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Abstract

We compare three different methods to co-optimize hybrid optical /
digital imaging systems with a commercial lens design software: conven-
tional optimization based on spot diagram minimization, optimization of
a surrogate criterion based on a priori equalization of modulation trans-
fer functions (MTFs), and minimization of the mean square error (MSE)
between the ideal sharp image and the image restored by a unique decon-
volution filter. To implement the latter method, we integrate – for the
first time to our knowledge – MSE optimization to the software Synopsys
CodeV. Taking as application example the design of a Cooke triplet having
good image quality everywhere in the field of view (FoV), we show that it
is possible, by leveraging deconvolution during the optimization process,
to adapt the spatial distribution of imaging performance to a prescribed
goal. We also demonstrate the superiority of MSE co-optimization over
the other methods, both in terms of quantitative and visual image quality.

This pre-print as been published as: Alice Fontbonne, Hervé Sauer, and François
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1 Introduction

Currently, almost all imaging systems integrate both a complex optical system
and digital processing algorithms. The idea of modeling the entire imaging
chain to enable its optimization is not new, but it took several years before
the first co-design approaches really appeared. The first to co-design an optical
system were Cathey & Dowsky [10, 2], focusing on the co-design of a single
optical element, a phase mask. The next step is to take into account more
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complex optical systems and to co-optimize them with digital post-processing
algorithms. These methods are referred to as “joint optical-digital design”[1],
“integral design strategy”[36], “end-to-end lens design”[31] or “holistic optical-
digital hybrid-imaging design”[35] in the literature.
Recent approaches attempt to bypass the expertise of commercial optical de-
signers by using deep learning techniques for co-design [28, 25, 19, 31, 17, 14].
However, currently, only commercial optical lens design software (like Zemax®

OpticStudio® or Synopsys® CodeV®) allows the design of complex optical
systems that are truly manufacturable. This is why it is interesting to integrate
directly a co-design approach into this type of software. Indeed, the optical
designer expertise allow them to use many hints in order to steer the lens opti-
mization process [12], which usually consists of a sequence of local optimizations
towards evolving intermediate goals to reach a final realistic design with good
final image quality.
This idea of integrating a co-design metric taking into account the entire hybrid
system, namely, the mean square error (MSE), is not new in Zemax. Stork &
Robinson [30] were the first to implement it, followed by Vettenburg & Har-
vey [35] and Wang et al. [36]. However, to the best of our knowledge and up
to now, no publication claims to have implemented it in CodeV. Moreover, the
results obtained with a MSE-based criterion and a commercial lens design soft-
ware have never been compared to other co-design methods. Indeed, there are
several methods to optimize a hybrid system from end-to-end. In particular,
another joint optical-digital design method has been developed by Burcklen et
al. [1] to facilitate the use of the co-design paradigm by professional optical
designers in CodeV. It is based on a “surrogate” merit function that contains
terms classically available in lens design software but used in a non-standard
way to implicitly take into account image processing.
Our purpose in this work is to implement the MSE-based optimization crite-
rion in the CodeV software, and to compare the obtained performance with two
other optimization criteria. The example of application chosen for illustration is
the design of a Cooke triplet aimed at providing good image quality over a wide
field of view (FoV) of 40◦ (±20◦). The basic elements of the considered hybrid
optical-digital system are described in Sec. 2. In Sec. 3, we apply the “conven-
tional” design method, which considers the existence of the digital processing
only after the optimization of the optical system. We establish the performance
of the obtained hybrid system by evaluating its modulation transfer functions
(MTFs), its effective MTF (taking into account the whole optical system and
post-processing) and the visual quality of the restored images. In Sec. 4, we
investigate in the same way the method based on a surrogate criterion imple-
mented in Code V [1]. Then, in Sec. 5, we describe the implementation of a
method for directly optimizing the MSE under CodeV, and compare the per-
formance of the obtained hybrid system with those provided by the two other
methods. We conclude in Sec. 6 on the performance of the three studied meth-
ods and on the most efficient way to take into account the existence of a digital
post-processing during the lens design process.
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2 Description of the hybrid system of interest

This section aims to describe the basic specifications of the optical/digital hybrid
systems considered in this article. Their goal is to obtain the best possible image
quality over the whole FoV. A hybrid system is made of two blocks: the imaging
system (i.e. the optical system and a sensor) and a digital post-processing
algorithm. For the purpose of this study, we have chosen to consider a classical
lens architecture, a Cooke triplet (described in Sec. 2.1), and a fast deconvolution
algorithm, the average Wiener filter (described in Sec. 2.2). The optimization
goal and the different investigated methods to achieve it are described in Sec. 2.3.

2.1 Optical architecture

The original purpose of a Cooke Triplet was to serve as a photographic lens.
Consisting of three optical elements and a diaphragm, it is recognized for its
good correction of aberrations over a wide FoV [32]. Its variants have been the
subject of several studies [26, 27, 34] and it is still used today for the improve-
ment of optical systems [29]. The Cooke triplet is thus a basic “building block”
of conventional optical design, which is interesting to study in the context of
joint optical/digital design. We will thus use it in this article as a basis for
the description of the various optimization methods. We choose to set its focal
length to 50 mm, its aperture to F/4 and its half-FoV to 20◦ (it is enlarged
compared to the initial 14◦ half-FoV of the CodeV example from which this
triplet is derived).
We will consider that this lens is used with a panchromatic sensor of pixel size
about 5 µm, which sets the Nyquist frequency to fN = 100 lp.mm−1. Three
wavelengths of the visible spectrum are considered, and the constraints applied
to the system during optimization are standard (see Supplemental 1, section 1).

