most.
hey lack replication and reanalysis on independent data. This is par-
icularly problematic because of the multitude of parameters involved
n each analysis which could substantially alter the results ( Carp, 2012 ;
ower et al., 2012 ; Poldrack et al., 2017 ): acquisition sequence, subject
otion, software packages, pre-processing workflow, etc. 

Rather than focusing on the detection of specific regional differences
etween cases and controls, brain-imaging features can be combined
nto a biomarker of ASD answering the question: can diagnostic status
e inferred from MRI data? Machine-learning provides important tech-
iques to build and characterise such biomarkers. Yet, machine-learning
tudies of ASD are most often based on the analysis of a single sample,
ithout validation of the findings in an independent sample. The com-
unity recognises today that establishing the validity of a biomarker
eeds a fully independent assessment on new data, otherwise its accu-
acy cannot be trusted ( Woo et al., 2017 ; Poldrack et al., 2019 ) as it
ay arise from overfitting, circular analysis ( Kriegeskorte et al., 2009 )

r researchers’ degrees of freedom ( Ioannidis, 2005 ). This is particularly
ritical for machine learning approaches, where classifiers trained on
ata from one sample may be unable to generalise to additional samples
 Ecker et al., 2015 ). Publication incentives lead researchers to seek and
eport the best prediction accuracy. For brain-imaging biomarkers of
SD, publications have reported accuracies above 95% ( Bi et al., 2018 ).

f that were true, the accuracy of those algorithms would be equiva-
ent to the inter-rater reliability of clinical assessment by human experts
kappa = 95%) which defines the gold-standard for discrimination of ASD
ersus other development disorders ( Klin et al., 2000 ). But how trust-
orthy is the evaluation of biomarkers such as those in ( Bi et al., 2018 ),
iven that the whole study – biomarker extraction and validation – was
one on only 50 ASD patients and 42 non-ASD controls? Peer-review is
2 
ternal sample added after the end of the challenge (EU-AIMS), although with a
 0.72). This indicates that despite being based on a large multisite cohort, our
rs fragile in the face of dataset shifts. 

ot sufficient to assess the analytic choices as even minor variants lead
o large differences in observed prediction accuracy, though these are
nlikely to reveal true improvements ( Varoquaux, 2018 ). 

To ground solid conclusions on ASD neuroimaging, several interna-
ional consortia have been constituted such as ABIDE (Autism Brain
maging Data Exchange, Di Martino et al., 2014b ; Di Martino et al.,
017 ), EU-AIMS (European Autism Interventions - A Multicentre Study
or Developing New Medications, Murphy and Spooren, 2012 ) or the
BIS Network (Infant Brain Imaging Study, Hazlett et al., 2012 ), in-
reasing sample sizes through data sharing. They extend the amount
nd quality of the data collected through harmonisation efforts. Recent
nalysis across cohorts has shown that ASD is significantly associated
ith changes in functional connectivity ( Holiga et al., 2019 ). But are

hese changes large enough to ground reliable prediction to new sites,
espite heterogeneity in imaging techniques and populations recruited?

The study we present built upon these large cohorts, and framed the
xtraction of biomarkers as an open, international challenge to predict
SD from the largest MRI dataset currently available – more than 2000

ndividuals. A data-science prediction challenge of this type can provide
onclusive evidence on the ability of MRI to detect ASD, because it is
ased on a blind evaluation of the results in addition to relying on a large
ample. Furthermore, it isolates the development of the analysis pipeline
rom its evaluation. Challengers did not have access to validation data,
hich allowed us to test the ability of the algorithms to generalise to
nseen data, including data acquired in different centres. 

aterials and methods 

rain imaging dataset 

The brain imaging dataset combined data from the public Autism
rain Imaging Data Exchange (ABIDE) I and II datasets ( Di Martino
t al., 2014a ; Di Martino et al., 2017 ) and an unpublished dataset from
he Robert Debré Hospital (RDB) in Paris, France (see Supplemental Ta-
le 1 for additional demographic information for the RDB site). ABIDE
rovides open access to functional and anatomical MRI data for 2156
ubjects. The RDB dataset contained data from 247 subjects, 56 of whom
ere also part of the ABIDE II project: we excluded these duplicate sub-

ects from the private dataset. With the exception of data coming from
he RDB centre which was acquired in a 1.5 Tesla scanner, all MRI data
as acquired in 3 Tesla scanners. In all sites subjects were diagnosed us-

ng standard ADI/ADOS tools to support clinical assessment. Most sub-
ects had a full IQ > 75. 

