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Abstract
In this article we consider the inverse problem of reconstructing the Lamé coefficients assumed
to be piecewise constants from boundary measurements. We reformulate the inverse problem
into a minimization one using a Kohn-Vogelius type functional. We study the stability of the
parameters when the jump of the discontinuity is perturbed. Using tools of shape calculus, we
give a quantitative stability result for local optimal solution.
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I INTRODUCTION

The inverse problem of recovering Lamé parameters consists in finding the parameters (λ, µ)
from the knowledge of the so-called Neumann-to-Dirichlet operator Λλ,µ : H−1/2(∂Ω)2 →
H1/2(∂Ω)2. The operator Λλ,µ maps a boundary input g ∈ H−1/2(∂Ω)2 to the value u|∂Ω of the
solution u of an elliptic problem with Neumann boundary condition g:

Λλ,µ(g) = u|∂Ω.

The two major questions for the inverse problem are the uniqueness and the stability of a solu-
tion λ, µ. The question of the uniqueness in the case of perfect data, i.e. when the Neumann-to-
Neumann operator is completely known, has led to many difficult and interesting mathematical
problems and an abundant literature on the topic is available.

The question of stability consists in studying the continuous dependence of the solution on the
data. Stability is necessary to ensure that a variation of the given data in a sufficiently small
range leads to an arbitrarily small change in the solution, which is primordial for applications.
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This concept was introduced by Hadamard in 1902 in connection with the study of boundary
value problems for partial differential equations [1].

There is a extended literature on stability issues for the inverse problem of Lamé parameters,
in particular for interior stability estimates, which consist in proving that, given two maps Λλ,µ
and Λλ̃,µ̃, one has

max
{
∥λ− λ̃∥L∞(Ω), ∥µ− µ̃∥L∞(Ω)

}
≤ ω

(
∥Λλ,µ − Λλ̃,µ̃∥∗

)
,

where ∥.∥∗ is the operator norm of L(H−1/2(Ω)2, H1/2(Ω)2) and ω : R+ → R is continuous
with ω(t) → 0 as t→ 0. Recently a Lipschitz stability result has been proved in [5]. The proof
relies in the monotonicity relation between the Lamé parameters and The Neuman-to-Dirichlet
operator and the techniques of Localized potentials.

The inverse problem of reconstructing piecewise constants Lamé parameters λ, µ and their jump
sets Γ simultaneously has been considered in [8] and the question of stability is not so well-
studied.

In this contribution, we aim at giving qualitative properties of the stability in this case. We
transform the inverse problem into a minimization one and study how stable is the reconstruc-
tion of the parameters λ, µ when Γ is known approximately. More precisely, we quantify the
first-order stability properties of a local optimal solution of the minimization problem.

The stability estimates derived in [5] is obtained when the full Neumann-to-Dirichlet map is
known. For our quantitative stability estimate we only have a finite number of measurements.
To our best knowledge there are no results in this kind of stability for the problem under con-
sideration.

In the field of PDE-constrained optimization, the differentiability and stability properties of
optimal solutions with respect to parameters of the problem have been studied in details theo-
retically and numerically; see for instance [2, 6, 7, 10, 11, 12]. Some of the ideas developed
in these papers can be used for our stability analysis, unfortunately the well-known particular
difficulties of differentiating with respect to the shape, in particular the fact that the set of shapes
is not a vector space, prevents a direct transposition of the methods used in these papers. For
our analysis on proving quantitative stability of of local optimal solution, we make use of shape
calculus in the spirit of [9] .

The paper is organized as follows. In section 2 we describe the setting of the direct problem,
the inverse problem and the minimization problem. The stability analysis of a local optimal
solution is performed in section 3.

II PROBLEM FORMULATION

Let Ω be a bounded domain in R2 with smooth boundary ∂Ω = ΓN ∪ ΓD and Γ ∈ Dad with

Dad := {∂D where D is open of class C2, D ⊂ Ω, inf
x∈∂D,y∈∂Ω

|x− y| > ε}

for some ε > 0. Let Ω2 be such that Γ := ∂Ω2 and Ω1 = Ω \ Ω2. Throughout the paper we
work with piecewise constant parameters

λ = λ1χΩ1 + λ2χΩ2 , µ = µ1χΩ1 + µ2χΩ2
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where λ1, λ2, µ1, µ2 ∈ R+ and χ denotes an indicator function. Let 0 < K0 ≤ λ1, µ1 ≤ K1 be
given and not to be identified, then we define a set of piecewise constant parameters Pad as :

