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Abstract
MRI has been extensively used to identify anatomical and functional differences in Autism
Spectrum Disorder (ASD). Yet, many of these findings have proven difficult to replicate because
studies rely on small cohorts and are built on many complex, undisclosed, analytic choices. We
conducted an international challenge to predict ASD diagnosis from MRI data, where we
provided preprocessed anatomical and functional MRI data from > 2,000 individuals. Evaluation
of the predictions was rigorously blinded. 146 challengers submitted prediction algorithms,
which were evaluated at the end of the challenge using unseen data and an additional acquisition
site. On the best algorithms, we studied the importance of MRI modalities, brain regions, and
sample size. We found evidence that MRI could predict ASD diagnosis: the 10 best algorithms
reliably predicted diagnosis with AUC~0.80 – far superior to what can be currently obtained
using genotyping data in cohorts 20-times larger. We observed that functional MRI was more
important for prediction than anatomical MRI, and that increasing sample size steadily increased
prediction accuracy, providing an efficient strategy to improve biomarkers. We also observed that
despite a strong incentive to generalise to unseen data, model development on a given dataset
faces the risk of overfitting: performing well in cross-validation on the data at hand, but not
generalising. Finally, we were able to predict ASD diagnosis on an external sample added after
the end of the challenge (EU-AIMS), although with a lower prediction accuracy (AUC=0.72).
This indicates that despite being based on a large multisite cohort, our challenge still produced
biomarkers fragile in the face of dataset shifts.

Introduction

Autism Spectrum Disorder (ASD) is a life-long neurodevelopmental disorder which affects more
than 1% of the population. Its severity differs vastly among individuals, however, they all share
persistent deficits in social communication and restricted, repetitive and stereotyped behaviours.
ASD is heritable, and influenced by common genetic variation as well as rare mutations (Krumm
et al. 2015; Bourgeron 2015; Sandin et al. 2017; Weiner et al. 2017). Early intervention has a
significant positive impact on the patient’s outcome, which makes early diagnosis a research
priority (Dawson et al. 2010).

Magnetic resonance imaging (MRI) is an important tool to explore the brain of individuals with
ASD: it is a widely available, fast, and non-invasive method to measure brain anatomy and
function. By providing detailed measurements of an individual’s brain, MRI brings the promises
of precision psychiatry, adapting therapy to patients (Insel 2014). But can MRI be used to
characterise ASD in general? For more than 30 years, MRI studies have described anatomical
and functional differences between individuals with ASD and unaffected controls: enlarged brain
volume and cortical surface area (Piven et al. 1995; E. Courchesne et al. 2001), decreases in
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brain volume and neocortical thinning during adolescence and adulthood (Lange et al. 2015;
Zielinski et al. 2014), smaller corpus callosum (Egaas et al. 1995; Wolff et al. 2015), abnormal
cerebellar volume (Courchesne 1987; Hodge et al. 2010; Fatemi et al. 2012), and global and
regional increases and decreases in functional connectivity (Just 2004; Belmonte 2004; Di
Martino et al. 2014a; Cheng et al. 2017).

Many of these findings are, however, controversial and have proven difficult to replicate (Haar et
al. 2016; Lefebvre et al. 2015; Traut et al. 2018; Picci et al. 2016; Mohammad-Rezazadeh et al.
2016). Most studies have relied on sample sizes far too small to reach reliable conclusions –
sometimes just a few dozen subjects, and up to a few hundreds at most. They lack replication and
reanalysis on independent data. This is particularly problematic because of the multitude of
parameters involved in each analysis which could substantially alter the results (Carp 2012;
Power et al. 2012; Poldrack et al. 2017): acquisition sequence, subject motion, software
packages, pre-processing workflow, etc.

Rather than focusing on the detection of specific regional differences between cases and controls,
brain-imaging features can be combined into a biomarker of ASD answering the question: can
diagnostic status be inferred from MRI data? Machine-learning provides important techniques to
build and characterise such biomarkers. Yet, machine-learning studies of ASD are most often
based on the analysis of a single sample, without validation of the findings in an independent
sample. The community recognises today that establishing the validity of a biomarker needs a
fully independent assessment on new data, otherwise its accuracy cannot be trusted (Woo et al.
2017; Poldrack et al. 2019) as it may arise from overfitting, circular analysis (Kriegeskorte et al.
2009) or researchers’ degrees of freedom (Ioannidis 2005). This is particularly critical for
machine learning approaches, where classifiers trained on data from one sample may be unable
to generalise to additional samples (Ecker et al. 2015). Publication incentives lead researchers to
seek and report the best prediction accuracy. For brain-imaging biomarkers of ASD, publications
have reported accuracies above 95% (Bi et al. 2018). If that were true, the accuracy of those
algorithms would be equivalent to the inter-rater reliability of clinical assessment by human
experts (kappa=95%) which defines the gold-standard for discrimination of ASD versus other
development disorders (Klin et al. 2000). But how trustworthy is the evaluation of biomarkers
such as those in (Bi et al. 2018), given that the whole study – biomarker extraction and validation
– was done on only 50 ASD patients and 42 non-ASD controls? Peer-review is not sufficient to
assess the analytic choices as even minor variants lead to large differences in observed prediction
accuracy, though these are unlikely to reveal true improvements (Varoquaux 2018).