2.2 Post-processing algorithm

The digital post-processing applied to the image acquired by this system consists
of a deconvolution to compensate for the aberrations of the optical lens. We
want the deconvolution algorithm to ensure reconstruction regardless of the
position in the FoV and to be fast and simple. For this purpose, we choose the
linear average Wiener filter:

w̃Ψ(ν) =
1
K

∑K
k=1 h̃ψk

(ν)⋆

1
K

∑K
k=1 |h̃ψk

(ν)|2 + Snn(ν)
Soo(ν)

, (1)

where Ψ = {ψ1, ψ2, ..., ψK} is a set of K positions in the FoV describing the
whole FoV, h̃ψk

(ν) is the local optical transfer function (OTF) of the imaging
system at the position ψk depending on the spatial frequency ν, Snn(ν) is the
power spectral density (PSD) of the noise and Soo(ν) is the statistical PSD of
the scene. We use a generic ideal image model with a power-law PSD [23,
33] Soo(ν) ∝ ν−2.5, which well represents natural scenes. The white noise
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PSD is such that the signal-to-noise ratio (SNR) on the raw image is 34 dB,
with SNR = 10 log10

[∫
Soo(ν)dν/

∫
Snn(ν)dν

]
. Note that in order to obtain

rotationally symmetrical average Wiener filters, it is better to use a large number
of positions in the FoV. In the following, unless otherwise stated, K = 400.
Furthermore, in view of the expression of the Wiener filter in Eq. 1, we can
define the “average MTF” as:√√√√ 1

K

K∑
k=1

|h̃ψk
(ν)|2 . (2)

2.3 Optimization goal

Our objective is to design a hybrid system with good image quality over the
whole FoV. To reach this goal, we will investigate three different design ap-
proaches.

• The “conventional triplet” is obtained with a conventional lens design
criterion based on the minimization of the average size of the spot diagram
over the FoV. This method does not take into account the digital post-
processing during the optimization process (Sec. 3).

• The “EMTF triplet” is obtained by optimizing the surrogate criterion
based on conventional optical metrics introduced in [1]. It implicitly takes
into account the post-processing (Sec. 4).

• The “MMSE” triplets are obtained by minimizing the average MSE be-
tween the deconvolved image and an ideally sharp image of the scene.
More precisely, the image produced on the sensor at one position ψk of
the FoV can be modeled by hψk

(r) ∗O(r), where O(r) is the sampled ideal
scene image (r represents the spatial coordinates) and ∗ denotes the con-
volution operator. This acquired image is then deconvolved with the filter
wΨ(r), defined in Eq. 1 in the Fourier domain, to restore its sharpness.
The restored image at the output of the hybrid optical-digital system can
thus be modeled as:

Ôψk
(r) = wΨ(r) ∗ [hψk

(r) ∗O(r) + n(r)] (3)

where n(r) is the detection noise. The mean-squared error (MSE) is then
defined as:

MSE(ψk) = E

[∫ ∣∣∣Ôψk
(r)−O(r)

∣∣∣2 dr] , (4)

where E[·] represents the mathematical expectation over the noise n(r)
and the scene image O(r), which are both assumed to be zero-mean, sta-
tionary random processes of PSD Snn(ν) and Soo(ν) respectively. The
MSE Eq. 4 can in fact be generically expressed in the Fourier domain by
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the sole noise and statistical scene image PSDs, the OTF h̃ψk
(ν) of the

lens and the restoration filter w̃Ψ(ν) [21, 8]:

MSE(ψk) =

∫ (
|h̃ψk

(ν)w̃Ψ(ν)− 1|2Soo(ν) + |w̃Ψ(ν)|2Snn(ν)
)
dν . (5)

The lens optimization criterion is then defined as the MSE averaged over
all the considered FoV positions Ψ = {ψ1, ψ2, · · · , ψK}:

MSEmean(Ψ) =
1

K

K∑
k=1

MSE(ψk) (6)

Note that the average Wiener filter defined in Eq. 1 is the linear decon-
volution filter that minimizes MSEmean for a given optical system [8],
which leads to overall optimizations in the MSEmean sense. As all (lo-
cal) optimization methods, its result depends on the starting point. We
will consider two different systems: the “MMSE1 triplet” will be obtained
by taking the “conventional triplet” as starting point, and the “MMSE2

triplet” will take the EMTF triplet as a starting point (Sec. 5).

In the remainder of this paper, we will describe the optimization of hybrid
imaging systems with these three different approaches and compare the obtained
performance.