Pad = {(λ, µ) = (λ1χΩ1 + λ2χΩ2 , µ1χΩ1 + µ2χΩ2) : c0 ≤, λ2, µ2 ≤ c1} ,

where c0, c1 ∈ R+. For a given load g ∈ H−1/2(ΓN)
2 the displacement u satisfies the following

problem

−div(C∇̂u) = 0 in Ω \ Γ,
JuK = 0 on Γ,

J(C∇̂u)νK = 0 on Γ,

(C∇̂u)ν = g on ΓN ,

u = f on ΓN ,

u = 0 on ΓD,

(1)

where ν is the unit normal vector to the interface Γ or ∂Ω pointing outward of Ω2 or Ω, respec-
tively, f ∈ H1/2(ΓN)

2 and JuK denotes the jump of u across the interface Γ. The linearized
strain tensor ∇̂u and the stress tensor C∇̂u are given by

∇̂u =
1

2

(
∇u+ (∇u)T

)
, C∇̂u =

(
2∑

k,l=1

Cijkl
∂uk
∂xl

)
1≤i,j≤2

,

with

Cijkl := λδijδkl + µ (δikδjl + δilδjk) .

It is well-known that this problem has a solution u ∈ V , where

V :=
{
u ∈ H1(Ω)2 : u|ΓD

= 0
}
.

We assume that the parameters λ1, µ1 are known and we consider the inverse problem of re-
covering the parameters λ2, µ2 from the measurements (f, g). We are interested in the case
where the interface Γ is known, but with some uncertainty. We aim to study how this uncer-
tainty affects the reconstruction of λ∗2, µ

∗
2 . We find out the worst and less worst directions of

perturbation of Γ when reconstructing λ∗2, µ
∗
2. Note that the results could be straightforwardly

extended to the case of more than just two phases, thus for clarity it is better to study the case
of two phases.

A typical approach to solve the inverse problem in practice is to consider the so-called Kohn-
Vogelius functional. We add a regularization term which is required due to the ill-posedness of
the problem

J((λ2, µ2),Γ, un, ud) :=

∫
Ω

C∇̂(un − ud) : ∇(un − ud) dx+ η

∫
Ω2

(λ22 + µ2
2) dx,

where η > 0 and P (Γ) is the perimeter of Ω2 in Ω. Here un is the solution of the Neumann
problem

− div(C∇̂un) = 0 in Ω \ Γ,
JunK = 0 on Γ,

J(C∇̂un)νK = 0 on Γ,

(C∇̂un)ν = g on ΓN ,

un = 0 on ΓD,

(2)
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and ud is the solution of the Dirichlet problem

− div(C∇̂ud) = 0 in Ω \ Γ,
JudK = 0 on Γ,

J(C∇̂ud)νK = 0 on Γ,

ud = f on ΓN ,

ud = 0 on ΓD.

(3)

The variational formulations of the problems (2) and (3) read respectively

Find u ∈ V such that
∫
Ω

C∇̂u : ∇v dx−
∫
ΓN

g · v ds = 0 ∀v ∈ H1(Ω), (4)

Find u ∈ V such that
∫
Ω

C∇̂u : ∇v dx−
∫
ΓN

(u−f)(C∇̂u)νv ds = 0 ∀v ∈ H1
0 (Ω)

2. (5)

We associate with (4) the operator En((λ2, µ2),Γ, un) : [c0, c1]
2 × Dad × V → L(H1(Ω),R)

and with (5) the operator Ed((λ2, µ2),Γ, ud) : [c0, c1]
2 ×Dad ×V → L(H1

0 (Ω),R) = H−1(Ω).
We also introduce

E((λ2, µ2),Γ, un, ud) := (En((λ2, µ2),Γ, un), Ed((λ2, µ2),Γ, ud)) .

We are interested in the situation when the interface Γ is known and one wishes to reconstruct
the coefficients λ2, µ2, the corresponding minimization problem is:minimize J((λ2, µ2),Γ, un, ud) :=

∫
Ω

C∇̂(un − ud) : ∇̂(un − ud) dx+ η

∫
Ω2

(λ22 + µ2
2) dx

subject to c0 ≤ λ2, µ2 ≤ c1 and E((λ2, µ2),Γ, un, ud) = (0, 0).

(6)

Note an optimal solution (λ∗2, µ
∗
2) = (λ∗2(Γ), µ

∗
2(Γ)) of (6), if it exists, depends on Γ through the

state equations.

Let us define the reduced functional corresponding to problem (6).

J ((λ2, µ2),Γ) := J(λ2, µ2,Γ, un, ud)

We start with the following theorem.

Theorem 1:
The minimization problem (6) has at least one solution.