To ground solid conclusions on ASD neuroimaging, several international consortia have been
constituted such as ABIDE (Autism Brain Imaging Data Exchange, Di Martino et al. 2014b; Di
Martino et al. 2017), EU-AIMS (European Autism Interventions - A Multicentre Study for

3

https://paperpile.com/c/mwpOAg/cctz8+LKSuD
https://paperpile.com/c/mwpOAg/cctz8+LKSuD
https://paperpile.com/c/mwpOAg/qTvNR+i1Ykt
https://paperpile.com/c/mwpOAg/4mwOs+4SM8C+gTF80
https://paperpile.com/c/mwpOAg/EdKDz+Xh5DB+6xdRT+krLco
https://paperpile.com/c/mwpOAg/EdKDz+Xh5DB+6xdRT+krLco
https://paperpile.com/c/mwpOAg/OTiMb+iIjTH+etyHS+eZGFN+aJkWb
https://paperpile.com/c/mwpOAg/OTiMb+iIjTH+etyHS+eZGFN+aJkWb
https://paperpile.com/c/mwpOAg/OTiMb+iIjTH+etyHS+eZGFN+aJkWb
https://paperpile.com/c/mwpOAg/nBBVm+v2xPq+UhNiP
https://paperpile.com/c/mwpOAg/nBBVm+v2xPq+UhNiP
https://paperpile.com/c/mwpOAg/xggCr+p8ZWh
https://paperpile.com/c/mwpOAg/xggCr+p8ZWh
https://paperpile.com/c/mwpOAg/ucHNR
https://paperpile.com/c/mwpOAg/ucHNR
https://paperpile.com/c/mwpOAg/9FIV8
https://paperpile.com/c/mwpOAg/UpnK1
https://paperpile.com/c/mwpOAg/bUxh9
https://paperpile.com/c/mwpOAg/4JQjN
https://paperpile.com/c/mwpOAg/bUxh9
https://paperpile.com/c/mwpOAg/3MOdU
https://paperpile.com/c/mwpOAg/DOqFA+J8HJ2
https://paperpile.com/c/mwpOAg/DOqFA+J8HJ2


Developing New Medications, Murphy and Spooren 2012) or the IBIS Network (Infant Brain
Imaging Study, Hazlett et al. 2012), increasing sample sizes through data sharing. They extend
the amount and quality of the data collected through harmonisation efforts. Recent analysis
across cohorts has shown that ASD is significantly associated with changes in functional
connectivity (Holiga et al. 2019). But are these changes large enough to ground reliable
prediction to new sites, despite heterogeneity in imaging techniques and populations recruited?

The study we present built upon these large cohorts, and framed the extraction of biomarkers as
an open, international challenge to predict ASD from the largest MRI dataset currently available
– more than 2,000 individuals. A data-science prediction challenge of this type can provide
conclusive evidence on the ability of MRI to detect ASD, because it is based on a blind
evaluation of the results in addition to relying on a large sample. Furthermore, it isolates the
development of the analysis pipeline from its evaluation. Challengers did not have access to
validation data, which allowed us to test the ability of the algorithms to generalise to unseen data,
including data acquired in different centres.

Materials and methods

Brain imaging dataset

The brain imaging dataset combined data from the public Autism Brain Imaging Data Exchange
(ABIDE) I and II datasets (Di Martino et al. 2014a; Di Martino et al. 2017) and an unpublished
dataset from the Robert Debré Hospital (RDB) in Paris, France (see Supplemental Table 1 for
additional demographic information for the RDB site). ABIDE provides open access to
functional and anatomical MRI data for 2,156 subjects. The RDB dataset contained data from
247 subjects, 56 of whom were also part of the ABIDE II project: we excluded these duplicate
subjects from the private dataset. With the exception of data coming from the RDB centre which
was acquired in a 1.5 Tesla scanner, all MRI data was acquired in 3 Tesla scanners. In all sites
subjects were diagnosed using standard ADI/ADOS tools to support clinical assessment. Most
subjects had a full IQ>75.

