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Abstract

In this article we consider the inverse problem of reconstructing piece-wise Lamé
coefficients from boundary measurements. We reformulate the inverse problem as
a minimization one using a Kohn-Vogelius type functional. We study the stability
of the parameters when the jump of the discontinuity is perturbed. Using tools of
shape calculus, we give a quantitative stability result for local optimal solution.

Keywords: Lamé parameters, inverse problem, shape derivative, stability anal-
ysis.

1 Introduction

The inverse problem of recovering Lamé parameters consists in finding the parame-
ters (λ, µ) from the knowledge of the so-called Neumann-to-Dirichlet operator Λλ,µ :
H−1/2(∂Ω)2 → H1/2(∂Ω)2. The operator Λλ,µ maps a boundary input g ∈ H−1/2(∂Ω)2 to
the value u|∂Ω of the solution u of an elliptic problem with Neumann boundary condition
g:

Λλ,µ(g) = u|∂Ω.

The two major questions for the inverse problem are the uniqueness and the stability of
a solution (λ, µ). The question of the uniqueness in the case of perfect data, i.e. when
the Neumann-to-Neumann operator is completely known, has led to many difficult and
interesting mathematical problems and an abundant literature on the topic is available.

The question of stability consists in studying the continuous dependence of the solu-
tion on the data. Stability is necessary to ensure that a variation of the given data in a
sufficiently small range leads to an arbitrarily small change in the solution, which is pri-
mordial for applications. This concept was introduced by Hadamard in 1902 in connection
with the study of boundary value problems for partial differential equations [1].
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There is a extended literature on stability issues for the inverse problem of Lamé
parameters, in particular for interior stability estimates, which consist in proving that,
given two maps Λλ,µ and Λλ̃,µ̃, one has

max
{
‖λ− λ̃‖L∞(Ω), ‖µ− µ̃‖L∞(Ω)

}
≤ ω

(
‖Λλ,µ − Λλ̃,µ̃‖∗

)
,

where ‖.‖∗ is the operator norm of L(H−1/2(Ω)2, H1/2(Ω)2) and ω : R+ → R is continuous
with ω(t) → 0 as t → 0. Recently Lipschitz stability result has been proved in [4]. The
proof relies on the monotonicity relation between the Lamé parameters and the Neuman-
to-Dirichlet operator combined with the techniques of Localized potentials.

The inverse problem of reconstructing piecewise constants Lamé parameters λ, µ and
their jump sets Γ simultaneously has been considered in [8] and the question of stability
is not so well-studied.

In this contribution, we aim at giving qualitative properties of the stability in this
case. We transform the inverse problem to a minimization one and study how stable is the
reconstruction of the parameters λ, µ when Γ is known approximately. More precisely, we
quantify the first-order stability properties of a local optimal solution of the minimization
problem.

The stability estimates derived in [4] is obtained when the full Neumann-to-Dirichlet
map is known. For our quantitative stability estimate we only have a finite number of
measurements. To our best knowledge there are no results in this kind of stability for the
problem under consideration.

In the field of PDE-constrained optimization, the differentiability and stability prop-
erties of optimal solutions with respect to parameters of the problem have been studied
in details theoretically and numerically; see for instance [2, 6, 7, 10, 11, 12]. Some of the
ideas developed in these papers can be used for our stability analysis, unfortunately the
well-known particular difficulties of differentiating with respect to the shape, in particular
the fact that the set of shapes is not a vector space, prevents a direct transposition of
the methods used in these papers. For our analysis on proving quantitative stability of a
local optimal solution, we make use of shape calculus in the spirit of [9] .

The paper is organized as follows. In section 2 we describe the setting of the direct
problem, the inverse problem and the minimization problem. The stability analysis of a
local optimal solution is performed in section 3.