Proof. In this proof we only write J (λ2, µ2) instead of J ((λ2, µ2),Γ) for simplicity since Γ is
fixed. It is clear that inf J (λ2, µ2) is finite. Therefore there exists a minimizing sequence(

λk, µk
)
=
(
λ1χΩ1 + λk2χΩ2 , µ1χΩ1 + µk2χΩ2

)
∈ Pad

such that

lim
k→+∞

J (λk2, µ
k
2) = inf

c0≤λ2,µ2≤c1
J (λ2, µ2).
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The sequence (λk2, µ
k
2) is bounded, thus there exists a subsequence still denoted (λk2, µ

k
2) and

some (λ∗2, µ
∗
2) ∈ R2 such that

lim
k→∞

(
λk, µk

)
= (λ1χΩ1 + λ∗2χΩ2 , µ1χΩ1 + µ∗

2χΩ2) .

By definition un(λk2, µ
k
2) satisfies∫

Ω

C(λk2, µk2)∇̂un(λk2, µk2) : ∇v dx =

∫
ΓN

g · v ds ∀v ∈ V . (7)

Taking v = un(λ
k
2, µ

k
2) in (7), we obtain∫

Ω

C(λk2, µk2)∇̂un(λk2, µn2 ) : ∇un(λk2, µn2 ) dx =

∫
ΓN

g · un(λk2, µk2) ds.

Using the Korn’s inequality and a trace theorem for the right-hand side of the above equation,
we deduce the existence of a constant c > 0 such that

∥un(λk2, µk2)∥H1(Ω)2 ≤ c∥g∥L2(ΓN )2 .

Therefore there exists a subsequence of un(λk2, µ
k
2) still denoted un(λk2, µ

k
2) such that

lim
k→∞

un(λ
k
2, µ

k
2) = u∗n weakly in H1(Ω)d,

and

lim
k→∞

un(λ
k
2, µ

k
2) = u∗n strongly in L2(Ω)d.

Letting n go to infinity in equation (7), we conclude that u∗n satisfies∫
Ω

C(λ∗2, µ∗
2)∇̂u∗n : ∇v dx =

∫
ΓN

g · v ds, ∀v ∈ V .

Due to the uniqueness of the weak limit we get un(λ∗2, µ
∗
2) = u∗n. This means that

lim
k→∞

un(λ
k
2, µ

k
2) = un(λ

∗
2, µ

∗
2) weakly in H1(Ω)2 and strongly in L2(Ω)2.

In the same way, we can prove that

lim
k→∞

ud(λ
k
2, µ

k
2) = ud(λ

∗
2, µ

∗
2) weakly in H1(Ω)2 and strongly in L2(Ω)2.

Using the lower semi-continuity of the H1-norm yields

J (λ∗2, µ
∗
2) ≤ lim inf

k→∞
J (λk2, µ

k
2) = J (λ2, µ2),

which concludes the proof.
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2.1 Elements of shape calculus

In this subsection we recall some basic facts about the perturbation of the identity method from
shape optimization used to calculate the shape derivative. The reader is referred to [4, 13] for
more details.

Let V ∈ D1(Ω,R2), the space of continuous differentiable functions with compact support in
Ω. Introduce the perturbation of identity

Tt = I + tV : Ω → R2. (8)

Then there exists ε > 0 such that Tt is a diffeomorphism and Tt(Ω) = Ω for t ∈ [0, ε). We
denote the perturbed interfaces

Γt := Tt(Γ).

For t ∈ [0, ε), Tt is invertible. Furthermore, the Jacobian ξ(t) is strictly positive

∀ t ∈ [0, ε), ξ(t) = |detDTt| > 0, (9)

where DTt is the Jacobian matrix of the transformation Tt associated with the velocity field θ.
In the sequel, we use the notation M−1 for the inverse of M and M−∗ for the transpose of its
inverse. We also denote by

w(t) = ξ(t)|(DTt)−∗ν| (10)

the tangential Jacobian of Tt on Γ.

Definition 1: Eulerian derivative
Suppose we are given a real valued shape function J defined on a subset D of RN . We say that
J is Eulerian semi-differentiable at Ω ⊂ D in the direction V if the following limit exists in R

DJ(Ω;V ) := lim
t↘0

J(Tt(Ω))− J(Ω)

t
.

If the map V −→ DJ(Ω;V ) is linear and continuous with respect to the topology of D1(Ω,R2),
then J is said to be shape differentiable at Ω and DJ(Ω;V ) is called the shape derivative of J .

The Eulerian derivative is only a directional derivative. In this paper we also need the stronger
notion of Fréchet derivative. To this end let V ∈ V and consider perturbations of identity I+V
where V0 is in a neighborhood of 0 in V so that TV := I +V is a bi-Lipschitz homeomorphism.
In what follows we will denote by

ΩV := TV (Ω)

Definition 2: Fréchet derivative
The functional J(Ω) is Fréchet-differentiable at Ω if there exists a linear and continuous func-
tional dJ(Ω) from V to R called shape gradient such that

J(ΩV ) = J(Ω) + dJ(Ω)(V ) + r(V ),

where |r(V )|/∥V ∥V → 0 as ∥V ∥V → 0.