We extracted anatomical features from the anatomical MRI: regional
rain volumes, cortical thickness, and surface area; and extracted time-
eries signals from the resting-state functional MRI. To derive these in-
ividual measurements, the data were processed with standard neu-
oimaging tools: Freesurfer ( Fischl et al., 1999 ), FSL ( Woolrich et al.,
009 ), and AFNI ( Cox, 1996 ). We split the total dataset into public
nd private datasets, aiming at balancing the age and sex distributions
 Table 1 and Fig. 1 provide demographic information for the public and
rivate datasets). A total of 2117 subjects were included: 947 ASD and
170 controls. We did not exclude subjects based on quality control, but
rovided challengers with quality control scores obtained from visual
nspection by 3 experts. The public dataset contained data from 1150
ubjects: 549 ASD and 601 controls. The private dataset contained data
rom 967 subjects: 398 ASD and 569 controls. The public dataset was a
ubset of ABIDE I and II, while the private dataset combined data from
BIDE I, II and RDB. The dataset should capture well the clinical and
ethodological heterogeneity of ASD neuroimaging. The ABIDE dataset
to predict ASD diagnosis on
lower prediction accuracy (
challenge still produced bio
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was collected by 24 different centres worldwide, and spans an age range 
from 5 to 64 years old (median 13.8 years old). All subjects had intellec- 
tual quotients within the normal range (97% have full IQ > 80), 80% of 
patients and 90% of controls were right-handed. The cohort was com- 
posed of 80% males. 

This diversity should allow classification algorithms to generalise, 
preventing them from specialising in a particular type of data or age 
range. Further demographic information for the ABIDE I and II datasets 
is provided in their corresponding publications ( Di Martino et al., 2014a ; 
Di Martino et al., 2017 ). 

Study design: a data-science prediction challenge 

Description of the challenge: We launched the challenge inviting 
data scientists to submit algorithms to predict ASD diagnostic from pro- 
vided MRI data. The challenge lasted 3 months and attracted 146 chal- 
lengers. We awarded money prizes to the 10 best challengers. These 
were determined after the closure of the competition, by assessing how 

well the algorithms would predict ASD diagnostic in a private, unseen 
dataset. 

The ABIDE data can be openly distributed, which enabled us to pro- 
vide a rich dataset on which challengers could tune their algorithms. To 
facilitate access to the data, we provided challengers with a “starting 
kit ” giving a proof-of-concept predictive model on the data (extracted 
on standard brain atlases). Challengers were then able to develop their 
own prediction algorithms, which they submitted using a Web interface. 
The code was executed on our central server. The challengers never had 
access to the private dataset. They used machine-learning techniques 
tuned on the public dataset and submitted the corresponding code to 
the central server which evaluated them in the private dataset. 

To measure the quality of the predictions, we used a standard met- 
ric: the area under the receiver operating characteristic curve (ROC- 
AUC). This measure summarises various detection tradeoffs, for exam- 
ple, favouring few false negatives to the cost of false positives in the case 
of a screening study, or the converse, in the case of a confirmatory study. 
Prediction at chance level gives an AUC of 0.5, while perfect prediction 
gives an AUC of 1. 