2 Problem formulation

Let Ω be a bounded domain in R2 with smooth boundary ∂Ω = ΓN ∪ ΓD and Γ ∈ Dad
with

Dad := {∂D where D is open of class C2, D ⊂ Ω, inf
x∈∂D,y∈∂Ω

|x− y| > ε}

for some ε > 0. Let Ω2 be such that Γ := ∂Ω2 and Ω1 = Ω \ Ω2. Throughout the paper
we work with piecewise constant parameters

λ = λ1χΩ1 + λ2χΩ2 , µ = µ1χΩ1 + µ2χΩ2

where λ1, λ2, µ1, µ2 ∈ R+ and χ denotes an indicator function. Let 0 < c0 ≤ λ1, µ1 ≤ c1

be given, then we define a set of piecewise constant parameters Pad as :

Pad = {(λ, µ) = (λ1χΩ1 + λ2χΩ2 , µ1χΩ1 + µ2χΩ2) : c0 ≤ λ1, λ2, µ1, µ2 ≤ c1} ,
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where c0, c1 ∈ R+. For a given load g ∈ H−1/2(ΓN)2 the displacement u satisfies the
following problem 

−div(C∇̂u) = 0 in Ω \ Γ,

JuK = 0 on Γ,

J(C∇̂u)νK = 0 on Γ,

(C∇̂u)ν = g on ΓN ,

u = f on ΓN ,

u = 0 on ΓD,

(1)

where ν is the unit normal vector to the interface Γ or ∂Ω pointing outward of Ω2 or Ω,
respectively, f ∈ H1/2(ΓN)2 and JuK denotes the jump of u across the interface Γ. It is
well-known that this problem has a unique solution u ∈ V , where

V :=
{
u ∈ H1(Ω)2 : u|ΓD

= 0
}
.

We consider the inverse problem of recovering the parameters λ2, µ2 from the measure-
ments (f, g). We are interested in the case where the interface Γ is known, but with some
uncertainty. We aim to study how this uncertainty affects the reconstruction of λ2, µ2.
Note that the results could be straightforwardly extended to the case of more than just
two phases, thus for clarity it is better to study the case of two phases.

A typical approach to solve the inverse problem in practice is to consider the so-called
Kohn-Vogelius functional.

J((λ2, µ2),Γ, un, ud) :=

∫
Ω

C∇̂(un − ud) : ∇(un − ud) dx,

Here un is the solution of the Neumann problem

− div(C∇̂un) = 0 in Ω \ Γ,

JunK = 0 on Γ,

J(C∇̂un)νK = 0 on Γ,

(C∇̂un)ν = g on ΓN ,

un = 0 on ΓD,

(2)

and ud is the solution of the Dirichlet problem

− div(C∇̂ud) = 0 in Ω \ Γ,

JudK = 0 on Γ,

J(C∇̂ud)νK = 0 on Γ,

ud = f on ΓN ,

ud = 0 on ΓD.

(3)

The variational formulations of the problems (2) and (3) read respectively

Find u ∈ V such that

∫
Ω

C∇̂u : ∇v dx−
∫

ΓN

g · v ds = 0 ∀v ∈ H1(Ω). (4)
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Find u ∈ V such that

∫
Ω

C∇̂u : ∇v dx−
∫

ΓN

(u−f)(C∇̂u)νv ds = 0 ∀v ∈ H1
0 (Ω)2. (5)

We associate with (4) the operator En((λ2, µ2),Γ, un) : [c0, c1]2×Dad×V → L(H1(Ω)2,R)
and with (5) the operator Ed((λ2, µ2),Γ, ud) : [c0, c1]2 × Dad × V → L(H1

0 (Ω)2,R). We
also introduce

E((λ2, µ2),Γ, un, ud) := (En((λ2, µ2),Γ, un), Ed((λ2, µ2),Γ, ud)) .

We are interested in the situation when the interface Γ is known and one wishes to
reconstruct the coefficients λ2, µ2, the corresponding minimization problem is:minimize J((λ2, µ2),Γ, un, ud) :=

∫
Ω

C∇̂(un − ud) : ∇̂(un − ud) dx

subject to c0 ≤ λ2, µ2 ≤ c1 and E((λ2, µ2),Γ, un, ud) = (0, 0).

(6)

Note an optimal solution (λ∗2, µ
∗
2) = (λ∗2(Γ), µ∗2(Γ)) of (6), if it exists, depends on Γ through

the state equations.
Let us define the reduced functional corresponding to problem (6).

J ((λ2, µ2),Γ) := J(λ2, µ2,Γ, un, ud)

We start with the following theorem.

Theorem 1. The minimization problem (6) has at least one solution.