In what follows we will mostly compute Fréchet derivatives given by Definition 2, however to
obtain the expression of the shape derivative, it is convenient to simply compute the directional
derivative given by Definition 1.
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2.2 Inf-sup formulation

From the definition of the functional J , and applying Green’s formula once, we have

J (λ2, µ2) := J(λ2, µ2, un, ud) = J0(λ2, µ2, un) + J0(λ2, µ2, ud) + J1,

where

J0(λ2, µ2, u) =

∫
Ω

C(λ2, µ2)∇̂u : ∇̂u dx, J1 = −2

∫
ΓN

f · g ds.

We introduce the Lagrangian functionals

Gn(λ2, µ2, φ, ψ) = J0(λ2, µ2, φ) +

∫
Ω

C∇̂φ : ∇̂ψ dx−
∫
ΓN

g · ψ ds for all φ, ψ ∈ V ,

Gd(λ2, µ2, φ, ψ) = J0(λ2, µ2, φ) +

∫
Ω

C∇̂φ : ∇̂ψ dx+
∫
ΓN

(f − uD) · (C∇̂ψ)ν ds,

for all φ ∈ V , ψ ∈ H1
0 (Ω;R2). Then, it is easy to check that

J0(λ2, µ2, un) = min
φ∈V

sup
ψ∈V

Gn(λ2, µ2, φ, ψ),

J0(λ2, µ2, ud) = min
φ∈V

sup
ψ∈H1

0 (Ω;R2)

Gd(λ2, µ2, φ, ψ),

since

sup
ψ∈V

Gn(λ2, µ2, φ, ψ) =

{
J0(λ2, µ2, un) if φ = un),

+∞ otherwise,

sup
ψ∈H1

0 (Ω;R2)

Gd(C, φ, ψ) =
{
J0(λ2, µ2, ud) if φ = ud),

+∞ otherwise.

It is easily shown that the functional Gn (respectively Gd) is convex continuous with respect to
φ and concave continuous with respect to ψ. Therefore, according to Ekeland and Temam [?],
the functional Gn has a saddle point (un, vn) if and only if (un, vn) solves the following system:

∂ψGn(λ2, µ2, un, vn; ψ̂) = 0,

∂φGn(λ2, µ2, un, vn; φ̂) = 0,

for all ψ̂ ∈ V and φ̂ ∈ V . This yields thatGn has a saddle point (un, vd), where the state un is the
unique solution of (2) and the adjoint state vN = vn is the solution of ∂φGn(λ2, µ2, un, vn; φ̂) =
0, or equivalently:

−div(C∇̂vn) = 0 in Ω,

(C∇̂vn)ν = −2g on ΓN,

vn = 0 on ΓD.

(11)

Similarly, the Lagrangian Gd has a unique saddle point (ud, vd) where the direct state ud is the
solution of the problem (3) and the adjoint state vd is the unique solution of the following adjoint
problem

−div(C∇̂vd) = 0 in Ω,

vd = 0 on ΓN,

vd = 0 on ΓD.

(12)

Summarizing the above, we have obtained
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Theorem 2:
The functionals J0(λ2, µ2, un) and J0(λ2, µ2, ud) are given as

J0(λ2, µ2, un) = min
φ∈V

sup
ψ∈V

Gn(λ2, µ2, φ, ψ), (13)

J0(λ2, µ2, ud) = min
φ∈V

sup
ψ∈H1

0 (Ω;Rd)

Gd(λ2, µ2, φ, ψ). (14)

The unique saddle points for Gn and Gd are respectively given by (un, vn) and (ud, vd), where
vn = −2un and vd = 0.

III STABILITY OF THE PARAMETERS WITH RESPECT TO THE INTERFACE

The optimality condition D(λ2,µ2)J (λ2, µ2,Γ)(α, β) = 0 for all α, β ∈ R for problem (6) can
be rewritten as

Find (λ∗2(Γ), µ
∗
2(Γ)) such that D(λ2,µ2)J (λ∗2(Γ), µ

∗
2(Γ),Γ) = (0, 0). (15)

In this paper we are interested in the stability of the optimal solution (λ∗2(ΓV ), µ
∗
2(ΓV )) of the

minimization problem (6) with respect to the perturbed interface ΓV = (I + V )(Γ) for V ∈ V0,
where V0 is a neighborhood of 0 in D1(Ω,R2).