We extracted anatomical features from the anatomical MRI: regional brain volumes, cortical
thickness, and surface area; and extracted time-series signals from the resting-state functional
MRI. To derive these individual measurements, the data were processed with standard
neuroimaging tools: Freesurfer (Fischl et al. 1999), FSL (Woolrich et al. 2009), and AFNI (Cox
1996). We split the total dataset into public and private datasets, aiming at balancing the age and
sex distributions (Table 1 and Fig. 1 provide demographic information for the public and private
datasets). A total of 2,117 subjects were included: 947 ASD and 1,170 controls. We did not
exclude subjects based on quality control, but provided challengers with quality control scores
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obtained from visual inspection by 3 experts. The public dataset contained data from 1,150
subjects: 549 ASD and 601 controls. The private dataset contained data from 967 subjects: 398
ASD and 569 controls. The public dataset was a subset of ABIDE I and II, while the private
dataset combined data from ABIDE I, II and RDB. The dataset should capture well the clinical
and methodological heterogeneity of ASD neuroimaging. The ABIDE dataset was collected by
24 different centres worldwide, and spans an age range from 5 to 64 years old (median 13.8 years
old). All subjects had intellectual quotients within the normal range (97% have full IQ>80), 80%
of patients and 90% of controls were right-handed. The cohort was composed of 80% males.

Dataset Variable Control ASD

Public set (ABIDE) Sex 449 M, 152 F 471 M, 78 F

Age (years) 16.89 ± 9.46 (5.89 - 56.2) 17.17 ± 10.5 (5.13 - 64.0)

Full scale IQ 112.92 ± 13.06 (71.0 -
149.0)

105.85 ± 16.66 (61.0 -
149.0)

Private set
(ABIDE+RDB)

Sex 387 M, 182 F 351 M, 47 F

Age (years) 20.61 ± 13.45 (4.0 - 70.8) 14.56 ± 6.62 (4.7 - 45.0)

Full scale IQ 112.39 ± 12.45 (40.0 -
142.0)

104.62 ± 18.22 (41.0 -
149.0)

Replication set
(EU-AIMS)

Sex 174 M, 94 F 263 M, 97 F

Age (years) 16.95 ± 5.7 (6.89 - 30.98) 16.63 ± 5.48 (7.08 -
30.33)

Full scale IQ 103.55 ± 19.28 (50.0 -
142.0)

98.64 ± 19.4 (54.97 -
148.0)

Table 1. Demographic information. M: male, F: female. Values for age and full scale IQ are summarised in the
form mean ± standard deviation (min - max). Full scale IQ was not available for every individual.

This diversity should allow classification algorithms to generalise, preventing them from
specialising in a particular type of data or age range. Further demographic information for the
ABIDE I and II datasets is provided in their corresponding publications (Di Martino et al. 2014a;
Di Martino et al. 2017).

Study design: a data-science prediction challenge

Description of the challenge: We launched the challenge inviting data scientists to submit
algorithms to predict ASD diagnostic from provided MRI data. The challenge lasted 3 months
and attracted 146 challengers. We awarded money prizes to the 10 best challengers. These were
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determined after the closure of the competition, by assessing how well the algorithms would
predict ASD diagnostic in a private, unseen dataset.

The ABIDE data can be openly distributed, which enabled us to provide a rich dataset on which
challengers could tune their algorithms. To facilitate access to the data, we provided challengers
with a “starting kit” giving a proof-of-concept predictive model on the data (extracted on
standard brain atlases). Challengers were then able to develop their own prediction algorithms,
which they submitted using a Web interface. The code was executed on our central server. The
challengers never had access to the private dataset. They used machine-learning techniques tuned
on the public dataset and submitted the corresponding code to the central server which evaluated
them in the private dataset.

To measure the quality of the predictions, we used a standard metric: the area under the receiver
operating characteristic curve (ROC-AUC). This measure summarises various detection
tradeoffs, for example, favouring few false negatives to the cost of false positives in the case of a
screening study, or the converse, in the case of a confirmatory study. Prediction at chance level
gives an AUC of 0.5, while perfect prediction gives an AUC of 1.
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Figure 1. Subjects, sex, age, and site distributions.
The distributions of the number of cases and controls,
their sex ratio, age and scanning site were similar in the
public and private datasets.

Statististical analysis strategy: After the closure of the challenge, we analysed the 10 best
submissions to understand the factors driving their predictions. Considering that these
machine-learning algorithms captured the best possible predictive biomarkers given our
brain-imaging cohort, we varied the data on which they were applied. Each time, we fit the
algorithms anew on the data, to extract the corresponding biomarkers, and measured the
prediction accuracy on the private dataset. First, we applied them to different imaging modalities:
only functional MRI, or only anatomical MRI. Second, we varied the number of available
subjects, to measure the importance of the sample size. Finally, we investigated the importance
of different brain regions by removing those that appeared as most discriminative and attempting
to extract biomarkers from the rest of the data. To compute which regions were the most
discriminative, we used the absolute value of the model’s coefficients when the algorithm used a
linear model, and the feature importance when the algorithm used a random forest. We obtained
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a region-level summary of functional-connectivity biomarkers by associating to every region the
sum of the importance of its connections, a measure of node strength. Region-level importance
was then turned into a brain map characterising the spatial distribution of the discriminant
information.