3 Conventional approach

3.1 Definition of the conventional approach

To limit the aberrations in an optical system for a selected number of positions
in the FoV, the conventional optimization criterion in CodeV is to minimize
the sum of the squares of the root mean square (RMS) diameters of the spot
diagrams (calculated from a set of desired positions in the FoV). Other criteria
exist natively in CodeV: it is possible to minimize the wavefront error (WFE)
or to maximize the value of the modulation transfer function (MTF) at selected
spatial frequencies. Whatever the chosen criterion, it is always necessary to im-
pose constraints on some parameters during the optimization (for example, set
the focal length to a particular value defined by the specifications, or constrain
the thickness at the edges of the lenses to have strictly positive values). This
can be done by adding penalization terms like p2 × (f ′ − f ′target)

2 (where p is
a positive constant, defining the “weight” of this term) to the basic criterion,
or by strictly enforcing the constraint using Lagrange multiplier. In this study,
we optimize the sum of the squares of the RMS diameters of the spot diagrams
under common CodeV optical constraints (see Supplemental 1, section 1).
The CodeV optical design software uses by default the Levenberg-Marquardt
(or Damped least squares) algorithm to minimize this cost function [16, 18, 9,
20], but other algorithms can be used or implemented [22, 15, 24]. Since the
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Levenberg-Marquardt algorithm is a local minimization algorithm, convergence
to a global minimum is not guaranteed. The expertise of a lens designer is there-
fore necessary, both to choose a suitable starting point for the optimization [6]
and to steer it towards an acceptable local minimum. Here, the starting point
is part of the CodeV example library. The triplet is optimized in the CodeV
conventional way by setting as variable all element surface curvatures, element
center thicknesses, element distances and also indices (n) and Abbe numbers
(V ) of glass materials, letting general constrains (see Supplemental 1 Section 1)
warrant that the system is physically realistic. Once the optimization is done,
true existing materials close to the continuously optimized (n, V ) values are cho-
sen from the CodeV glass materials library, among the inexpensive and common
glasses from the Schott and Ohara catalogs, and the system is re-optimized, re-
sulting in the lens shown in Fig. 1(a) and precisely described in Supplemental
1 (section 2), referred to as the “conventional triplet”.

09:52:42

09:50:00

14:58:55
15:00:12

(a) (b)

(c) (d)

Figure 1: Scheme of Cooke triplets. (a) “Conventional triplet”. (b) “EMTF
triplet”. (c) “MMSE1 triplet”. (d) “MMSE2 triplet”.

In order to evaluate the performance of a hybrid system based on this triplet,
we will consider several evaluation metrics. In Sec. 3.2, we analyze the MTFs
at different positions in the FoV. It is a purely optical metric, useful to compare
the raw image qualities on the sensor plane given by the different Cooke triplets.
In order to take into account the digital post-processing, we also analyze the
effective MTFs (a metric that takes into account the optical system and the post-
processing, which will be defined in the next paragraph). Finally, in Section 3.3,
we evaluate the global system performance through image simulation.
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3.2 Analysis of the MTFs and effective MTFs

Figure 2(a) represents the tangential and sagittal MTFs of the conventional
triplet at different positions in the FoV. It has the standard characteristics
of a lens of this type: its structure allows a good correction of aberrations,
which makes possible to obtain, on the axis, a MTF taking fairly high values
(higher than 0.3 at the Nyquist frequency). However, performance degrades as
the FoV increases: at 14◦ half-FoV, the sagittal MTF presents nullings at the
spatial frequency 40 lp.mm−1. This means that at (and around) this frequency,
for this particular FoV position and orientation, the signal is drowned out in
noise and cannot be recovered. The relative frequency-wise noise level (i.e.√
Snn(ν)/Soo(ν)) corresponding to a SNR of 34 dB is shown with a black dotted

line in Fig. 2(a) .
However, the MTFs alone are not representative of the performance of the whole
hybrid optical/post-processing system, since they do not take into account the
image restoration with post-processing. A more representative metric of the
entire hybrid system is the effective MTF defined as:

|h̃effψk
(ν)| = |h̃ψk

(ν)× w̃Ψ(ν)| . (7)

In an ideal hybrid system, the effective MTF should be uniformly equal to
1, meaning that the signal components at all spatial frequencies are perfectly
restored by the deconvolution filter. Figure 2(b) represents the effective MTFs
of the conventional triplet. We can observe that for the highest frequencies
(between 85 lp.mm−1 and 100 lp.mm−1), the level of all the effective MTFs
drop compared to the corresponding MTFs. This is due to the fact that the
Wiener filter makes a compromise (the best in the sense of the MSE) between
signal reconstruction and deleterious noise reinforcement. On the contrary, for
spatial frequencies lower than 45 lp.mm−1, the effective MTF on axis is enhanced
and exceeds 1, which generates, as we will see later, visual over-contrast. This
is due to the fact that the on-axis MTF is higher than the “average MTF”
(Eq. 2) to which the average Wiener filter is adapted. In consequence, this filter
“over-compensates” the on-axis MTF. Furthermore, the MTF nullings are still
present on the effective MTFs, since information is totally lost at these spatial
frequencies and cannot be recovered by the average Wiener filter.