Therefore we need to study the differentiability of the parameter-to-solution map V 7→ (λ∗2(ΓV ), µ
∗
2(ΓV )).

This is done by applying the implicit function theorem to the optimality conditions

D(λ2,µ2)J (λ∗2(ΓV ), µ
∗
2(ΓV ),ΓV ) = (0, 0).

Essentially the idea is to linearize D(λ2,µ2)J (λ∗2(ΓV ), µ
∗
2(ΓV ),ΓV ) = (0, 0) to get

D2
(λ2,µ2)

J (λ∗2, µ
∗
2,Γ) (∂Γλ

∗
2(Γ)(V ), ∂Γµ

∗
2(Γ)(V )) + ∂Γ(D(λ2,µ2),ΓJ (λ∗2, µ

∗
2,Γ))(V ) = (0, 0),

which yields, when D2
(λ2,µ2)

J (λ∗2, µ
∗
2,Γ) is invertible,

(∂Γλ
∗
2(Γ)(V ), ∂Γµ

∗
2(Γ)(V )) = −

(
D2

(λ2,µ2)
J (λ∗2, µ

∗
2,Γ)

)−1
∂Γ
(
D(λ2,µ2),ΓJ (λ∗2, µ

∗
2,Γ)

)
(V ).

In the following theorem, we prove the existence of (λ∗2(Γ), µ
∗
2(Γ)) and we give an explicit

formula for its variation with respect to Γ.

Theorem 3:
For given Γ ∈ Dad suppose that there exists (λ∗2(Γ), µ

∗
2(Γ)) such that

D(λ2,µ2)J (λ∗2, µ
∗
2,Γ) = (0, 0),

and assume that D2
(λ2,µ2)

J (λ∗2, µ
∗
2,Γ) is invertible. Then, there exists a neighborhood W of 0 in

D1(R2,R2), a neighborhood U of (λ∗2, µ
∗
2) in R2 and a C1 function

W ∋ V 7−→ (λ∗2(ΓV ), µ
∗
2(ΓV )) ∈ U ,

such that D(λ2,µ2)J (λ∗2(ΓV ), µ
∗
2(ΓV ),ΓV ) = (0, 0), and

(∂Γλ
∗
2(Γ)(V ), ∂Γµ

∗
2(Γ)(V )) = −

(
D2

(λ2,µ2)
J (λ∗2, µ

∗
2,Γ)

)−1
∂Γ
(
D(λ2,µ2)J (λ∗2, µ

∗
2,Γ)

)
(V ). (16)
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Remark 1:
Theorem 3 says that if ΓV is the perturbation of Γ by the transformation I + V , then the first
order variation of the optimal solution is given by

(λ∗2(ΓV ), µ
∗
2(ΓV ))−(λ∗2(Γ), µ

∗
2(Γ)) ≈ −

(
D2

(λ2,µ2)
J (λ∗2, µ

∗
2,Γ)

)−1
∂Γ
(
D(λ2,µ2)J (λ∗2, µ

∗
2,Γ)

)
(V ).

Proof. According to Theorem 5 and Theorem 6, the function D(λ2,µ2)J is of class C1 and
in view of our assumptions satisfy D(λ2,µ2)J (λ∗2, µ

∗
2,Γ) = (0, 0) and D2

(λ2,µ2)
J (λ∗2, µ

∗
2,Γ) is

invertible, we conclude the proof thanks to the implicit function theorem.

3.1 First-order derivatives of the cost functional

In the following theorem, we give the derivative of the functional J with respect to the Lamé
parameters (λ2, µ2).

Theorem 4:
The functional J is differentiable, and its derivative at (λ2, µ2) in the direction (λ̃2, µ̃2) is given
by

D(λ2,µ2)J (λ2, µ2, un, ud) (λ̃2, µ̃2) =

∫
Ω

C(λ̃2, µ̃2)∇̂ud : ∇̂ud dx

−
∫
Ω

C(λ̃2, µ̃2)∇̂un : ∇̂un dx.
(17)

Proof. Let λt2 = λ2+tλ̃2, µt2 = µ2+tµ̃2, C = C(λ2, µ2), C̃ = C(λ̃2, µ̃2), Ct = C+tC̃
and t ∈ R is sufficiently small parameter. Under hypotheses of Theorem 5.1 of R. Correa and
A. Seeger [3], we have