Statististical analysis strategy: After the closure of the challenge, 
we analysed the 10 best submissions to understand the factors driv- 
ing their predictions. Considering that these machine-learning algo- 
rithms captured the best possible predictive biomarkers given our brain- 
imaging cohort, we varied the data on which they were applied. Each 
time, we fit the algorithms anew on the data, to extract the correspond- 
ing biomarkers, and measured the prediction accuracy on the private 
dataset. First, we applied them to different imaging modalities: only 
functional MRI, or only anatomical MRI. Second, we varied the num- 
ber of available subjects, to measure the importance of the sample size. 
Finally, we investigated the importance of different brain regions by re- 
moving those that appeared as most discriminative and attempting to 
extract biomarkers from the rest of the data. To compute which regions 
were the most discriminative, we used the absolute value of the model’s 
coefficients when the algorithm used a linear model, and the feature 
importance when the algorithm used a random forest. We obtained a 
region-level summary of functional-connectivity biomarkers by associ- 
ating to every region the sum of the importance of its connections, a 
measure of node strength. Region-level importance was then turned into 
a brain map characterising the spatial distribution of the discriminant 
information. 

MRI preprocessing and signal extraction 

Anatomical MRI: Anatomical MRI was preprocessed and segmented 
using FreeSurfer v6.0. We extracted three kinds of anatomical features: 
(i) mean regional cortical thickness, (ii) cortical surface area of regions 
parcellated with the Desikan-Killiany Atlas ( Desikan et al., 2006 ), and 

Fig. 1. Subjects, sex, age, and site distributions. The distributions of the number 
of cases and controls, their sex ratio, age and scanning site were similar in the 
public and private datasets. 

(iii) volumes of subcortical regions segmented with the FreeSurfer atlas 
( Fischl et al., 2002 ). 

Resting-state functional MRI: Resting-state functional MRI captures 
brain activity and functional connectivity. It is typically studied via a 
functional-connectome: a matrix capturing interactions between brain 
regions. We provided time series extracted on a variety of atlases after 
standard fMRI preprocessing using the pipeline from the FC1000 project 
(which includes slice-time interpolation, motion correction, coregistra- 
tion to anatomical data, normalisation to template space). The brain 
parcellations and atlases used were: (i) BASC parcellations with 64, 
122, and 197 regions ( Bellec et al., 2010 ); (ii) Ncuts parcellations 
( Craddock et al., 2012 ); (iii) Harvard-Oxford anatomical parcellations; 
(iv) MSDL functional atlas ( Varoquaux et al., 2011 ); and (v) Power atlas 
( Power et al., 2011 ). 

Challenge organisation 

Organisation of the challenge: We launched the challenge on May 
1st 2018 and closed it on July 1st 2018. The challenge attracted about 
146 participants accounting for a total of about 720 submissions. We 
awarded money prizes to the 10 best challengers. Challengers were 
ranked based on the ROC-AUC score of their submission computed on 
the private dataset. We framed the challenge problem by providing: (i) 

3 



N. Traut, K. Heuer, G. Lemaître et al. NeuroImage 255 (2022) 119171 

Table 1 

Demographic information. M: male, F: female. Values for age and full scale IQ are summarised in the form mean ± standard deviation (min - max). Full 
scale IQ was not available for every individual. 

Dataset Variable Control ASD 

Public 
set 
(ABIDE) 

Sex 449 M, 152 F 471 M, 78 F 
Age (years) 16.89 ± 9.46 (5.89 - 56.2) 17.17 ± 10.5 (5.13 - 64.0) 
Full scale IQ 112.92 ± 13.06 (71.0 - 149.0) 105.85 ± 16.66 (61.0 - 149.0) 

Private 
set 
(ABIDE + RDB) 

Sex 387 M, 182 F 351 M, 47 F 
Age (years) 20.61 ± 13.45 (4.0 - 70.8) 14.56 ± 6.62 (4.7 - 45.0) 
Full scale IQ 112.39 ± 12.45 (40.0 - 142.0) 104.62 ± 18.22 (41.0 - 149.0) 

Replication 
set 
(EU- 
AIMS) 

Sex 174 M, 94 F 263 M, 97 F 
Age (years) 16.95 ± 5.7 (6.89 - 30.98) 16.63 ± 5.48 (7.08 - 30.33) 
Full scale IQ 103.55 ± 19.28 (50.0 - 142.0) 98.64 ± 19.4 (54.97 - 148.0) 

a public dataset, (ii) a standard way to assess the submission, and (iii) a 
starting kit. For this purpose, we used the RAMP (Rapid Analytics and 
Model Prototyping) workbench. Participants submitted their solutions 
on the RAMP website ( https://ramp.studio ). During the challenge we 
provided to the participants the cross-validated score computed on the 
public dataset. At the end of the challenge, we asked each participant 
to select a single submission. This submission was trained (fitted) on 
the public dataset and evaluated on the private dataset hidden from the 
participants. Participants were ranked based on the score of these sub- 
missions computed on the private dataset. 