Proof. In this proof we only write J (λ2, µ2) instead of J ((λ2, µ2),Γ) for simplicity since
Γ is fixed. It is clear that inf J (λ2, µ2) is finite. Therefore there exists a minimizing
sequence (

λk, µk
)

=
(
λ1χΩ1 + λk2χΩ2 , µ1χΩ1 + µk2χΩ2

)
∈ Pad

such that
lim

k→+∞
J (λk2, µ

k
2) = inf

c0≤λ2,µ2≤c1
J (λ2, µ2).

The sequence (λk2, µ
k
2) is bounded, thus there exists a subsequence still denoted (λk2, µ

k
2)

and some (λ∗2, µ
∗
2) ∈ R2 such that

lim
k→∞

(
λk, µk

)
= (λ1χΩ1 + λ∗2χΩ2 , µ1χΩ1 + µ∗2χΩ2) .

By definition un(λk2, µ
k
2) satisfies∫

Ω

C(λk2, µ
k
2)∇̂un(λk2, µ

k
2) : ∇v dx =

∫
ΓN

g · v ds ∀v ∈ V . (7)

Taking v = un(λk2, µ
k
2) in (7), we obtain∫

Ω

C(λk2, µ
k
2)∇̂un(λk2, µ

n
2 ) : ∇un(λk2, µ

n
2 ) dx =

∫
ΓN

g · un(λk2, µ
k
2) ds.

Using Korn’s inequality and the trace theorem for the right-hand side of the above equa-
tion, we deduce the existence of a constant c > 0 such that

‖un(λk2, µ
k
2)‖H1(Ω)2 ≤ c‖g‖L2(ΓN )2 .
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Therefore there exists a subsequence of un(λk2, µ
k
2) still denoted un(λk2, µ

k
2) such that

lim
k→∞

un(λk2, µ
k
2) = u∗n weakly in H1(Ω)2,

and
lim
k→∞

un(λk2, µ
k
2) = u∗n strongly in L2(Ω)2.

Letting n goes to infinity in equation (7), we conclude that u∗n satisfies∫
Ω

C(λ∗2, µ
∗
2)∇̂u∗n : ∇v dx =

∫
ΓN

g · v ds, ∀v ∈ V .

Due to the uniqueness of the weak limit we get un(λ∗2, µ
∗
2) = u∗n. This means that

lim
k→∞

un(λk2, µ
k
2) = un(λ∗2, µ

∗
2) weakly in H1(Ω)2 and strongly in L2(Ω)2.

In the same way, we can prove that

lim
k→∞

ud(λ
k
2, µ

k
2) = ud(λ

∗
2, µ

∗
2) weakly in H1(Ω)2 and strongly in L2(Ω)2.

Using the lower semi-continuity of the H1-norm yields

J (λ∗2, µ
∗
2) ≤ lim inf

k→∞
J (λk2, µ

k
2) = J (λ2, µ2),

which concludes the proof.

2.1 Elements of shape calculus

In this subsection we recall some basic facts about the perturbation of the identity method
from shape optimization used to calculate the shape derivative. The reader is referred to
[3] for more details.

Let V ∈ D1(Ω,R2), the space of continuous differentiable functions with compact
support in Ω. Introduce the perturbation of identity

Tt = I + tV : Ω→ R2. (8)

Then there exists ε > 0 such that Tt is a diffeomorphism and Tt(Ω) = Ω for t ∈ [0, ε).
We denote the perturbed interfaces

Γt := Tt(Γ).

For t ∈ [0, ε), Tt is invertible. Furthermore, the Jacobian ξ(t) is strictly positive

∀ t ∈ [0, ε), ξ(t) = |detDTt| > 0, (9)

where DTt is the Jacobian matrix of the transformation Tt associated with the velocity
field V . In the sequel, we use the notation M−1 for the inverse of M and M−∗ for the
transpose of its inverse. We also denote by

w(t) = ξ(t)|(DTt)−∗ν| (10)

the tangential Jacobian of Tt on Γ.
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Definition 1 (Eulerian derivative). Suppose we are given a real valued shape function J
defined on a subset D of RN . We say that J is Eulerian semi-differentiable at Ω ⊂ D in
the direction V if the following limit exists in R

DJ(Ω)(V ) := lim
t↘0

J(Tt(Ω))− J(Ω)

t
.