D(λ2,µ2)J (λ2, µ2, un, ud) (λ̃2, µ̃2) = ∂tG̃n(t, un, vn)
∣∣∣
t=0

+ ∂tG̃d(t, ud, vd)
∣∣∣
t=0
,

where

G̃n(t, φ, ψ) := Gn(λ
t
2, µ

t
2, φ, ψ) = J0(λ

t
2, µ

t
2, φ) +

∫
Ω

Ct∇̂φ : ∇̂ψ dx−
∫
ΓN

g · ψ ds,

G̃d(t, φ, ψ) := Gd(λ
t
2, µ

t
2, φ, ψ) = J0(λ

t
2, µ

t
2, φ) +

∫
Ω

Ct∇̂φ : ∇̂ψ dx

+

∫
ΓN

(f − φ) · (C∇̂ψ)ν ds,

and

∂tG̃n(t, un, vn)
∣∣∣
t=0

= −
∫
Ω

C̃∇̂un : ∇̂un dx,

∂tG̃d(t, ug, vd)
∣∣∣
t=0

=

∫
Ω

C̃∇̂ud : ∇̂ud dx.
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The above equations yield (17). To end the proof, we should verify the four assumptions (H1)−
(H4) of Theorem 5.1 of R. Correa and A. Seeger [3]. We introduce the sets

Xn(t) :=

{
xt ∈ V : sup

y∈V
G̃n(t, x

t, y) = inf
x∈V

sup
y∈V

G̃n(t, x, y)

}
,

Yn(t) :=

{
yt ∈ V : inf

x∈V
G̃n(t, x, y

t) = sup
y∈V

inf
x∈V

G̃n(t, x, y)

}
,

Xd(t) :=

{
xt ∈ V : sup

y∈H1
0 (Ω;Rd)

G̃d(t, x
t, y) = inf

x∈V
sup

y∈H1
0 (Ω;R2)

G̃d(t, x, y)

}
,

Yd(t) :=

{
yt ∈ H1

0 (Ω;Rd) : inf
x∈V

G̃d(t, x, y
t) = sup

y∈H1
0 (Ω;R2)

inf
x∈V

G̃d(t, x, y)

}
,

and obtain

for all t ∈ [0, ε] Sn(t) = Xn(t)× Yn(t) = {un(Ct), vn(Ct)} ≠ ∅,

for all t ∈ [0, ε] Sd(t) = Xd(t)× Yd(t) = {uD(Ct), vd(Ct)} ≠ ∅,

and assumption (H1) is satisfied.

Assumption (H2): The partial derivatives ∂tG̃n(t, φ, ψ), ∂tG̃d(t, φ, ψ) exist everywhere in [0, ε)
and the condition (H2) is satisfied.
Assumptions (H3) and (H4): We first show the boundedness of (uN(Ct), vN(Ct)). Letting
v = un(Ct) in the variational equation∫

Ω

Ct∇̂un(Ct) : ∇̂v dx =

∫
ΓN

g · v ds, (18)

for all v ∈ V , we obtain∫
Ω

Ct∇̂un : ∇̂un dx ≤ ∥g∥L2(ΓN;R2)∥un∥L2(ΓN;R2).

From Korn’s inequality and the trace theorem, there exists c > 0, depending only on Ω such
that

∥un(Ct)∥H1(Ω;Rd) ≤ c∥g∥L2(ΓN;R2),

which yields

sup
t∈[0,ε)

∥un(Ct)∥H1(Ω;R2) ≤ c∥g∥L2(ΓN;R2).

We apply the same technique to the variational equation∫
Ω

Ct∇̂ud(Ct) : ∇̂v dx+
∫
ΓN

(f − ud(Ct)) · (C∇̂v)ν ds, (19)
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for all v ∈ V , and we are able to show that the function ud(Ct) is bounded. The next step is to
show the continuity with respect to t of (un(Ct), ud(Ct)). Subtracting (18) at t > 0 and t = 0
and choosing v = un(C)− un(Ct) yields∫

Ω

C∇̂ (un(C)− un(Ct)) : ∇̂ (un(C)− un(Ct)) dx

=

∫
Ω

(C− Ct) ∇̂un(Ct) : ∇̂ (un(C)− un(Ct)) dx.

Furthermore due to the boundedness of un(Ct), we obtain

∥un(Ct)− un(C)∥H1(Ω,R2) ≤ CdΩ(Ct,C),

where

dΩ(Ct,C) := max
{
∥λt2 − λ2∥∞, ∥µt2 − µ2∥∞

}
.

Due to the strong continuity of Ct as a function of t, one deduces that un(Ct) → un(C) in
H1(Ω;R2) as t → 0. Concerning the continuity of ud(Ct), one may show from (19) that
ud(Ct) → ud(C) in H1(Ω;R2). Finally in view of the strong continuity of

(t, φ) → ∂tG̃n(t, φ, ψ), (t, ψ) → ∂tG̃n(t, φ, ψ),

(t, φ) → ∂tG̃d(t, φ, ψ), (t, ψ) → ∂tG̃d(t, φ, ψ),

assumptions (H3) and (H4) are verified.