Challenge platform: RAMP is an online data science tool used to 
organise challenges. RAMP enables us to easily compare and reproduce 
predictive experiments. It can be used on the user’s computer or online: 
the former is for developing predictive models while the latter assesses 
their predictive accuracy. A RAMP “starting kit ” is a placeholder where 
we define the data-science problem: we provide the datasets, the met- 
ric, and the model validation technique. Participants can focus on the 
development of their machine-learning predictive model. We also pro- 
vide examples to help participants understand the challenge. The RAMP 
website was used to evaluate the solutions of the participants (i.e., pre- 
dictive models): participants submit their code and the website trains 
(fits) and evaluates them. We deployed, trained, and tested the full work- 
flow on Amazon Web Services. Note that participants can also train and 
test their models locally. However, they only have access to the public 
dataset to test their models. We rely on Python and its rich ecosystem. 
Participants were free to use any Python library to build their machine 
learning model. 

Data and code availability: The public data, the code of the 
ten best submissions, the MRI preprocessing scripts and the scripts 
used to generate the figures are available at https://github.com/neuroa 
natomy/autism-challenge . 

Results 

Participation to the challenge 

We received 589 submissions from 61 teams. To assess external va- 
lidity of the biomarkers ( Steyerberg and Harrell, 2016 ), the private 
dataset contained > 200 subjects not included in ABIDE from the Robert 
Debré Hospital in Paris, France (RDB). We selected the 10 submissions 
which performed the best (taking only one submission per team) as the 
winning ones, and gave money prizes to the submitters. After close in- 
spection we discovered that we forgot to remove 56 subjects of the RDB 

dataset which were also in the ABIDE dataset. For the post-hoc analyses 
presented here, we removed those duplicated subjects from the private 
dataset to avoid artificially inflating the prediction score. The ranking 
between the 10 best submissions remained relatively stable after the re- 
moval of the duplicate subjects (Spearman correlation: rs = 0.7697, p 
(2-tailed) = 0.00922) (see Supplemental Table 2 for a detail of the per- 
formance of each submission before and after the removal of duplicated 
subjects). 

The combination of the 10 best models provided a good predictor of ASD 

diagnosis 

We combined the 10 best models using a blending approach 
( Caruana et al., 2004 ) to produce a probability for ASD diagnosis for 
each individual. These probabilities were in general higher for patients 
than for controls ( Fig. 2 a). The receiver operating curve (ROC, Fig. 2 b, 
Supplemental Methods M1) represents the quality of these predictions 
for different tradeoffs of sensitivity and specificity, which can be sum- 
marised by the area under the curve (AUC). The combined predictor 
reached an AUC of 0.80, which is considered as a good discrimination 
level ( Hosmer and Lemeshow, 2000 ). Used as a screening test, the pre- 
dictor would correctly detect 88% of the individuals with ASD at the 
cost of misclassifying 50% of controls as patients. Used as a confirma- 
tory diagnostic test, the predictor would detect 25% of the individuals 
with ASD and only 3% of controls would be misclassified as patients. 
Predictions were also good (even slightly better) on the RDB subjects 
which were absent from the ABIDE dataset (median AUC = 0.809 versus 
AUC = 0.768 – Fig. 2 d). 

After the challenge, we used an additional dataset from the EU-AIMS 
project to evaluate the ability of the blended predictor to generalise. 
Performance on this additional data was slightly worse than on our ex- 
ternal site (AUC = 0.721), revealing that the predictor was still fragile 
to distribution shifts despite having been extracted from multiple sites. 
Demographic information for this dataset can be found in Table 1 ; the 
most pronounced difference between EU-AIMS and our study cohort is 
on the IQ of participants and we speculate that this difference might 
drive the prediction performance loss. 