If the map V −→ DJ(Ω)(V ) is linear and continuous with respect to the topology of
D1(Ω,R2), then J is said to be shape differentiable at Ω and DJ(Ω)(V ) is called the shape
derivative of J .

The Eulerian derivative is only a directional derivative. In this paper we also need
the stronger notion of Fréchet derivative. To this end let V ∈ D1(Ω,R2) and consider
perturbations of identity I + V , so that TV := I + V is a bi-Lipschitz homeomorphism.
In what follows we will denote by

ΩV := TV (Ω)

Definition 2 (Fréchet derivative). The functional J(Ω) is Fréchet-differentiable at Ω if
there exists a linear and continuous functional DJ(Ω) from D1(Ω,R2) to R called shape
gradient such that

J(ΩV ) = J(Ω) +DJ(Ω)(V ) + r(V ),

where |r(V )|/‖V ‖ → 0 as ‖V ‖ → 0.

In what follows we will mostly compute Fréchet derivatives given by Definition 2, how-
ever to obtain the expression of the shape derivative, it is convenient to simply compute
the directional derivative given by Definition 1.

2.2 Inf-sup formulation

From the definition of the functional J , and applying Green’s formula once, we have

J (λ2, µ2) := J(λ2, µ2, un, ud) = J0(λ2, µ2, un) + J0(λ2, µ2, ud) + J1,

where

J0(λ2, µ2, u) =

∫
Ω

C(λ2, µ2)∇̂u : ∇̂u dx, J1 = −2

∫
ΓN

f · g ds.

We introduce the Lagrangian functionals

Gn(λ2, µ2, ϕ, ψ) = J0(λ2, µ2, ϕ) +

∫
Ω

C∇̂ϕ : ∇̂ψ dx−
∫

ΓN

g · ψ ds for all ϕ, ψ ∈ V ,

Gd(λ2, µ2, ϕ, ψ) = J0(λ2, µ2, ϕ) +

∫
Ω

C∇̂ϕ : ∇̂ψ dx+

∫
ΓN

(f − uD) · (C∇̂ψ)ν ds,

for all ϕ ∈ V , ψ ∈ H1
0 (Ω)2. Then, it is easy to check that

J0(λ2, µ2, un) = inf
ϕ∈V

sup
ψ∈V

Gn(λ2, µ2, ϕ, ψ),
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J0(λ2, µ2, ud) = inf
ϕ∈V

sup
ψ∈H1

0 (Ω)2
Gd(λ2, µ2, ϕ, ψ),

since

sup
ψ∈V

Gn(λ2, µ2, ϕ, ψ) =

{
J0(λ2, µ2, un) if ϕ = un),

+∞ otherwise,

sup
ψ∈H1

0 (Ω)2
Gd(C, ϕ, ψ) =

{
J0(λ2, µ2, ud) if ϕ = ud),

+∞ otherwise.

It is easily shown that the functional Gn (respectively Gd) is convex continuous with
respect to ϕ and concave continuous with respect to ψ. Therefore, according to Ekeland
and Temam [5], the functional Gn has a saddle point (un, vn) if and only if (un, vn) solves
the following system:

∂ψGn(λ2, µ2, un, vn; ψ̂) = 0,

∂ϕGn(λ2, µ2, un, vn; ϕ̂) = 0,

for all ψ̂ ∈ V and ϕ̂ ∈ V . This yields that Gn has a saddle point (un, vn), where
the state un is the unique solution of (2) and the adjoint state vn is the solution of
∂ϕGn(λ2, µ2, un, vn; ϕ̂) = 0, or equivalently:

−div(C∇̂vn) = 0 in Ω,

(C∇̂vn)ν = −2g on ΓN,

vn = 0 on ΓD.

(11)

Similarly, the Lagrangian Gd has a unique saddle point (ud, vd) where the direct state ud
is the solution of the problem (3) and the adjoint state vd is the unique solution of the
following adjoint problem 

−div(C∇̂vd) = 0 in Ω,

vd = 0 on ΓN,

vd = 0 on ΓD.

(12)

Summarizing the above, we have obtained the following theorem.