3.2 Second-order derivatives of the cost functional

To compute the second order derivative of D(λ2,µ2)J (λ2, µ2,Γ), we use a Lagrangian method
as in the previous section. We start by introducing the Lagrangian functionals

Ln(λ2, µ2, φ, ψ) =

∫
Ω2

C(λ̃2, µ̃2)∇̂φ : ∇̂φdx+
∫
Ω

C(λ2, µ2)∇̂φ : ∇̂ψ dx

−
∫
ΓN

g · ψ ds for all φ, ψ ∈ V ,
(20)

Ld(λ2, µ2, φ, ψ) =

∫
Ω2

C(λ̃2, µ̃2)∇̂φ : ∇̂φdx+
∫
Ω

C(λ2, µ2)∇̂φ : ∇̂ψ dx

+

∫
ΓN

(f − φ) · (C(λ2, µ2)∇̂ψ)ν ds, for all φ ∈ V , ψ ∈ H1
0 (Ω)

2.

(21)

The saddle point equations of Ln and Ld are given by

∂ψLn(λ2, µ2, un, vn; ψ̂) = 0,

∂φLn(λ2, µ2, un, vn; φ̂) = 0,

∂ψLd(λ2, µ2, ud, vd; ψ̂) = 0,

∂φLd(λ2, µ2, ud, vd; φ̂) = 0,
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or equivalently∫
Ω

C(λ2, µ2)∇̂un : ∇̂ψ̂ dx−
∫
ΓN

g · ψ̂ ds = 0, (22)

∫
Ω

C(λ2, µ2)∇̂vn : ∇̂φ̂ dx = −2

∫
Ω2

C(λ̃2, µ̃2)∇̂un : ∇̂φdx, (23)

∫
Ω

C(λ2, µ2)∇̂ud : ∇̂ψ̂ dx+
∫
ΓN

(f − ud) · (C(λ2, µ2)∇ψ̂)ν ds = 0, (24)

∫
Ω

C(λ2, µ2)∇̂vd : ∇̂φ̂ dx = −2

∫
Ω2

C(λ̃2, µ̃2)∇̂ud : ∇̂φdx. (25)

We have the following two result

Theorem 5: second-order derivative
The function D(λ2,µ2)J(λ2, µ2,Γ) is differentiable with respect to (λ2, µ2) and

D2
(λ2,µ2)

J (λ2, µ2,Γ) (λ̃2, µ̃2)(λ̂2, µ̂2) =

∫
Ω2

C(λ̂2, µ̂2)∇̂un : ∇̂vn dx

+

∫
Ω2

C(λ̂2, µ̂2)∇̂ud : ∇̂vd dx,
(26)

where un, vn, ud and vd are solutions of (22), (23), (24) and (25) respectively.

Proof. As in the proof of Theorem 4, using the Lagrangian Ln and Ld for fixed Γ, and applying
the results in the Appendix, we have

D2
(λ2,µ2)

J (λ2, µ2, un, ud) (λ̃2, µ̃2)(λ̂2, µ̂2) = ∂tL̃n(t, un, vn)
∣∣∣
t=0

+ ∂tL̃d(t, ud, vd)
∣∣∣
t=0
,

where

L̃n(t, φ, ψ) := Gn(λ
t
2, µ

t
2, φ, ψ) =

∫
Ω2

C(λ̃2, µ̃2)∇̂φ : ∇̂φdx+
∫
Ω

Ct∇̂φ : ∇̂ψ dx−
∫
ΓN

g·ψ ds,

L̃d(t, φ, ψ) := Gd(λ
t
2, µ

t
2, φ, ψ) =

∫
Ω2

C(λ̃2, µ̃2)∇̂φ : ∇̂φdx+
∫
Ω

Ct∇̂φ : ∇̂ψ dx

+

∫
ΓN

(f − φ) · (C∇̂ψ)ν ds,

and

∂tL̃n(t, un, vn)
∣∣∣
t=0

=

∫
Ω2

C(λ̂2, µ̂2)∇̂un : ∇̂vn dx,

∂tL̃d(t, ud, vd)
∣∣∣
t=0

=

∫
Ω2

C(λ̂2, µ̂2)∇̂ud : ∇̂vd dx.

The hypotheses of Theorem 5.1 in [3] can be checked in a similar way as in the proof of Theorem
4.
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3.3 Shape derivative of the first-order derivatives of the cost functional

In the following theorem, we give the volume expression of the shape derivative of the first
derivative of the cost functional J .