3.3 Analysis of final image quality

Let us now verify the observations made on MTFs and effective MTFs through
image simulations. Figure 3 shows the scene used for these simulations. It is
a large image, of 5144 × 5144 pixels, chosen to obtain a FoV of 40◦ (±20◦) on
the diagonal of the sensor, with a pixel size close to 5 µm. Several subparts are
selected on the raw image, to check the reconstruction of the details at three
different positions in the FoV: on axis, intermediary position and extremity.
Simulation of the observation of this scene through the Cooke triplet is per-
formed with the image simulation tool of the CodeV software, with 20 × 20
variable PSFs in the FoV, in order to take into account all the defects of the
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Figure 2: (First column) MTFs and (Second column) Effective MTFs of the (a-
b) conventional triplet, (c-d) EMTF triplet (e-f) MMSE1 triplet (g-h) MMSE2

triplet. The curve legends for the all first column plots are the same as the one
in (a) and the legends for the all second column plots are the same as the one
in (b).
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optical system. The image is then corrupted with a white Gaussian noise so
that the SNR is 34 dB.

Figure 3: Image of the Gloucester Cathedral (public domain picture) used as
a scene for the comparison of Cooke triplets optimized with different methods.
Three images are selected for their details and their positions in the FoV (on
axis, middle field, extreme field).

For the conventional triplet used without deconvolution, the resulting subpart
images are shown in the first row of Fig. 4. One observes that the images appear
blurred, especially those corresponding to large fields. Noise appears quite low,
thanks to the high value of the SNR (34 dB). Figure 4(b) represents the same
subparts after post-processing with an average Wiener filter constructed from
OTFs corresponding to thirteen different positions in the FoV (see Supplemental
1 section 3 for more details). Deconvolution raises the contrast reduced by the
optical system, and this can be shown theoretically with the mean image quality
(IQ), expressed in dB and defined as

IQmean = 10 log10
1

MSEmean(Ψ)
. (8)

It is a decreasing function of MSEmean defined in Eq. 6. It thus increases
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(a) (b) (c)

(d) (e) (f)

Without

deconvolution

With

deconvolution

On axis Middle field Extreme field

Figure 4: Details of the cathedral image obtained with the conventional triplet
for an SNR of 34 dB, (a-b-c) without deconvolution and (d-e-f) with deconvo-
lution.

IQmean
Conventional

triplet
EMTF
triplet

MMSE1

triplet
MMSE2

triplet
Before deconvolu-
tion

12.9 dB 10.9 dB 13.2 dB 10.1 dB

After deconvolu-
tion

13.5 dB 13.5 dB 14.6 dB 16.0 dB

Table 1: IQmean before and after deconvolution for the different Cooke triplets.

when the performance is enhanced. Table 1 contains the values of IQmean for
all the Cooke triplets optimized in this article. For the conventional triplet,
the IQmean goes from 12.9 dB up to 13.5 dB thanks to deconvolution. Never-
theless, this increase is not homogeneous across the FoV: the on-axis subpart
image (Fig. 4(d)) is more contrasted than it should be (according to the ideal
image in Fig. 3). The deconvolved middle field image (Fig. 4(e)) appears to
be well reconstructed, while the deconvolved extreme field image (Fig. 4(f)) is
only slightly more contrasted than the unprocessed subpart (Fig. 4(c)). These
observations match the conclusions drawn from the effective MTFs. Indeed,
Fig. 2(b), an effective MTF higher than 1 for low spatial frequencies indicates
over contrast, while an effective MTF close to 0 indicates under contrast (blur).
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4 Surrogate criterion based on optical metrics

4.1 Optimization method

Since our optimization goal is to obtain the best possible image quality over
the whole FoV, it is possible to define the “best system” as having equivalent
performance at any point of the FoV, after deconvolution. Since we have decided
to use a single deconvolution filter, this is equivalent to optimizing the optical
system under the two following general constraints.

• The MTFs at all the positions in the FoV should be nearly equal to each
other, so that deconvolution by a unique filter yields equivalent perfor-
mance across the FoV. To reach this goal, one should implement specific
optimization constraints forcing the MTFs at all FoV positions to be as
close as possible to each other for a few chosen spatial frequencies.

• The MTF values should be maximized to obtain the best possible frequency-
wise SNR before deconvolution (and avoid any MTF nullings in the spatial
frequency range of interest).

This approach will be called “co-optimization by MTFs equalization”. It should
be noted that the maximization of the MTF values is a very important point
of this optimization technique. In addition to corresponding well to the goal
of obtaining the best possible image quality over the whole FoV, this co-design
criterion can be seen as an alternative (a “surrogate”) to the MSE. Indeed,
several studies have shown that optimizing performance in terms of MSE over
a set of parameters (e.g. depths of field) leads to MTFs that are close to
each other [11, 1, 13]. This criterion can be implemented in various ways in
commercial optical software [1]. In this work, we have disabled the default
CodeV error function based on the sum of squared spot diagram RMS diameters
and only enforced the following user-defined constraints:

• Favoring equality between the MTFs at a set of some Y-meridional FoV
positions and the on-axis MTF (it is a set of weighted constraints, to
allow some latitude and balancing on these equalizations). In order to
guarantee the similarity of the MTFs whatever the azimuth, one has to
take into account the tangential, sagittal and 45◦ MTFs.

• Lower bounding the value of the on-axis MTF (it is an inequality con-
straint). This constraint acts somewhat like the minimization of the spot
diagram diameters in order to get good image quality.