MRI preprocessing and signal extraction

Anatomical MRI: Anatomical MRI was preprocessed and segmented using FreeSurfer v6.0. We
extracted three kinds of anatomical features: (i) mean regional cortical thickness, (ii) cortical
surface area of regions parcellated with the Desikan-Killiany Atlas (Desikan et al. 2006), and
(iii) volumes of subcortical regions segmented with the FreeSurfer atlas (Fischl et al. 2002).

Resting-state functional MRI: Resting-state functional MRI captures brain activity and functional
connectivity. It is typically studied via a functional-connectome: a matrix capturing interactions
between brain regions. We provided time series extracted on a variety of atlases after standard
fMRI preprocessing using the pipeline from the FC1000 project (which includes slice-time
interpolation, motion correction, coregistration to anatomic data, normalisation to template
space). The brain parcellations and atlases used were: (i) BASC parcellations with 64, 122, and
197 regions (Bellec et al. 2010); (ii) Ncuts parcellations (Craddock et al. 2012); (iii)
Harvard-Oxford anatomical parcellations; (iv) MSDL functional atlas (Varoquaux et al. 2011);
and (v) Power atlas (Power et al. 2011).

Challenge organisation

Organisation of the challenge: We launched the challenge on May 1st 2018 and closed it on
July 1st 2018. The challenge attracted about 146 participants accounting for a total of about 720
submissions. We awarded money prizes to the 10 best challengers. Challengers were ranked
based on the ROC-AUC score of their submission computed on the private dataset. We framed
the challenge problem by providing: (i) a public dataset, (ii) a standard way to assess the
submission, and (iii) a starting kit. For this purpose, we used the RAMP (Rapid Analytics and
Model Prototyping) workbench. Participants submitted their solutions on the RAMP website
(https://ramp.studio). During the challenge we provided to the participants the cross-validated
score computed on the public dataset. At the end of the challenge, we asked each participant to
select a single submission. This submission was trained (fitted) on the public dataset and
evaluated on the private dataset hidden from the participants. Participants were ranked based on
the score of these submissions computed on the private dataset.

Challenge platform: RAMP is an online data science tool used to organise challenges. RAMP
enables us to easily compare and reproduce predictive experiments. It can be used on the user’s
computer or online: the former is for developing predictive models while the latter assesses their
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predictive accuracy. A RAMP “starting kit” is a placeholder where we define the data-science
problem: we provide the datasets, the metric, and the model validation technique. Participants
can focus on the development of their machine-learning predictive model. We also provide
examples to help participants understand the challenge. The RAMP website was used to evaluate
the solutions of the participants (i.e., predictive models): participants submit their code and the
website trains (fits) and evaluates them. We deployed, trained, and tested the full workflow on
Amazon Web Services. Note that participants can also train and test their models locally.
However, they only have access to the public dataset to test their models. We rely on Python and
its rich ecosystem. Participants were free to use any Python library to build their machine
learning model.

Data and code availability: The public data, the code of the ten best submissions, the MRI
preprocessing scripts and the scripts used to generate the figures are available at
https://github.com/neuroanatomy/autism-challenge.

Results

Participation to the challenge

We received 589 submissions from 61 teams. To assess external validity of the biomarkers
(Steyerberg and Harrell 2016), the private dataset contained >200 subjects not included in
ABIDE from the Robert Debré Hospital in Paris, France (RDB). We selected the 10 submissions
which performed the best (taking only one submission per team) as the winning ones, and gave
money prizes to the submitters. After close inspection we discovered that we forgot to remove 56
subjects of the RDB dataset which were also in the ABIDE dataset. For the post-hoc analyses
presented here, we removed those duplicated subjects from the private dataset to avoid
artificially inflating the prediction score. The ranking between the 10 best submissions remained
relatively stable after the removal of the duplicate subjects (Spearman correlation: rs = 0.7697, p
(2-tailed) = 0.00922) (see Supplemental Table 2 for a detail of the performance of each
submission before and after the removal of duplicated subjects).

The combination of the 10 best models provided a good predictor of ASD diagnosis.

We combined the 10 best models using a blending approach (Caruana et al. 2004) to produce a
probability for ASD diagnosis for each individual. These probabilities were in general higher for
patients than for controls (Fig. 2a). The receiver operating curve (ROC, Fig. 2b, Supplemental
Methods M1) represents the quality of these predictions for different tradeoffs of sensitivity and
specificity, which can be summarised by the area under the curve (AUC). The combined
predictor reached an AUC of 0.80, which is considered as a good discrimination level (Hosmer
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and Lemeshow 2000). Used as a screening test, the predictor would correctly detect 88% of the
individuals with ASD at the cost of misclassifying 50% of controls as patients. Used as a
confirmatory diagnostic test, the predictor would detect 25% of the individuals with ASD and
only 3% of controls would be misclassified as patients. Predictions were also good (even slightly
better) on the RDB subjects which were absent from the ABIDE dataset (median AUC=0.809
versus AUC=0.768 – Fig. 2d).