Functional MRI had the strongest impact on prediction accuracy 

Studying separately the prediction accuracy obtained for each imag- 
ing modality showed that functional MRI contributed more to predic- 
tion than anatomical MRI (AUC = 0.79 using only functional MRI, versus 
AUC = 0.66 using only anatomical MRI, Fig. 2 c). Incorporating age and 
sex information only had a small influence on prediction accuracy (in- 
creasing AUC to 0.80). See Supplemental Methods M2 for additional 
information. 

Further increases in sample size should lead to increased prediction 

accuracy 

The analysis of the learning curve showed that prediction accuracy 
was not reaching a plateau and should keep improving by increasing the 
number of subjects ( Fig. 2 e). Extrapolating on this increase, we estimate 
that prediction accuracy could reach an AUC = 0.83 if a dataset of 10,000 
subjects were available (see Supplemental Methods M3 for additional 
information). 
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Fig. 2. Performance analysis using the 10 best submissions of the challenge. (a) Predicted probability for patients and controls to be classified with ASD. (b) Prediction 
accuracy obtained by combining all available data modalities (anatomical and functional MRI, age, and sex). Using the biomarkers for screening purposes led to a 
True Positive Rate (TPR) of 88.9% for a False Positive Rate (FPR) of 50%. Enforcing a low FPR (3%) to make a confirmatory analysis led to a True Positive Rate 
of 25.4%. (c) Importance of the data modalities to predict ASD. Functional MRI provided a higher discriminative power than the other available data (population 
indicators and anatomical MRI data). (d) Data heterogeneity across sites was not a roadblock: methods generalised to data from new sites, unseen during training. 
(e) Prediction accuracy by varying the number of subjects in training. Prediction accuracy did not reach a plateau with the current number of subjects available. 
Increasing the number of subjects improves the discriminative power of the methods. The current trend suggests an increase of prediction performance to 0.83 for a 
dataset of 10,000 subjects. 

Regions distributed over the entire brain contributed to prediction 

We analysed the functional MRI biomarkers to highlight the most 
discriminative brain regions. For this, we ranked brain regions by their 
importance in the 10 best models. Overall, prediction relied on regions 
distributed over the entire brain, with regions around the precuneus ap- 
pearing to be the most important ( Fig. 3 a). We assessed the relative im- 
portance of the different brain regions by progressively removing those 
that contributed the most and extracting new biomarkers. Prediction 
accuracy remained high even after removing up to 50% of the most im- 
portant brain regions (see Fig. 3 b). This suggests that the biomarkers 
captured information distributed over the entire brain (see Supplemen- 
tal Methods M4 for additional information). 

Discussion and conclusions 

MRI can provide reliable biomarkers for ASD 

The results of our challenge conclusively demonstrate that MRI is 
a powerful and reliable method to study ASD. Interestingly, it is the 
size of the cohort – not interindividual heterogeneity – that is the main 
factor limiting prediction accuracy. This can be seen from the fact that 

aggregating data across sites with different recruitment policies led to 
a steady increase in prediction accuracy. Increasing sample size is so 
far the best strategy for achieving further progress: better predictive 
power and better spatial localisation of the biomarkers. We project that a 
population of 10,000 individuals should allow us to reach the maximum 

prediction accuracy that a simple case-control design can achieve. At 
this stage, the adoption of a dimensional approach to model ASD should 
lead to further improvements in the prediction of clinical status. 