Theorem 2. The functionals J0(λ2, µ2, un) and J0(λ2, µ2, ud) are given as

J0(λ2, µ2, un) = inf
ϕ∈V

sup
ψ∈V

Gn(λ2, µ2, ϕ, ψ), (13)

J0(λ2, µ2, ud) = inf
ϕ∈V

sup
ψ∈H1

0 (Ω)2
Gd(λ2, µ2, ϕ, ψ). (14)

The unique saddle points for Gn and Gd are respectively given by (un, vn) and (ud, vd),
where vn = −2un and vd = 0.

3 Stability of the parameters with respect to the in-

terface

The optimality condition D(λ2,µ2)J (λ2, µ2,Γ)(α, β) = 0 for all α, β ∈ R for problem (6)
can be rewritten as

Find (λ∗2(Γ), µ∗2(Γ)) such that D(λ2,µ2)J (λ∗2(Γ), µ∗2(Γ),Γ) = (0, 0). (15)
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In this paper we are interested in the stability of the optimal solution (λ∗2(ΓV ), µ∗2(ΓV ))
of the minimization problem (6) with respect to the perturbed interface ΓV = (I + V )(Γ)
for V ∈ V0, where V0 is a neighborhood of 0 in D1(Ω,R2).

Therefore we need to study the differentiability of the parameter-to-solution map V 7→
(λ∗2(ΓV ), µ∗2(ΓV )). This is done by applying the implicit function theorem to the optimality
conditions

D(λ2,µ2)J (λ∗2(ΓV ), µ∗2(ΓV ),ΓV ) = (0, 0).

Essentially the idea is to linearize D(λ2,µ2)J (λ∗2(ΓV ), µ∗2(ΓV ),ΓV ) = (0, 0) to get

D2
(λ2,µ2)J (λ∗2, µ

∗
2,Γ) (∂Γλ

∗
2(Γ)(V ), ∂Γµ

∗
2(Γ)(V )) + ∂Γ(D(λ2,µ2),ΓJ (λ∗2, µ

∗
2,Γ))(V ) = (0, 0),

which yields, when D2
(λ2,µ2)J (λ∗2, µ

∗
2,Γ) is invertible,

(∂Γλ
∗
2(Γ)(V ), ∂Γµ

∗
2(Γ)(V )) = −

(
D2

(λ2,µ2)J (λ∗2, µ
∗
2,Γ)

)−1
∂Γ

(
D(λ2,µ2),ΓJ (λ∗2, µ

∗
2,Γ)

)
(V ).

In the following theorem, we prove the existence of (λ∗2(Γ), µ∗2(Γ)) and we give an explicit
formula for its variation with respect to Γ.

Theorem 3. For given Γ ∈ Dad suppose that there exists (λ∗2(Γ), µ∗2(Γ)) such that

D(λ2,µ2)J (λ∗2, µ
∗
2,Γ) = (0, 0),

and assume that D2
(λ2,µ2)J (λ∗2, µ

∗
2,Γ) is invertible. Then, there exists a neighborhood W

of 0 in D1(R2,R2), a neighborhood U of (λ∗2, µ
∗
2) in R2 and a C1 function

W 3 V 7−→ (λ∗2(ΓV ), µ∗2(ΓV )) ∈ U ,

such that D(λ2,µ2)J (λ∗2(ΓV ), µ∗2(ΓV ),ΓV ) = (0, 0), and

(∂Γλ
∗
2(Γ)(V ), ∂Γµ

∗
2(Γ)(V )) = −

(
D2

(λ2,µ2)J (λ∗2, µ
∗
2,Γ)

)−1
∂Γ

(
D(λ2,µ2)J (λ∗2, µ

∗
2,Γ)

)
(V ).

(16)

Remark 1. Theorem 3 says that if ΓV is the perturbation of Γ by the transformation
I + V , then the first order variation of the optimal solution is given by

(λ∗2(ΓV ), µ∗2(ΓV ))−(λ∗2(Γ), µ∗2(Γ)) ≈ −
(
D2

(λ2,µ2)J (λ∗2, µ
∗
2,Γ)

)−1
∂Γ

(
D(λ2,µ2)J (λ∗2, µ

∗
2,Γ)

)
(V ).