After the challenge, we used an additional dataset from the EU-AIMS project to evaluate the
ability of the blended predictor to generalise. Performance on this additional data was slightly
worse than on our external site (AUC=0.721), revealing that the predictor was still fragile to
distribution shifts despite having been extracted from multiple sites. Demographic information
for this dataset can be found in Table 1; the most pronounced difference between EU-AIMS and
our study cohort is on the IQ of participants and we speculate that this difference might drive the
prediction performance loss.

Functional MRI had the strongest impact on prediction accuracy

Studying separately the prediction accuracy obtained for each imaging modality showed that
functional MRI contributed more to prediction than anatomical MRI (AUC=0.79 using only
functional MRI, versus AUC=0.66 using only anatomical MRI, Fig. 2c). Incorporating age and
sex information only had a small influence on prediction accuracy (increasing AUC to 0.80). See
Supplemental Methods M2 for additional information.

Further increases in sample size should lead to increased prediction accuracy

The analysis of the learning curve showed that prediction accuracy was not reaching a plateau
and should keep improving by increasing the number of subjects (Fig. 2e). Extrapolating on this
increase, we estimate that prediction accuracy could reach an AUC=0.83 if a dataset of 10,000
subjects were available (see Supplemental Methods M3 for additional information).

Regions distributed over the entire brain contributed to prediction

We analysed the functional MRI biomarkers to highlight the most discriminative brain regions.
For this, we ranked brain regions by their importance in the 10 best models. Overall, prediction
relied on regions distributed over the entire brain, with regions around the precuneus appearing
to be the most important (Fig. 3a). We assessed the relative importance of the different brain
regions by progressively removing those that contributed the most and extracting new
biomarkers. Prediction accuracy remained high even after removing up to 50% of the most
important brain regions (see Fig. 3b). This suggests that the biomarkers captured information
distributed over the entire brain (see Supplemental Methods M4 for additional information).
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Figure 2. Performance analysis using the 10 best submissions of the challenge. (a) Predicted probability for
patients and controls to be classified with ASD. (b) Prediction accuracy obtained by combining all available data
modalities (anatomical and functional MRI, age, and sex). Using the biomarkers for screening purposes led to a True
Positive Rate (TPR) of 88.9% for a False Positive Rate (FPR) of 50%. Enforcing a low FPR (3%) to make a
confirmatory analysis led to a True Positive Rate of 25.4%. (c) Importance of the data modalities to predict ASD.
Functional MRI provided a higher discriminative power than the other available data (population indicators and
anatomical MRI data). (d) Data heterogeneity across sites was not a roadblock: methods generalised to data from
new sites, unseen during training. (e) Prediction accuracy by varying the number of subjects in training. Prediction
accuracy did not reach a plateau with the current number of subjects available. Increasing the number of subjects
improves the discriminative power of the methods. The current trend suggests an increase of prediction performance
to 0.83 for a dataset of 10,000 subjects.
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Figure 3. Regions important for the functional-MRI
biomarker. (a) statistical map giving the ranking of
regions’ contribution to predictions from the functional
data; (b) decrease in performance by removing the
most important regions.

Discussion and conclusions

MRI can provide reliable biomarkers for ASD

The results of our challenge conclusively demonstrate that MRI is a powerful and reliable
method to study ASD. Interestingly, it is the size of the cohort – not interindividual heterogeneity
– that is the main factor limiting prediction accuracy. This can be seen from the fact that
aggregating data across sites with different recruitment policies led to a steady increase in
prediction accuracy. Increasing sample size is so far the best strategy for achieving further
progress: better predictive power and better spatial localisation of the biomarkers. We project
that a population of 10,000 individuals should allow us to reach the maximum prediction
accuracy that a simple case-control design can achieve. At this stage, the adoption of a
dimensional approach to model ASD should lead to further improvements in the prediction of
clinical status.

The results of our challenge suggest that MRI provides an important source of information for
the study of ASD, complementary to that obtained, for example, through genetic exploration.
Recent reports show that polygenic risk scores (PRS), aiming to predict case-control status from
genome-wide common variants  (Purcell et al. 2009), can explain 2.45% of the risk variance on
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the observed scale (Nagelkerke pseudo-R2) in a group of 13,076 ASD cases and 22,664 controls
(Grove et al. 2019). Considering a disease prevalence of 1.2%, PRS should capture 1.13% of the
risk variance of ASD on the liability scale (Lee et al. 2012). As a matter of comparison, the AUC
of 0.80 that we obtain from MRI corresponds to an R2 of 19.1% on a liability scale with the same
disease prevalence (Wray et al. 2010). We can expect that larger genetic samples for ASD should
increase prediction accuracy, as the proportion of risk variance captured by common genetic
variants is estimated to be 11.8% on the liability scale (Grove et al. 2019). The important gap
with prediction accuracy could be explained by differences in inclusion criteria, as large scale
genetics studies include subjects with a wider range of intellectual ability. However, it could also
be the case that the effects of common genetic variants are highly diluted across the genome, and
therefore difficult to estimate individually. It may be informative to consider the case of
schizophrenia – a neurodevelopmental disorder with overlapping genetic aetiology. In
schizophrenia, PRS obtained from approximately 35,000 cases and 45,000 controls captured
~15% of the risk variance on the observed scale (Nagelkerke pseudo-R2) and ~7% on the liability
scale with an AUC of 0.70 (Schizophrenia Working Group of the Psychiatric Genomics
Consortium 2014). Our MRI-based prediction of ASD provides a higher accuracy than what PRS
can provide for schizophrenia, with a much smaller cohort. MRI-based prediction may have the
additional benefit of providing longitudinal information which could be important to track
disease progression. In combination, genetic and MRI information could provide a powerful tool
to predict and understand ASD risk.