The results of our challenge suggest that MRI provides an important 
source of information for the study of ASD, complementary to that ob- 
tained, for example, through genetic exploration. Recent reports show 

that polygenic risk scores (PRS), aiming to predict case-control status 
from genome-wide common variants ( Shaun et al., 2009 ), can explain 
2.45% of the risk variance on the observed scale (Nagelkerke pseudo- 
R 

2 ) in a group of 13,076 ASD cases and 22,664 controls ( Grove et al., 
2019 ). Considering a disease prevalence of 1.2%, PRS should capture 
1.13% of the risk variance of ASD on the liability scale ( Lee et al., 2012 ). 
As a matter of comparison, the AUC of 0.80 that we obtain from MRI 
corresponds to an R 

2 of 19.1% on a liability scale with the same dis- 
ease prevalence ( Wray et al., 2010 ). We can expect that larger genetic 
samples for ASD should increase prediction accuracy, as the proportion 
of risk variance captured by common genetic variants is estimated to be 
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Fig. 3. Regions important for the functional-MRI biomarker. (a) statistical map 
giving the ranking of regions’ contribution to predictions from the functional 
data; (b) decrease in performance by removing the most important regions. 

11.8% on the liability scale ( Grove et al., 2019 ). The important gap with 
prediction accuracy could be explained by differences in inclusion cri- 
teria, as large scale genetics studies include subjects with a wider range 
of intellectual ability. However, it could also be the case that the ef- 
fects of common genetic variants are highly diluted across the genome, 
and therefore difficult to estimate individually. It may be informative 
to consider the case of schizophrenia – a neurodevelopmental disorder 
with overlapping genetic aetiology. In schizophrenia, PRS obtained from 

approximately 35,000 cases and 45,000 controls captured ∼15% of the 
risk variance on the observed scale (Nagelkerke pseudo-R 

2 ) and ∼7% on 
the liability scale with an AUC of 0.70 ( Schizophrenia Working Group 
of the Psychiatric Genomics Consortium, 2014 ). Our MRI-based predic- 
tion of ASD provides a higher accuracy than what PRS can provide for 
schizophrenia, with a much smaller cohort. MRI-based prediction may 
have the additional benefit of providing longitudinal information which 
could be important to track disease progression. In combination, genetic 
and MRI information could provide a powerful tool to predict and un- 
derstand ASD risk. 

Classic machine learning methods provided the best results 

The starting kit we presented transformed the resting state fMRI 
time series from the MSDL atlas to a tangent correlation matrix 
( Varoquaux et al., 2010 ) and regressed stacked values from the ma- 
trix and anatomical values with a L1-penalised logistic regression. The 
starting kit combined the predictions from the functional and anatomi- 
cal MRI with a meta-classifier based on a logistic regression. The trans- 
formation from the functional MRI time series to a tangent correlation 
matrix was adopted by all submissions; however, the choice of atlas was 
variable. Seven submissions used time series from several atlases, while 
three submissions used only one atlas. In addition to the transforma- 
tion to a tangent correlation matrix, one submission transformed to a 

standard correlation matrix and another transformed to a partial corre- 
lation matrix. One submission performed dimensionality reduction us- 
ing a principal component analysis (PCA). Six submissions used logistic 
regression as a first layer predictor, two used linear c-support vector 
classification (SVC) and the two others a combination of different meth- 
ods. Three submissions obtained directly a single prediction whereas the 
remaining seven obtained several predictions, which were combined us- 
ing a logistic regression for five of them, average for one them, and a 
majority vote for the last one. 

Challengers used a variety of methods, which included machine- 
learning techniques ranging from simple logistic regressions to complex 
graph-convolutional deep-learning models. Inspection of the individual 
scores showed that deep-learning techniques displayed strong overfits: 
good performance on the public dataset but poor generalisation to the 
private dataset. On the opposite, many algorithms which used simpler 
approaches had a stable prediction performance when applied to new 

data, displaying prediction accuracies between AUC = 0.7 and 0.8 which 
did generalise to the private dataset. The submissions which led to reli- 
able predictions had some methodology in common. In particular, they 
used linear support vector machines or logistic regression to compute 
the combination of the different signals – anatomical and functional –
that best discriminated patients from controls. In addition, several sub- 
missions combined signals from multiple atlases using a stacking strat- 
egy ( Wolpert, 1992 ). 