Proof. According to Theorem 5 and Theorem 6, the function D(λ2,µ2)J is of class C1 and
in view of our assumptions satisfy D(λ2,µ2)J (λ∗2, µ

∗
2,Γ) = (0, 0) and D2

(λ2,µ2)J (λ∗2, µ
∗
2,Γ) is

invertible, we conclude the proof thanks to the implicit function theorem.

In what follows, we compute the quantities in the right-hand side of (16).

3.1 First-order derivatives of the cost functional

Theorem 4. The functional J is differentiable, and its derivative at (λ2, µ2) in the di-
rection (λ̃2, µ̃2) is given by

D(λ2,µ2)J (λ2, µ2, un, ud) (λ̃2, µ̃2) =

∫
Ω

C(λ̃2, µ̃2)∇̂ud : ∇̂ud dx

−
∫

Ω

C(λ̃2, µ̃2)∇̂un : ∇̂un dx.
(17)
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Proof. Let λt2 = λ2+tλ̃2, µt2 = µ2+tµ̃2, C = C(λ2, µ2), C̃ = C(λ̃2, µ̃2), Ct = C+tC̃
and t ∈ R is sufficiently small parameter. Under hypotheses of Theorem 5.1 of R. Correa
and A. Seeger [3] , we have

D(λ2,µ2)J (λ2, µ2, un, ud) (λ̃2, µ̃2) = ∂tG̃n(t, un, vn)
∣∣∣
t=0

+ ∂tG̃d(t, ud, vd)
∣∣∣
t=0
,

where

G̃n(t, ϕ, ψ) := Gn(λt2, µ
t
2, ϕ, ψ) = J0(λt2, µ

t
2, ϕ) +

∫
Ω

Ct∇̂ϕ : ∇̂ψ dx−
∫

ΓN

g · ψ ds,

G̃d(t, ϕ, ψ) := Gd(λ
t
2, µ

t
2, ϕ, ψ) = J0(λt2, µ

t
2, ϕ) +

∫
Ω

Ct∇̂ϕ : ∇̂ψ dx

+

∫
ΓN

(f − ϕ) · (C∇̂ψ)ν ds,

and

∂tG̃n(t, un, vn)
∣∣∣
t=0

= −
∫

Ω

C̃∇̂un : ∇̂un dx,

∂tG̃d(t, ug, vd)
∣∣∣
t=0

=

∫
Ω

C̃∇̂ud : ∇̂ud dx.

The above equations yield (17). To end the proof, we should verify the four assumptions
(H1)− (H4) of Theorem 5.1 of R. Correa and A. Seeger [3]. We introduce the sets

Xn(t) :=

{
xt ∈ V : sup

y∈V
G̃n(t, xt, y) = inf

x∈V
sup
y∈V

G̃n(t, x, y)

}
,

Yn(t) :=

{
yt ∈ V : inf

x∈V
G̃n(t, x, yt) = sup

y∈V
inf
x∈V

G̃n(t, x, y)

}
,

Xd(t) :=

{
xt ∈ V : sup

y∈H1
0 (Ω)2

G̃d(t, x
t, y) = inf

x∈V
sup

y∈H1
0 (Ω)2

G̃d(t, x, y)

}
,

Yd(t) :=

{
yt ∈ H1

0 (Ω)2 : inf
x∈V

G̃d(t, x, y
t) = sup

y∈H1
0 (Ω)2

inf
x∈V

G̃d(t, x, y)

}
,

and obtain

for all t ∈ [0, ε] Sn(t) = Xn(t)× Yn(t) = {un(Ct), vn(Ct)} 6= ∅,

for all t ∈ [0, ε] Sd(t) = Xd(t)× Yd(t) = {ud(Ct), vd(Ct)} 6= ∅,
and assumption (H1) is satisfied.

Assumption (H2): The partial derivatives ∂tG̃n(t, ϕ, ψ), ∂tG̃d(t, ϕ, ψ) exist everywhere in
[0, ε) and the condition (H2) is satisfied.
Assumptions (H3) and (H4): We first show the boundedness of (un(Ct), vn(Ct)). Letting
v = un(Ct) in the variational equation∫

Ω

Ct∇̂un(Ct) : ∇̂v dx =

∫
ΓN

g · v ds, (18)
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for all v ∈ V , we obtain∫
Ω

Ct∇̂un : ∇̂un dx ≤ ‖g‖L2(ΓN)2‖un‖L2(ΓN)2 .