In practice, it is sufficient to enforce similarity of the MTFs at only two or three
well chosen spatial frequencies. This method is very simple to implement in an
optimization routine and the modifications of the weights of each constraint can
be done in an intuitive manner to drive the whole optimization process on its
way.
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The conventional triplet is used as a starting point. During the optimization
process, we use the same variables and the same general constraints as in the
former conventional optimization in Sec. 3 (See Supplemental 1, section 1).
We also use the procedure previously explained to switch from fictitious (n,V)
glasses to real catalog materials. This results in the triplet shown in Fig. 1(b),
whose precise characteristics are given in Supplemental 1 (section 2). It will
be referred to as “EMTF triplet”. On a structural point of view, this new
configuration has a shape similar to the conventional triplet. The main difference
is that the central biconcave lens has become larger and its material has changed
(NSF8 instead of NSF10).

4.2 Analysis of MTFs and effective MTFs

Figure 2(c) shows the MTFs obtained with the EMTF triplet. Contrary to the
very disparate MTFs of the conventional triplet (Fig. 2(a)), these MTF curves
are very close to each other. No MTF (in any field position, and neither in
tangential nor in sagittal) presents nullings. On the other hand, they are, on
average, lower than in the conventional case. For example, the on-axis MTF,
which is quite high in the conventional case, takes values below 0.2 at a spatial
frequency of 40 lp.mm−1, whereas the Nyquist frequency is 100 lp.mm−1. It
goes below the relative noise curve at 60 lp.mm−1. The performance on the axis
is therefore lower than for the conventional system.
This difference in optical performance is confirmed by the RMS diameter of
the spot diagrams, which are much larger - by a factor of about 5 - in the co-
designed case (Fig. 5(b)) than in the conventional case (Fig. 5(a)). The shape of
the spot diagrams Fig. 5(b) is characteristic of the presence of strong aperture
aberrations (i.e. spherical aberration), which means that the MTF equalization
co-optimization method deliberately added aperture aberrations to the original
system, most probably to be able to decrease the field-variant aberrations, but
also in a special way that does not introduce early MTF nullings.
The study of this EMTF triplet would not be complete without considering
the digital processing by the average Wiener filter for which it was (implicitly)
co-optimized. Fig.2(d), the effective MTFs obtained after deconvolution are,
whatever the field position, close to 1 up to the spatial frequency 40 lp.mm−1.
This means that the reconstruction will be possible for all patterns with fre-
quency below 40 lp.mm−1, regardless of their position within the FoV. This was
not the case for the conventional triplet, where the effective MTFs (Fig. 2(b))
took very heterogeneous values, reaching zero at some positions in the field. The
effective MTFs of the EMTF triplet smoothly decrease only after 40 lp.mm−1,
due to the necessary trade-off made by the average Wiener filter between signal
and noise.

4.3 Analysis of final image Quality

To compare the performance of the hybrid systems based on optimized triplets,
we will use the IQmean (Eq. 8), Tab. 1. It is seen that without deconvolution, the
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Figure 5: Spot diagrams of (a) the conventional triplet and (b) the EMTF
triplet.

EMTF triplet yields a IQmean 2 dB lower than the conventional triplet. After
deconvolution, the performance of both triplets is identical: the performance
gain by deconvolution is thus very important for the EMTF triplet (2.6 dB)
and exactly compensates for the drop observed before deconvolution. This large
performance gain after deconvolution can be easily seen by comparing the first
row (without deconvolution) to the second (with deconvolution) of Fig. 6. In
the first case, the images appear extremely blurred, much more than in the
conventional case (Fig. 6(a-b-c)). On the other hand, the details appear well
restored after deconvolution (Fig. 6(d-e-f)).
In order to facilitate the comparison between the hybrid optical/processing sys-
tems, two details of the image are precisely analyzed Fig. 7. They belong to the
on-axis subpart image and to the extreme field subpart image. The observation
of these two details provides a good understanding of how the differences in
MTFs play into the imaging performance. We have already observed that the
conventional triplet shows an over contrast in the on-axis position (Fig. 7(c))
compared to the ideal scene image (Fig. 7(a)). This over contrast is due to the
excessively high value of the on-axis effective MTF at low spatial frequencies.
On the other hand, the effective MTFs for larger fields are relatively low, which
means that the reconstruction is poor. In particular Fig. 7(d), the pinnacle or-
naments are barely visible. Conversely, the MTFs of the EMTF triplet are very
close to each other, which explains that imaging performance is similar for the
on-axis detail (Fig. 7(e)) and the extreme field detail (Fig. 7(f)): the contrast is
less important on axis than for the conventional triplet, but the reconstruction
is better at the extremity of the FoV, where the ornaments of the pinnacle are
clearly visible.
It can also be noted that with the EMTF triplet, the deconvolved image is
slightly more noisy than with the conventional one: this can be seen with the
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Figure 6: Details of the cathedral image obtained with the EMTF triplet for an
SNR of 34 dB, (a-b-c) without deconvolution and (d-e-f) with deconvolution.