Most improvement came from using atlases with larger numbers of regions 

To speed up the computation, we presented a starting kit with the 
smaller atlas for resting state functional MRI. We saw that switching 
to larger atlases considerably increased the AUC: switching from the 
MSDL atlas (39 regions) to the craddock_scorr_mean atlas (249 regions) 
increased the AUC of the functional starting kit from 0.655 to 0.778 
and the AUC of combined anatomy and functional from 0.716 to 0.790. 
The best submission we had obtained an AUC of 0.799 – an increase 
of less than 0.009 (see Supplement Table 2 for the performances of the 
different evolutions of the starting kit and the 10 best submissions). 

Although we talk about functional and anatomical MRI in general, 
it is important to keep in mind that the variables we provided do not 
exhaust all possible functional and anatomical data. Though we used 
fairly standard preprocessing and feature-extraction choices, functional 
variables only include resting state time series, and anatomical variables 
only include surface, thickness and volume of different regions. The rea- 
son is that these are the types of measurements which can be acquired 
reliably in large populations using standard processing pipelines. Includ- 
ing additional functional and anatomical variables, such structural cor- 
relations or measurements obtained from diffusion-weighted imaging or 
T1/T2 ratios, may contribute to increasing the prediction power. 

Evaluation without a blind validation set is at risk of severe optimism 

Our challenge highlights that a trustworthy development of biomark- 
ers must include the evaluation on a new dataset, blinded to the analysts. 
In our challenge, participants had no interest in developing algorithms 
that would give optimistic results on the public dataset, as they knew 

that they would be evaluated on the private dataset. Nevertheless, com- 
paring the prediction quality on the public dataset to that on the pri- 
vate dataset ( Figs. 4 and 5 ) clearly showed that the best predictions on 
the public dataset were too good to be true, and did not carry over to 
the unseen, private dataset. This is likely because the challengers made 
their analytic choices or trained hyperparameters to improve the pre- 
diction score that they measured on the public dataset ( Fig. 4 ). As a 
result, they obtained seemingly-excellent predictions, but which likely 
relied on noise in the public data and did not generalise to the private 
dataset. Indeed, the techniques used in machine-learning to measure 
prediction performance, such as cross-validation, are not completely ro- 
bust to systematic exploration of analytic choices ( Varoquaux, 2018 ): 
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Fig. 4. Score during the competition. The three different rows show prediction scores at the start of the challenge in May, at the middle of the challenge in June, 
and at the end of the challenge in July. The evolution of the scores of all submissions on the public and private datasets suggest that participants’ work led mostly 
to increased prediction performance in the public dataset without comparable increases in the private dataset. 

Fig. 5. Excellent performance on the public dataset was misleading. The score of each final submission to the challenge is represented as a point on the public and 
the private dataset. The prediction on the public dataset was measured with 8 random splits (with 20% of the data left out), the standard machine-learning procedure 
to measure prediction performance. Extreme prediction scores in the public dataset (AUC > 0.8) did not generalise to the private dataset. By contrast, algorithms with 
conservative scores (0.6 < AUC < 0.8) did predict the private dataset equally well. 

To fully trust the prediction accuracy of biomarkers, these must be val- 
idated externally, as in our challenge. However, when testing exter- 
nal validity on a third, completely new data (EU-AIMS, see Fig. 5 ), 
the ranking of the models stayed roughly similar as on the private 
dataset, a pattern already reported on kaggle challenges ( Roelofs et al., 
2019 ). The blind assessment was necessary to select methods that 
extract good ASD biomarkers, and to reliably quantify prediction 
accuracy. 

Better biomarkers bring new opportunities 

Robust predictive MRI biomarkers open several opportunities for 
clinical and scientific research: Predictive MRI biomarkers enable longi- 
tudinal follow-ups and prospective epidemiology. Infants at risk of ASD 

could be scanned longitudinally, which could allow us to develop early 
biomarkers useful when behaviour is not a sufficient basis for diagno- 
sis. Collecting and sharing brain-imaging data for 10,000 individuals at 
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risk of ASD is well within the reach of a community effort. Such a large 
number would enable a substantial hold-out sample, and hence precise 
characterisation of the biomarkers. As predictive biomarkers reach an 
excellent prediction accuracy, the hope is that they will narrow down 
on the discriminant information. Hence, increases in prediction perfor- 
mance will also reveal more precise information on the neural correlates 
of ASD. 
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