Classic machine learning methods provided the best results

The starting kit we presented transformed the resting state fMRI time series from the MSDL
atlas to a tangent correlation matrix (Varoquaux et al. 2010) and regressed stacked values from
the matrix and anatomical values with a L1-penalised logistic regression. The starting kit
combined the predictions from the functional and anatomical MRI with a meta-classifier based
on a logistic regression. The transformation from the functional MRI time series to a tangent
correlation matrix was adopted by all submissions; however, the choice of atlas was variable.
Seven submissions used time series from several atlases, while three submissions used only one
atlas. In addition to the transformation to a tangent correlation matrix, one submission
transformed to a standard correlation matrix and another transformed to a partial correlation
matrix. One submission performed dimensionality reduction using a principal component
analysis (PCA). Six submissions used logistic regression as a first layer predictor, two used
linear c-support vector classification (SVC) and the two others a combination of different
methods. Three submissions obtained directly a single prediction whereas the remaining seven
obtained several predictions, which were combined using a logistic regression for five of them,
average for one them, and a majority vote for the last one.
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Challengers used a variety of methods, which included machine-learning techniques ranging
from simple logistic regressions to complex graph-convolutional deep-learning models.
Inspection of the individual scores showed that deep-learning techniques displayed strong
overfits: good performance on the public dataset but poor generalisation to the private dataset.
On the opposite, many algorithms which used simpler approaches had a stable prediction
performance when applied to new data, displaying prediction accuracies between AUC=0.7 and
0.8 which did generalise to the private dataset. The submissions which led to reliable predictions
had some methodology in common. In particular, they used linear support vector machines or
logistic regression to compute the combination of the different signals – anatomical and
functional – that best discriminated patients from controls. In addition, several submissions
combined signals from multiple atlases using a stacking strategy (Wolpert 1992).

Figure 4. Score during the competition. The three different rows show prediction scores at the start of the
challenge in May, at the middle of the challenge in June, and at the end of the challenge in July. The evolution of the
scores of all submissions on the public and private datasets suggest that participants' work led mostly to increased
prediction performance in the public dataset without comparable increases in the private dataset.
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Figure 5. Excellent performance on the public dataset was misleading. The score of each final submission to the
challenge is represented as a point on the public and the private dataset. The prediction on the public dataset was
measured with 8 random splits (with 20% of the data left out), the standard machine-learning procedure to measure
prediction performance. Extreme prediction scores in the public dataset (AUC>0.8) did not generalise to the private
dataset. By contrast, algorithms with conservative scores (0.6<AUC<0.8) did predict the private dataset equally
well.
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Most improvement came from using atlases with larger numbers of regions.

To speed up the computation, we presented a starting kit with the smaller atlas for resting state
functional MRI. We saw that switching to larger atlases considerably increased the AUC:
switching from the MSDL atlas (39 regions) to the craddock_scorr_mean atlas (249 regions)
increased the AUC of the functional starting kit from 0.655 to 0.778 and the AUC of combined
anatomy and functional from 0.716 to 0.790. The best submission we had obtained an AUC of
0.799 – an increase of less than 0.009 (see Supplement Table 2 for the performances of the
different evolutions of the starting kit and the 10 best submissions).

Although we talk about functional and anatomical MRI in general, it is important to keep in
mind that the variables we provided do not exhaust all possible functional and anatomical data.
Though we used fairly standard preprocessing and feature-extraction choices, functional
variables only include resting state time series, and anatomical variables only include surface,
thickness and volume of different regions. The reason is that these are the types of measurements
which can be acquired reliably in large populations using standard processing pipelines.
Including additional functional and anatomical variables, such structural correlations or
measurements obtained from diffusion-weighted imaging or T1/T2 ratios, may contribute to
increasing the prediction power.