From Korn’s inequality and the trace theorem, there exists c > 0, depending only on Ω
such that

‖un(Ct)‖H1(Ω)2 ≤ c‖g‖L2(ΓN)2 ,

which yields
sup
t∈[0,ε)

‖un(Ct)‖H1(Ω)2 ≤ c‖g‖L2(ΓN)2 .

We apply the same technique to the variational equation∫
Ω

Ct∇̂ud(Ct) : ∇̂v dx+

∫
ΓN

(f − ud(Ct)) · (C∇̂v)ν ds, (19)

for all v ∈ V , and we are able to show that the function ud(Ct) is bounded. The next step
is to show the continuity with respect to t of (un(Ct), ud(Ct)). Subtracting (18) at t > 0
and t = 0 and choosing v = un(C)− un(Ct) yields∫

Ω

C∇̂ (un(C)− un(Ct)) : ∇̂ (un(C)− un(Ct)) dx

=

∫
Ω

(C− Ct) ∇̂un(Ct) : ∇̂ (un(C)− un(Ct)) dx.

Furthermore due to the boundedness of un(Ct), we obtain

‖un(Ct)− un(C)‖H1(Ω,R2) ≤ CdΩ(Ct,C),

where
dΩ(Ct,C) := max

{
‖λt2 − λ2‖∞, ‖µt2 − µ2‖∞

}
.

Due to the strong continuity of Ct as a function of t, one deduces that un(Ct) → un(C)
in H1(Ω)2 as t → 0. Concerning the continuity of ud(Ct), one may show from (19) that
ud(Ct)→ ud(C) in H1(Ω)2. Finally in view of the strong continuity of

(t, ϕ)→ ∂tG̃n(t, ϕ, ψ), (t, ψ)→ ∂tG̃n(t, ϕ, ψ),

(t, ϕ)→ ∂tG̃d(t, ϕ, ψ), (t, ψ)→ ∂tG̃d(t, ϕ, ψ),

assumptions (H3) and (H4) are verified.

3.2 Second-order derivatives of the cost functional

To compute the second order derivative of D(λ2,µ2)J (λ2, µ2,Γ), we use a Lagrangian
method as in the previous section. We start by introducing the Lagrangian function-
als

Ln(λ2, µ2, ϕ, ψ) =

∫
Ω2

C(λ̃2, µ̃2)∇̂ϕ : ∇̂ϕdx+

∫
Ω

C(λ2, µ2)∇̂ϕ : ∇̂ψ dx

−
∫

ΓN

g · ψ ds for all ϕ, ψ ∈ V ,
(20)
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Ld(λ2, µ2, ϕ, ψ) =

∫
Ω2

C(λ̃2, µ̃2)∇̂ϕ : ∇̂ϕdx+

∫
Ω

C(λ2, µ2)∇̂ϕ : ∇̂ψ dx

+

∫
ΓN

(f − ϕ) · (C(λ2, µ2)∇̂ψ)ν ds, for all ϕ ∈ V , ψ ∈ H1
0 (Ω)2.

(21)

The saddle point equations of Ln and Ld are given by

∂ψLn(λ2, µ2, un, vn; ψ̂) = 0, ∂ϕLn(λ2, µ2, un, vn; ϕ̂) = 0,

∂ψLd(λ2, µ2, ud, vd; ψ̂) = 0, ∂ϕLd(λ2, µ2, ud, vd; ϕ̂) = 0,

or equivalently ∫
Ω

C(λ2, µ2)∇̂un : ∇̂ψ̂ dx−
∫

ΓN

g · ψ̂ ds = 0, (22)∫
Ω

C(λ2, µ2)∇̂vn : ∇̂ϕ̂ dx = −2

∫
Ω2

C(λ̃2, µ̃2)∇̂un : ∇̂ϕdx, (23)∫
Ω

C(λ2, µ2)∇̂ud : ∇̂ψ̂ dx+

∫
ΓN

(f − ud) · (C(λ2, µ2)∇ψ̂)ν ds = 0, (24)∫
Ω

C(λ2, µ2)∇̂vd : ∇̂ϕ̂ dx = −2

∫
Ω2

C(λ̃2, µ̃2)∇̂ud : ∇̂ϕdx. (25)

We have the following results.