slight “orange skin” effect in the sky, Fig. 7(f). This observation suggests an
increased sensitivity to noise of the hybrid system based on the EMTF triplet.
This was expected since the MTFs of the EMTF triplet are globally lower than
those of the conventional one, so that the frequency-wise SNR before deconvo-
lution is smaller. However, since the MTFs of the EMTF triplet remain globally
higher than the noise level, deconvolution is still effective, even in the extreme
field (Fig. 7(f)): the noise is increased (and at the origin of the “orange skin”
effect), but the signal is clearly enhanced. On the contrary, for the hybrid sys-
tem based on the conventional triplet (Fig. 7(d)), the noise is not increased, so
the sky remains smooth, but the signal is not well reconstructed, as the effective
MTF is too low.
To conclude, co-optimization of the Cooke triplet by MTF equalization leads
to similar average performance as the conventional triplet, after deconvolution.
However, the distribution of the performance over the FoV is different: while
the conventional method favors the positions in the field close to the axis at the
expense of the extreme fields, the EMTF method homogenizes the performance,
as originally intended.
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Figure 7: On axis (first column) and the extreme field (second column) details
of the cathedral scene. (a-b) Ideal images. (c-d) Conventional triplet and de-
convolution. (e-f) EMTF triplet and deconvolution. (g-h) MMSE2 triplet and
deconvolution.
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5 The MSE as a co-design criterion

5.1 Implementation and use of the MSE criterion

So far, we have used the MSE to evaluate the performance of hybrid systems
(through the IQ criterion), but not as a direct co-optimization criterion. An
implementation of this criterion has already been done under Zemax [30, 36, 35],
but until recently, it seemed to us impossible to do the same under the other
well-known CodeV commercial lens design software, since it was not possible
to directly access PSFs (or 2D OTFs) in a user-defined error function during
optimization. Using the new features of CodeV version ≥ 11.0 (2017) that
remove these limitations, we have been able to implement – for the first time
to our knowledge - MSE optimization directly into CodeV. The details of the
implementation are given in Supplemental 1 (section 3). In this section, we co-
optimize a Cooke triplet with this method and compare its performance with
the two previously described triplets. This allows a fair comparison since all
these triplets have been optimized with the the same lens design software.
As for any optimization, the final solution, which corresponds to a local mini-
mum of the criterion, may depend on the chosen starting point. We have thus
considered two different starting points. The “MMSE1 triplet”, represented on
Fig. 1(c), has been obtained by choosing the conventional triplet as a starting
point. The “MMSE2 triplet”, displayed on Fig. 1(d), has been obtained by start-
ing from the EMTF triplet. The detailed characteristics of these two triplets a
given in Supplemental 1 (section 2). By comparing Fig. 1(c) and Fig. 1(a) on
the one hand, and Fig. 1(b) and Fig. 1(d) on the other hand, it is clear that the
MMSE triplets have kept the main structural features of their starting points.
However, we will see in the following that its imaging performance is different.

5.2 Analysis of MTFs and effective MTFs

Figure 2(e) represents the MTFs of the MMSE1 triplet. We can observe that
the on-axis MTF collapses quickly and shows a nulling at 50 lp.mm−1. On
the other hand, the other MTFs no longer show any nulling for low spatial
frequencies, which is a significant improvement over the conventional system.
As a result, Fig. 2(f), the effective MTFs higher than 0.38 for spatial frequencies
under 40 lp.mm−1, which was not the case in the conventional case (Fig. 2(b)).
However, the on-axis effective MTF presents a nulling (the same as for the on-
axis MTF). The optimization ofMSEmean (see Eq. 6) thus clearly gave priority
to the peripheral positions in the FoV over the on-axis MTF, whereas the on-
axis MTF is more often favored in conventional optical design because there is
naturally less aberration around the optical axis. This evolution was possible
because in the MSE-based criterion, the on-axis performance does not have a
larger weight than any other field.
Figure 2(g) displays the MTFs of the MMSE2 triplet. The MTFs are close to
each other, as for the EMTF triplet. Similarly, the effective MTFs are close to
each other (Fig. 2(h)). The MMSE2 triplet is the only system that has high
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effective MTFs over a wide range of spatial frequencies, with most of its effective
MTFs higher than 0.4 at 60 lp.mm−1. In terms of effective MTFs, it can thus
be considered as the best solution.

5.3 Analysis of final image quality

Let us now analyze the obtained image quality. It is seen in Table 1 that the
MMSE1 triplet and the MMSE2 triplet both yield enhanced image quality after
deconvolution. This was expected since they are optimized to have a smaller
MSEmean, but the important conclusion is that the performance gain is signif-
icant. Indeed, for the MMSE1 triplet, the image quality after deconvolution is
increased by 1.1 dB. This means that the optimization on the MSE, by tight-
ening together the previously disparate MTFs (Fig. 2(a) and Fig. 2(e)), made
the deconvolution by the average Wiener filter more efficient.
Similarly, the MMSE2 triplet yields a lower image quality than its starting point
(the EMTF triplet) before deconvolution, but a much better one after decon-
volution. It shows the best average performance after deconvolution, reaching
IQmean = 16 dB. The performance gain with respect to the starting point is
even larger in this case, since it amounts to +2.5 dB. Such a large increase in
IQmean can be explained by the fact that the effective MTFs are close to 1 for
a wider range of spatial frequencies.
This increased performance of the MMSE2 triplet is confirmed in the simulated
images, Fig. 8. Contrary to the conventional triplet, no over contrast is visible
on the restored on-axis subpart image (Fig. 8(d)). The middle field (Fig. 8(e))
and extreme field (Fig. 8(f)) subpart images also appear very well restored. It is
possible to observe the reconstruction more in details on Fig. 7(g-h). Compared
to the other hybrid systems, we notice that when using MMSE2 triplet, the
restored image is slightly more blurred on the axis, but much sharper in the
field: it is the method that best reconstructs the pinnacle ornaments. This
behavior was predictable from our analysis of the effective MTFs.
These results lead to several interesting conclusions. The main one is that the
hybrid system based on the MMSE2 triplet has the best performance among
the systems considered in this article, both in terms of quantitative and visual
image quality. This clearly demonstrates the benefit of implementing MSE-
based end-to-end optimization directly in a commercial lens design software.
The second conclusion is that both MMSE1 and MMSE2 triplets have kept
the characteristics of their starting points in terms of optical architecture and
properties (heterogeneity or homogeneity of MTFs). Since the MMSE2 triplet
performs better, this shows that, to reach our optimization goal (good image
quality at all FoV positions), it was preferable to choose as a starting point a
lens having already similar MTFs over the FoV. However, we can also suspect
that MSE optimization, as implemented, may have difficulties to “jump out”
local minima. The sensitivity of lens design to starting point is a long-standing
problem, and a lot of efforts have been done to bring solutions to it in the
framework of conventional optical design. An important perspective to the
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Figure 8: Details of the cathedral image obtained with the MMSE2 triplet for
an SNR of 34 dB, (a-b-c) without deconvolution and (d-e-f) with deconvolution.

