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Abstract—Unmanned Aerial Vehicles (UAVs) can be a cost
saving and easy to deploy solution to implement a temporary
network infrastructure. They can act as access points in scenarios
such as emergency situations, special events, or specific area
monitoring.

Two main deployment families can be found in the literature.
The first one, the location-based family, is based on the funda-
mental assumption that the network user positions are known.
We do believe that this could not suit the most general scenarios.
On the other hand, the location-independent family can not be
as efficient as the first one. The main idea in this paper is to
introduce a new crowd-based family, based on a probabilistic
knowledge of user positions.

We then propose a self-deployment method built on a
Coulomb’s law analogy where users and UAVs act as electrical
charges. Short range interactions are implemented through
network sensing, while long range ones use a crowd-based
approach. Some numerical results are depicted, showing the
performance of this self-deploying mechanism as well as a
comparison with a well-known clustering algorithm.

Index Terms—UAV, drone, deployment, potential field

I. INTRODUCTION

In some scenarios where a network infrastructure needs to

be deployed within short delays, Unmanned Aerial Vehicles

(UAVs) can be an efficient solution.

Indeed, installing cables, antennas or satellite access require

heavy investments. Besides, as drones are moving objects,

they can reach areas inaccessible to humans, making them a

practical solution for impractical zones. Of course, satellites

can also fulfill this task, with a greater range of action, but

cost, maintenance and deployment time are still problematic.

In this paper, we consider the deployment of a wireless

mesh network of drones in a remote area where the quality of

the network is too poor to establish communications. Thus,

in this network of UAVs, the objective would be to convey

voice, but also video or data from users in difficult to access

areas. For instance in the context of a natural disaster in the

mountains where the classical telecommunication infrastruc-

ture is no longer operable. Our aim is to be able to offer

communication services to first responders, to facilitate the

coordination and intervention. We would then have a network

of drones that can be interconnected to the Internet via a

satellite gateway.

The goal of this paper is to study a novel self-deploying

mechanism for this drone network, capable of covering

many users without knowing the exact initial user positions.

The idea is to use a potential field like approach for the

deployment. There are plenty of research done on mobile

cells, access point or sensor deployment, but, as far as we

know, limited research was done on drone deployment as a

temporary access point without a priori information on user

positions.

The paper is organized as follows. Section II presents a

short state of the art of existing deployment methods. Section

III introduces the scenario, offers a detailed picture of our

method and the model implementation, Section IV presents

the general results as well as a comparison between our model

and a clustering algorithm, and in the end, some research

tracks for future work and a conclusion are given.

II. RELATED WORKS

To better understand the deployment solutions already

present in the literature, we classified them into two groups:

location-based methods, i.e. requiring initial positions of

nodes or users and location-independent algorithms.

A. Location-based deployment methods

In [1] the authors propose a two-step approach, grid search,

and enhancement prediction, to determine the best antenna

positions for femtocell deployment. User locations and traffic

demand have to be known in advance by the command center

to maximize the gain, applying a centralized approach.

The authors of [2] are proposing another optimization

approach called Mobile Small Cell Deployment (MSCD)

that tries to maximize the total in-service time of mobile

clients. The mechanism is a reduction for the facility location

problem. After computing the best positions, the antennae will

be placed randomly at some of these positions. Similar work

is also presented in [3] where the authors minimize macrocell

resource usage by computing the best femtocell positions.

Wang et al. presented in [4] an algorithm called Coverage

Configuration Protocol (CCP) for sensor networks. It can

determine the nodes’ placement to maintain a configurable

degree of coverage by intersecting the sensing circles. In

[5] another approach for sensor networks called Optimal

Geographic Density Control (OGDC) tries to minimize the

overlap between sensing disks to cover a given area.

All these approaches are centralized and static. To de-

termine the optimal deployment, location calculations must

be made in advance. If user hot-spots tend to change, the

antennae positions have to be recomputed.

Besides, several placement strategies can adapt the de-

ployment to mobile clients. These approaches were primarily

based on drones as nomadic platforms. In [6], [7], [8], [9]
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different optimal heuristics are presented for access point

placement. The authors of [6] search to place drones as

repeaters, relaying access points to users. By solving the

optimization problem, they maximize the end to end data rate.

They examine the optimal position between access points and

users. In [7], the goal is to provide better coverage to public

services; the access points are embedded on drones. By brute

force search, the UAVs are placed in areas where the signal

to noise ratio of base stations is weak. Knowing the user

positions, they adjust the UAV placement to maximize the

network throughput. The same technique is used in [8] where

the authors are maximizing the signal to noise ratio consider-

ing co-channel interference in a UAV mobile access network.