Evaluation without a blind validation set is at risk of severe optimism

Our challenge highlights that a trustworthy development of biomarkers must include the
evaluation on a new dataset, blinded to the analysts. In our challenge, participants had no interest
in developing algorithms that would give optimistic results on the public dataset, as they knew
that they would be evaluated on the private dataset. Nevertheless, comparing the prediction
quality on the public dataset to that on the private dataset (Figs. 4 and 5) clearly showed that the
best predictions on the public dataset were too good to be true, and did not carry over to the
unseen, private dataset. This is likely because the challengers made their analytic choices or
trained hyperparameters to improve the prediction score that they measured on the public dataset
(Fig. 4). As a result, they obtained seemingly-excellent predictions, but which likely relied on
noise in the public data and did not generalise to the private dataset. Indeed, the techniques used
in machine-learning to measure prediction performance, such as cross-validation, are not
completely robust to systematic exploration of analytic choices (Varoquaux 2018): To fully trust
the prediction accuracy of biomarkers, these must be validated externally, as in our challenge.
However, when testing external validity on a third, completely new data (EU-AIMS, see Fig. 5),
the ranking of the models stayed roughly similar as on the private dataset, a pattern already
reported on kaggle challenges (Roelofs et al. 2019). The blind assessment was necessary to select
methods that extract good ASD biomarkers, and to reliably quantify prediction accuracy.
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Better biomarkers bring new opportunities

Robust predictive MRI biomarkers open several opportunities for clinical and scientific research:
Predictive MRI biomarkers enable longitudinal follow-ups and prospective epidemiology. Infants
at risk of ASD could be scanned longitudinally, which could allow us to develop early
biomarkers useful when behaviour is not a sufficient basis for diagnosis. Collecting and sharing
brain-imaging data for 10,000 individuals at risk of ASD is well within the reach of a community
effort. Such a large number would enable a substantial hold-out sample, and hence precise
characterisation of the biomarkers. As predictive biomarkers reach an excellent prediction
accuracy, the hope is that they will narrow down on the discriminant information. Hence,
increases in prediction performance will also reveal more precise information on the neural
correlates of ASD.

Acknowledgements: We are grateful for the Paris-Saclay Center for Data Science for supporting
this research.
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Supplemental material

Supplemental tables

Age (in years)
Group Number of subjects Mean (Min, Max) Median Standard deviation

All 247 28.8 (4.0, 70.8) 27.9 15.4
ASD 49 14.2 (4.7, 43.7) 13.0 8.1

Control 198 32.4 (4.0, 70.8) 34.4 14.7

Sex
Group Female Male

All 123 124
ASD 10 39

Control 113 85

Cognitive level
Group Normal Borderline Delay

All 227 10 9
ASD 34 6 8

Control 193 4 1

Family status
Group Proband Relative
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All 107 140
ASD 43 6

Control 64 134

Supplemental Table 1. Demographic information for subjects recruited at Robert Debré Hospital. Cognitive level
was assessed by clinical judgement supported by a series of instruments: Raven’s progressive matrices, WISC IV,
WISC III, WPPSI IV, WAIS III, EDEI (Échelles Différentielles d’Efficience Intellectuelle).
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Submission AUC orig AUC
bagged

orig

AUC
fixed

AUC
bagged
fixed

AUC
EU-AIMS

AUC
bagged

EU-AIMS
ayoub.ghriss_original 0.801197 0.805760 0.796429 0.798651 0.714034 0.711194
Slasnista_original 0.795106 0.801357 0.787399 0.793334 0.706893 0.706862
pearrr_original 0.794351 0.797825 0.788848 0.790119 0.707867 0.706551
lbg_original 0.791209 0.797763 0.788627 0.790402 0.703990 0.714438
amicie_original 0.779874 0.796618 0.765956 0.785443 0.682629 0.700218
mk_original 0.756596 0.796342 0.760887 0.791139 0.673974 0.686370
combine_anatomy_functional_craddoc
k_scorr_mean

0.753364 0.795636 0.757231 0.790437 0.671828 0.686370

wwwwmmmm_original 0.783972 0.795468 0.781968 0.781133 0.707680 0.710106
nguigui_original 0.788383 0.794030 0.777799 0.780515 0.694714 0.695636
abethe_original 0.787582 0.793443 0.784785 0.789868 0.695543 0.690547
vzantedeschi_original 0.795020 0.793385 0.781464 0.784547 0.680079 0.688091
combine_anatomy_functional_basc197 0.752686 0.791159 0.755915 0.784114 0.675891 0.693688
starting_kit_functional_craddock_scorr
_mean

0.781660 0.789418 0.771476 0.777848 0.679353 0.682577

starting_kit_functional_basc197 0.777426 0.783603 0.766327 0.771118 0.690153 0.692682
combine_anatomy_functional_basc122 0.747597 0.777787 0.745860 0.772271 0.679281 0.697450
combine_anatomy_functional_power_2
011

0.736944 0.769302 0.737250 0.766870 0.668180 0.674420

starting_kit_functional_basc122 0.751380 0.761668 0.740279 0.749684 0.685634 0.693501
starting_kit_functional_power_2011 0.752612 0.759257 0.742173 0.746006 0.662303 0.665444
combine_anatomy_functional_basc064 0.709654 0.745466 0.725208 0.744050 0.648062 0.674274
combine_anatomy_functional_harvard
_oxford_cort_prob_2mm