present work is to devote the same efforts to enhance the capacity of MSE-
based co-optimization to find globally optimal solutions.

6 Conclusion

In this article, we have compared three different methods to co-optimize a hybrid
optical/digital imaging system with commercial lens design software: conven-
tional optimization based on minimization of the RMS diameter of spot dia-
grams, a surrogate criterion based on near equality of the MTFs and a true
MSE criterion taking explicitly into account the digital processing in the op-
timization process. To implement the latter method, we integrated – for the
first time to our knowledge – MSE optimization to the CodeV software. These
three methods have been illustrated and compared on a concrete application:
the design of a Cooke triplet having good image quality everywhere in the FoV.
The obtained results demonstrate the superiority of MSE co-optimization over
the other methods, both in terms of quantitative and visual image quality.
Analyzing in detail the different resulting lenses, we have shown that the con-
ventional triplet tends to favor the center of the FoV at the expense of the
extreme positions, whereas the hybrid system based on the MSE (the MMSE2

triplet) yields much more homogeneous performance thanks to co-optimization
with deconvolution. This homogeneity comes at the expense of the performance
on axis, but enable much better performance at peripheral FoV positions. This
shows that it is possible, by leveraging deconvolution during the optimization

18



process, to adapt the spatial distribution of imaging performance to a prescribed
goal- which was, here, to reach good performance over the whole FoV.
This work has many perspectives. First, we assumed that the deconvolution
algorithm was a unique linear filter common to all FoV positions. This post-
processing method is clearly not adapted to the conventional triplet, whose
MTFs are quite inhomogeneous over the FoV. They are much more homoge-
neous with the systems resulting from the two other methods, but there is still
residual inhomogeneity. To take into account the inhomogeneity of the MTFs
over the FoV and improve further the performance, it would be interesting to
consider spatially variant post-processing algorithms [7] in the co-optimization
process. Furthermore, recent works have proposed to use home-made differen-
tiable ray tracing connected with a deep neural-network [28, 25, 19, 31, 17, 14].
Comparison with the approach proposed in this paper, that uses a powerful com-
mercial software and a simpler (and faster) post-processing algorithm, would be
very interesting. Moreover, it would be interesting to improve the MSE opti-
mization method, by improving for example its speed of execution, its resilience
to the choice of the starting point, and also to study the effect of the SNR pa-
rameter, or optimize, using the multi-configuration possibility of the lens design
program, an optical system that should optimally work for different apertures
(e.g. variable iris diaphragm) and therefore different SNRs.

A Supplemental 1

This supplemental document presents the optical constraints used for the co-
optimization of the Cooke triplets presented in this article (Sec. A.1), the de-
tailed characteristics of the Cooke triplets co-optimized with various methods
(Sec. A.2), and the MSE optimization (Sec. A.3).

A.1 Constraints for optimization of the Cooke triplets

The general constraints applied to the four Cooke triplets are given in Table 2.
For the (fictitious) glasses, which can continuously evolve during optimization in
the (n, V ) or (n,∆n) map, where n is the refractive index, V the Abbe number
and ∆n the blue-red dispersion with V = (n−1)/∆n, we use the default CodeV
constraints that enforce the glass coordinates (n,∆n) to stay inside a realistic
glass map zone defined by a convex polygon whose vertices correspond to the
Schott glasses N-FK5, N-SK16, N-LAF2, SF4 [3, 4, 5].
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Applied constraints CodeV mnemonic Length [mm]
Minimal center thickness MNT 1.3
Maximal center thickness MXT 5
Minimal edge thickness MNE 1.3

Minimal air center thickness MNA 0.5
Minimal air edge thickness MAE 0.5

Table 2: Constraints applied on Cooke triplets (Strict inequality constrains for
all relevant lens elements enforced by the Lagrange multipliers method).
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A.2 Characteristics of the co-optimized Cooke triplets

We give here the characteristics of the different Cooke triples co-optimized in
this article: the conventional triplet (Tab. 3), the EMTF triplet (Tab. 4), the
MMSE1 triplet (Tab. 5) and the MMSE2 triplet (Tab. 6). Selected glasses are
SCHOTT glasses.