Theorem 5 (second-order derivative). The function D(λ2,µ2)J(λ2, µ2,Γ) is differentiable
with respect to (λ2, µ2) and

D2
(λ2,µ2)J (λ2, µ2,Γ) (λ̃2, µ̃2)(λ̂2, µ̂2) =

∫
Ω2

C(λ̂2, µ̂2)∇̂un : ∇̂vn dx

+

∫
Ω2

C(λ̂2, µ̂2)∇̂ud : ∇̂vd dx,
(26)

where un, vn, ud and vd are solutions of (22), (23), (24) and (25) respectively.

Proof. As in the proof of Theorem 4, using the Lagrangian Ln and Ld for fixed Γ, and
applying Theorem 5.1 of R. Correa and A. Seeger [3], we have

D2
(λ2,µ2)J (λ2, µ2, un, ud) (λ̃2, µ̃2)(λ̂2, µ̂2) = ∂tL̃n(t, un, vn)

∣∣∣
t=0

+ ∂tL̃d(t, ud, vd)
∣∣∣
t=0
,

where

L̃n(t, ϕ, ψ) := Gn(λt2, µ
t
2, ϕ, ψ) =

∫
Ω2

C(λ̃2, µ̃2)∇̂ϕ : ∇̂ϕdx+

∫
Ω

Ct∇̂ϕ : ∇̂ψ dx−
∫

ΓN

g·ψ ds,

L̃d(t, ϕ, ψ) := Gd(λ
t
2, µ

t
2, ϕ, ψ) =

∫
Ω2

C(λ̃2, µ̃2)∇̂ϕ : ∇̂ϕdx+

∫
Ω

Ct∇̂ϕ : ∇̂ψ dx

+

∫
ΓN

(f − ϕ) · (C∇̂ψ)ν ds,
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and

∂tL̃n(t, un, vn)
∣∣∣
t=0

=

∫
Ω2

C(λ̂2, µ̂2)∇̂un : ∇̂vn dx,

∂tL̃d(t, ud, vd)
∣∣∣
t=0

=

∫
Ω2

C(λ̂2, µ̂2)∇̂ud : ∇̂vd dx.

The hypotheses of Theorem 5.1 in [3] can be checked in a similar way as in the proof of
Theorem 4.

3.3 Shape derivative of the first-order derivatives of the cost
functional

Theorem 6. The functional D(λ2,µ2)J (λ∗2, µ
∗
2,Γ)(λ̃2, µ̃2) is shape shape differentibale with

respect to Γ and its shape derivative in the direction V is given by:

∂Γ

(
D(λ2,µ2)J (λ∗2, µ

∗
2,Γ)(λ̃2, µ̃2)

)
(V )

=
1

2

∫
Ω2

C(λ̃2, µ̃2)
[
−∇unDV −DV T∇uTn

]
:
[
∇un +∇uTn

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇un +∇uTn

]
:
[
∇un +∇uTn

]
div V dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
−∇unDV −DV T∇uTn

]
:
[
∇vn +∇vTn

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇un +∇uTn

]
:
[
−∇vnDV −DV T∇vTn

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇un +∇uTn

]
:
[
∇vn +∇vTn

]
div V dx

+
1

2

∫
Ω2

C(λ̃2, µ̃2)
[
−∇udDV −DV T∇uTd

]
:
[
∇ud +∇uTd

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇ud +∇uTd

]
:
[
∇ud +∇uTd

]
div V dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
−∇udDV −DV T∇uTd

]
:
[
∇vd +∇vTd

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇ud +∇uTd

]
:
[
−∇vdDV −DV T∇vTd

]
dx

+
1

4

∫
Ω2

C(λ̃2, µ̃2)
[
∇ud +∇uTd

]
:
[
∇vd +∇vTd

]
div V dx.

Proof. Theorem 6, can be proven using Theorem 5.1 of R. Correa and A. Seeger [3]).
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