In [9], optimization heuristics are used to minimize the overall

transmit power in a mobile network covering ground users.

Even though the methods can adapt to user movement, the

computation still has to be done in a centralized manner.

A different plan of attack for deploying nodes to cover users

are the location-based clustering techniques. In [10], three

deployment schemes are proposed based on Voronoi polygons.

These solutions have the advantage to be distributed, each

node calculates and moves to the most favorable position.

In [11], Intelligent Deployment and Clustering Algorithm

(IDCA) is proposed using local clustering to place sensors

uniformly by moving in an energy efficient manner.

Two similar optimization approaches are presented in [12],

[13] each of them based on k-means. The former shows an

algorithm calculating UAV locations based on clustering. They

minimize the overall users’ distance to the cluster centroid.

The latter computes k clusters by minimizing the squared

distance between clients and drones, placing them in the

center of clusters. Both have the benefit of adapting to user

movement, but they use a centralized approach.

To summarize, there are many location-based algorithms

developed either for mobile cells placement, wireless sensor

networks or mobile access points using UAVs. They are either

optimization based or clustering approaches, the main criteria

for searching the best placement is either user oriented (in-

service time, throughput), or network oriented (signal to noise

ratio, interference, energy efficiency).

We do not consider using any of this solutions mainly

because, in our system, the user positions are not known in

advance and we consider that it is not feasible in real life.

In the second part, some location-independent approaches are

presented.

B. Location-independent methods

Regarding the solutions that do not use location information

as input, [14] presents a random mobile small cell placement

approach. The idea is to place picocells in a given area, ran-

domly. The authors compare this method to a grid placement

showing that the performance loss is insignificant compared

to planning costs for grid placement.

The authors of [15] propose to cover a given area, modeled

as a circle by the use of the circle packing theory. The purpose

is to place several drone access points as so each coverage

radius helps to fill the area. By adapting the transmission

power, they make sure that the circles don’t overlap, so they do

not create interference. A similar method was also presented

in [16]. Here, the authors optimize the number of wireless

access points to fill the region, obtaining a total coverage.

They are also using them to locate users. They control the

localization accuracy by varying the AP’s radius.

This kind of solutions cannot be put in place in our scenario

as the number of UAV has to be significant to cover the entire

area, wasting resources, in case users are concentrated in a

single place, for example.

In wireless sensor network, another method is used besides

those presented above. In [17], [18] another deployment

scheme for sensors is presented, using the physical principle

of potential fields. Like charges repel, and opposite charges

attract. An optimization approach is used in [17]. The authors

are using the potential field approach to maximize the distance

between sensors and to minimize the repulsion interactions.

A similar technique is used in [18], where the authors place

sensors acting as electric charges influenced by other sensors

or obstacles. They manage to cover the given area with

minimal movement; the sensors move only when a force is

exerted on them.

A summarized version of the related works is presented in

figure 1.

Our objective is to build a versatile solution, and we believe

that it should be crowd-based, distributed and dynamic. For

these reasons, our method is mainly based on potential field

law. In the articles cited above, this solution has been used to

minimize sensor movement and overlap. In our case, we aim

to use this technique to search and find users on the ground as

well as covering them in the most efficient way. The energy

saved by optimal moving is an interesting side effect that will

be investigated later.

In order to evaluate the consequence of not knowing user

positions, we will compare our solution with a location-based

one. We have chosen to use k-means based one as our solution

could be thought as a distributed flavor of such an algorithm.

We then hope to minimize the sources of bias.

III. PROBLEM MODELING

A. Scenario

Our primary objective is to use a fleet of UAVs as a

backbone for network connectivity. Users are scattered in a

given area, and they can move (depending on the scenario).

For this reason, we believe that location-based methods do

not suit such a scenario. Because of their movements, UAVs

may not be able to maintain a permanent connectivity and, as

a consequence, any centralized or even cooperative method

seems impossible. Accordingly, we will propose a distributed

method.

As an example, one could imagine an emergency situation

(earthquakes, fire, nuclear disasters, etc.). The UAVs can

be used to help the rescue teams providing communication

means as well as for observation (cameras on board). Another

scenario is the deployment of a cultural or sporting event.



Fig. 1. Classification of placement methods

There again, the UAVs will help the organizers by providing

communications, observation means or data collection (from

sensors on the ground or the participants).

B. Crowd-based methods

In the most general scenario, user positions are unknown.

For this reason, we do not believe that location-based methods

could wildly be used. On the other hand, most scenarios

exhibit a non-uniform distribution.

Location-based methods are not aware of this behavior,

and the performance may suffer from it. To circumvent this

drawback, we introduce a new class: crowd-based methods.