Surface Radius of curvature [mm] Thickness [mm] Glass
Object ∞ ∞ —

1 15.99 5.00 N-LAF2
2 34.61 2.72 —

3 (STOP) -49.47 1.30 N-SF10
4 16.62 2.75 —
5 37.10 3.21 N-LAF2
6 -29.05 41.50 —

Image ∞ -0.20 —

Table 3: Characteristic of the conventional Cooke triplet.

Surface Radius of curvature [mm] Thickness [mm] Glass
Object ∞ ∞ —

1 14.39 4.90 N-LAF2
2 27.42 1.50 —

3 (STOP) -57.93 2.22 N-SF8
4 14.44 2.04 —
5 29.37 3.13 N-LAF2
6 -34.37 41.06 —

Image ∞ -0.18 —

Table 4: Characteristic of the EMTF triplet (Cooke triplet optimized by MTFs
equalization).
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Surface Radius of curvature [mm] Thickness [mm] Glass
Object ∞ ∞ —

1 15.97 4.96 N-LAF2
2 34.58 2.68 —

3 (STOP) -49.94 1.31 N-SF10
4 16.45 2.73 —
5 36.16 3.40 N-LAF2
6 -29.36 41.58 —

Image ∞ -0.23 —

Table 5: Characteristic of the MMSE1 triplet (Cooke triplet obtained from the
conventional triplet with the MSE criterion).

Surface Radius of curvature [mm] Thickness [mm] Glass
Object ∞ ∞ —

1 14.41 4.77 N-LAF2
2 27.76 1.58 —

3 (STOP) -56.24 2.28 N-SF8
4 14.30 1.98 —
5 28.79 2.99 N-LAF2
6 -34.13 41.14 —

Image ∞ -0.18 —

Table 6: Characteristic of the MMSE2 triplet (Cooke triplet obtained from the
EMTF triplet with the MSE criterion).
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A.3 Implementation of MSE-based co-optimization in CodeV

CodeV lens design software offers the ability to write advanced optimization
macros, that may use externally coded efficient compiled extension in the form of
Dynamic Link Libraries (DLLs). It also offers, since version 11.0, the possibility
to calculate the point spread function (PSF) of a given field during the iterations
of its internal optimization algorithm, thanks to the predefined CodeV Macro-
PLUS function PSF DATA 1FLD. Therefore, we create a DLL, based on a code
written in C, taking as arguments the inputs (2D arrays describing the PSFs)
and the output (the MSE) which is calculated according to the values of the
PSFs. Note that computing a too large number of PSFs during an optimization
routine would not be practicable due to large computing time. Only thirteen
of them have been used during the optimization. The distribution of these
thirteen fields, used for the construction of the average Wiener filter useful for
the deconvolution of the image obtained with a Cooke triplet of half-field 20◦,
is presented in Fig. 9. Their positions guarantee a nearly rotational symmetry
of the average Wiener filter, so that it has no preferred direction.

20° field (±14.4, ±14.4)

14° field

10° field (±7.1, ± 7.1)

On axis

Figure 9: Representative scheme of the K = 13 positions in the field considered
for the construction of the average Wiener filter useful for the deconvolution of
the image obtained with an optical system of half-field 20◦.

In order to compute the value ofMSEmean(Ψ) (with here K = 13) using Eq.(3)
of the main paper that expresses it in the Fourier domain, it is useful to use
the FFTW free library available in C, which allows to efficiently compute the
Discrete Fourier Transform of the PSFs, and thus obtain the optical transfer
functions h̃ψk

. This implemented MSE does not take into account defects that
do not directly affect the shape of PSFs such as relative intensity change and
distortion (which can be otherwise constrained if necessary during optimiza-
tion). For optimization purposes, these two defects will be considered negligible
or easily corrected by post-processing, as they generally have little effect on the
visual quality of an image. The written C code must be compiled as a 32-bits
DLL (CodeV is only available for this software architecture) using a Synopsys-
supplied Makefile, extended to allow FFTW use. This allows one to obtain
a DLL (and associated files) that can easily be called in a homemade CodeV
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macro function. This function can then be called directly in the CodeV opti-
mization routine, like other functions of interest to the optical designer. The
optimization goal is then to make the obtained MSE result as close as possible
to 0.
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[7] Löıc Denis, Eric Thiébaut, Ferréol Soulez, Jean-Marie Becker, and Rahul
Mourya. Fast approximations of shift-variant blur. Int. J. Comput. Vision,
115(3):253–278, December 2015.

[8] Frédéric Diaz, François Goudail, Brigitte Loiseaux, and Jean-Pierre Huig-
nard. Increase in depth of field taking into account deconvolution by opti-
mization of pupil mask. Optics letters, 34(19):2970–2972, 2009.

[9] Donald C. Dilworth. Pseudo-second-derivative matrix and its application
to automatic lens design. Applied Optics, 17(21):3372, 1978.

[10] Edward R. Dowski and W. Thomas Cathey. Extended depth of field
through wave-front coding. Appl. Opt., 34(11):1859–1866, Apr 1995.

24



[11] Rafael Falcón, François Goudail, Caroline Kulcsár, and Hervé Sauer. Per-
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