Theorem 6:
The functional D(λ2,µ2)J (λ∗2, µ

∗
2,Γ)(λ̃2, µ̃2) is shape shape differentibale with respect to Γ and

its shape derivative in the direction V is given by:

∂Γ

(
D(λ2,µ2)J (λ∗2, µ

∗
2,Γ)(λ̃2, µ̃2)

)
V

=
1

2

∫
Ω2

C(λ̃2, µ̃2)
[
−∇unDV −DV T∇uTn

]
:
[
∇un +∇uTn

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇un +∇uTn

]
:
[
∇un +∇uTn

]
div V dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
−∇unDV −DV T∇uTn

]
:
[
∇vn +∇vTn

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇un +∇uTn

]
:
[
−∇vnDV −DV T∇vTn

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇un +∇uTn

]
:
[
∇vn +∇vTn

]
div V dx

+
1

2

∫
Ω2

C(λ̃2, µ̃2)
[
−∇udDV −DV T∇uTd

]
:
[
∇ud +∇uTd

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇ud +∇uTd

]
:
[
∇ud +∇uTd

]
div V dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
−∇udDV −DV T∇uTd

]
:
[
∇vd +∇vTd

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇ud +∇uTd

]
:
[
−∇vdDV −DV T∇vTd

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇ud +∇uTd

]
:
[
∇vd +∇vTd

]
div V dx.

Proof. Theorem 6 can be proven using Theorem 5.1 of R. Correa and A. Seeger [3].

IV CONSLUSION

In this paper we have considered the inverse problem of recovering piecewise constants Lamé
paremeters. To solve the inverse problem, we minimized a Khon-Vogelius type functional.
When the jump of parameters is perturbed, we derived a quantitative stability estimate using
shape calculus tools and the implicit function theorem.

REFERENCES

[1] J. Baumeister. Stable solution of inverse problems. Advanced Lectures in Mathematics.
Friedr. Vieweg & Sohn, Braunschweig, 1987.

[2] K. Brandes and R. Griesse. Quantitative stability analysis of optimal solutions in PDE-
constrained optimization. J. Comput. Appl. Math., 206(2):908–926, 2007.

African Journal of Research in Computer Science and Applied Mathematics Page 13 of 14



[3] R. Correa and A. Seeger. Directional derivative of a minimax function. Nonlinear Anal.,
9(1):13–22, 1985.

[4] M. C. Delfour and J.-P. Zolésio. Shape sensitivity analysis via min max differentiability.
SIAM J. Control Optim., 26(4):834–862, 1988.

[5] S. Eberle, B. Harrach, H. Meftahi, and T. Rezgui. Lipschitz stability estimate and re-
construction of lamé parameters in linear elasticity. Inverse Problems in Science and
Engineering, pages 1–22, 2020.

[6] R. Griesse. Parametric sensitivity analysis in optimal control of a reaction diffusion sys-
tem. I. Solution differentiability. Numer. Funct. Anal. Optim., 25(1-2):93–117, 2004.

[7] R. Griesse. Parametric sensitivity analysis in optimal control of a reaction-diffusion sys-
tem. II. Practical methods and examples. Optim. Methods Softw., 19(2):217–242, 2004.

[8] J. Hegemann, A. Cantarero, C. L. Richardson, and J. M. Teran. An explicit update scheme
for inverse parameter and interface estimation of piecewise constant coefficients in linear
elliptic PDEs. SIAM J. Sci. Comput., 35(2):A1098–A1119, 2013.

[9] H. Kasumba, K. Kunisch, and A. Laurain. A bilevel shape optimization problem for the
exterior Bernoulli free boundary value problem. Interfaces Free Bound., 16(4):459–487,
2014.

[10] K. Malanowski. Sensitivity analysis for parametric optimal control of semilinear parabolic
equations. J. Convex Anal., 9(2):543–561, 2002. Special issue on optimization (Montpel-
lier, 2000).

[11] K. Malanowski and F. Tröltzsch. Lipschitz stability of solutions to parametric optimal
control problems for parabolic equations. Z. Anal. Anwendungen, 18(2):469–489, 1999.

[12] K. Malanowski and F. Tröltzsch. Lipschitz stability of solutions to parametric optimal
control for elliptic equations. Control Cybernet., 29(1):237–256, 2000.

[13] J. Sokołowski and J.-P. Zolésio. Introduction to shape optimization, volume 16 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1992. Shape sensitivity
analysis.

African Journal of Research in Computer Science and Applied Mathematics Page 14 of 14


	I Introduction
	II Problem formulation
	2.1 Elements of shape calculus
	2.2 Inf-sup formulation

	III Stability of the parameters with respect to the interface
	3.1 First-order derivatives of the cost functional
	3.2 Second-order derivatives of the cost functional
	3.3 Shape derivative of the first-order derivatives of the cost functional

	IV Conslusion