0.683723 0.742870 0.703743 0.738724 0.583022 0.626430

combine_anatomy_functional 0.653282 0.719962 0.689449 0.716266 0.583167 0.626835
starting_kit_functional_basc064 0.706216 0.717650 0.698051 0.711572 0.643968 0.650301
starting_kit_functional_harvard_oxfor
d_cort_prob_2mm

0.676380 0.701900 0.668024 0.684998 0.572087 0.587883

starting_kit_functional 0.644921 0.671878 0.640364 0.655121 0.605338 0.612365
starting_kit_anatomy 0.635401 0.636341 0.630499 0.636385 0.573653 0.568377

Supplemental Table 2. Performance of ten best submissions and starting kit derivatives on the different datasets.
AUC orig: AUC on the original private dataset, AUC bagged orig: bagged AUC on the original private dataset,
AUC fixed: AUC on the fixed private dataset, AUC bagged fixed: bagged AUC on the fixed private dataset, AUC
EU-AIMS: AUC on the EU-AIMS dataset, AUC bagged EU-AIMS: bagged AUC on the EU-AIMS dataset.

22



23



Supplemental methods

M1. ROC curve analysis

A ROC curve (Fig. 2b) characterises the prediction accuracy of a binary classifier. Each point
of the ROC curve shows the true positive rate against the false positive rate at a given
discriminative threshold. For ASD detection, the true positive rate is the ratio of patients with
ASD correctly identified as such. The false positive rate is the ratio of unaffected subjects
wrongly identified as ASD patients. For each subject, a classifier outputs the probability of this
subject to have ASD. Thus, the ROC curve is built by thresholding at different probabilities.

M2. Effect of the input modality

We studied the influence of each data modality on the prediction. For this, we changed the
input data for each of the 10 best models. We trained and tested each algorithm using only
anatomical features, only functional features, and the combination of the two. Additionally, we
included another trial where we added age and sex information to the brain-imaging data.
Figure 2c shows the prediction accuracy for each of these experiments. Algorithms using only
functional features outperformed the ones using only anatomical features (AUC=0.77 versus
0.64). The prediction accuracy slightly improved by combining both imaging modalities, and
adding age and sex information provided an additional small improvement.

Additionally, we controlled for a potential confounding effect of motion (in case patients and
controls moved in different amounts). We used movement parameters extracted from the
functional MRI data, and extracted their mean, standard deviation, kurtosis, and skewness. We
trained a logistic regression classifier on these descriptors. The prediction accuracy of this
classifier on the private set was of ROC-AUC=0.61.

M3. Effect of increasing the number of subjects

A machine learning algorithm learns a predictive model from samples of data, here multiple
subjects. Larger datasets better characterise the problem and thus lead to better prediction
accuracy. We studied this improvement by varying the number of subjects (samples). Our goals
were twofold: First, to estimate whether the size of the current dataset was large enough.
Second, to quantify the potential gain that would be brought by increasing the number of
subjects. We trained different models using numbers of subjects ranging from 500 to 1500 by
steps of 250. We tested these models on a sample of 500 subjects. We generated the training
and testing samples in the following manner: First, we shuffled the full dataset (i.e., public and
private datasets) and randomly selected the testing sample. From the remaining samples, we
took a bootstrap sample of a given size. We repeated this sampling 100 times to have estimates
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of the variance and the bias. Figure 2e plots the average prediction accuracy against the
number of subjects (known as a “learning curve”). The prediction accuracy steadily increased
with the number of subjects. To extrapolate beyond the available number of subjects, we fit the
learning curve with a suitable function: starting at 0.5 for n=0 and saturating at a fitted value
with a growth in (which is the convergence of the estimator). The result was𝑛

. Hence, we estimated that a training dataset of𝐴𝑈𝐶 = 0. 5 + 0. 3329 ( 1 − 𝑒−0.0669 𝑛 )
10,000 subjects will bring an AUC=0.8379. For reference, an AUC>0.8 is commonly accepted
as an excellent level of discrimination (Hosmer and Lemeshow 2000).

M4. Relative importance of different brain regions in functional MRI

We established an ordering of importance of brain regions by assigning to each region the sum
of the classifier weights on all the corresponding connections. Then, we checked the
consistency of those connections across atlases and methods. For different atlases, there are
different numbers of neighbours per node (a brain region). Thus, we matched the quantiles of
each node summary statistic across atlases and methods to a uniform target. We then used
radial basis functions to interpolate between nodes and create a continuous brain map. Figure
3a shows the spatial distribution of the average region ranking for all submissions. The
information is distributed across the brain, with a slightly larger importance for regions around
the precuneus. To test this spatial distribution, we removed varying proportions of the most
significant brain regions (25%, 50%, 75%) and trained new models. The prediction accuracy
remained high even after removing up to 50% of the brain regions (Fig. 3b).
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