The basic idea is that, even though the actual position of

each user cannot be known with precision, we have some

information that can help us to determine areas where users

can be found. Such gathering areas can be imagined around

specific spots depending on the scenario. We can also imagine

crowd movements such as supporters during a sporting event,

or a herd in wildlife observation. In this paper, we will focus

on scenarios where users are gathering around some spots

called Point of Interest.

C. Our approach

1) User position: To represent the crowd phenomenon, we

introduce the notion of Point of Interest (POI). Users are

supposed to be close to POIs. A Point of Interest could be any

special spot, depending on the scenario (a command center

in emergency situations, a refreshment point in a sporting

event, etc.). The position of a particular user is not known,

but the well-known position of the POI give some statistical

information about user positions. An important property of a

POI is its attractiveness, which measures how close users are

from it. We will give a formal definition later on.

TABLE I
SCENARIO PARAMETERS

characteristics value

# users 300

# UAVs 5 - 30

# POIs 5

area size 0.8km2

tests/value 50

coverage continuous coverage

2) Introduction: To fulfill our objective, we need the UAVs

to move toward the users. Of course, we want a cost-effective

solution, so each UAV has to cover as many users as possible.

We will use the Points of Interest to estimate users position;

our solution is then a crowd-based one. Furthermore, we want

the UAVs to be able to act autonomously. These constraints

lead us to use a model based on electrically charged particles

interactions.

3) Model description: We want to place UAVs as access

points above a large number of users with random positions

in a defined area. UAVs are thus supposed to get as close as

possible to a maximum number of users. For this purpose,

we have chosen to represent their interactions with the help

of a model inspired by Coulomb’s law. In this model, a user

is described as a positive electric charge and a UAV as a

negative electric charge. UAVs are then attracted by users.

There are, however, lots of fundamental differences with

the well-known law of physics. These variations come from

the objectives of our model:

• Users should not be repelled by one another, so there is

no interaction between them in our model.

• We want the UAVs to move towards the users, but the

users are free to move without any constraints, therefore

they are not attracted by the drones.

• In a real world implementation, UAVs can not be aware

of out of range users, so in our model interactions take

place in the sensing range, named d.

• To implement multiple channels ”particles” come in

different colors. Those with different colors can not

interact, whatever their charge is.

• Particles can spontaneously change their color. With

this option, we plan to implement some form of load

balancing.

Figure 2 illustrates this model. Three UAVs (named Ui)

cover seven users (A to H). Each UAV is placed at the

centroid of its users, as a consequence of the sum of the forces,

they exert on it. U2 has no interaction with other UAVs, while

U2 and U3 repel. D could change its color from orange to blue

(associating with U1).

Please note that the defined sensing range d should be

chosen in accordance with the physical network used. If a

user is detected in this area, the UAV will be then attracted

to it. However, by setting d = ∞ our solution becomes a

location-based method, as the drones detect every user.



Fig. 2. Illustration of our model

4) Initial position: We imagine that the drones leave from

the management center, placed arbitrarily at (0, 0). They will

activate the sensing mechanism to search the users. Their goal

is to fly towards the POIs, searching for users. As soon as a

UAV finds someone, it will stop over to cover the users. The

major risk is that they will get attracted by isolated users on

their way to the Points of Interest.

Of course, this problem increases when the attractiveness

of the POI decreases. The more the users are gathered around

the POIs, the less isolated clients could attract a UAV.

For these reasons, we imagine varying the position where

the drone activates the sensing mechanism. This will help

us to analyze if the initial position of the drone impacts the

results. We can also imagine activating the UAV either at a

random position or when it arrives over a certain POI. We

call these two versions Cd,R, when the drones are activated

at a random position and Cd,P when they are activated at the

POI. d is the sensing range, previously described.

5) Location based version: We plan to study the dif-

ference between our probabilistic location-based model and

a pure location-based model. We modified our algorithm,

for comparison reasons, by increasing the sensing range to

infinity. Hence, we introduce here C∞ when our model has

every user positions. We then compare our method with

a clustering mechanism like k-means. Since the algorithm

imposes a global knowledge of users locations, we cannot

limit its sensing range. Similarly, we call it k∞. In either

case, when each algorithm finishes placing the drones, we

will measure the coverage rate by taking into account only

the users that are in the sensing range of UAVs/clusters.

In the next part, we will present how this model is imple-

mented in our simulator.

D. Model implementation

The purpose of this section is to expand on the implementa-

tion choices made for simulation purpose. Our simulator was

created in Java for easy access to a graphical interface.

The basic idea is to simulate the attraction and repulsion

forces between users and drones as well as the coverage of

UAVs over the users. Our model can be adapted to whichever

wireless physical technology as the ”electrical field” emitted

by charges is based either on the signal power or the media

access control messages like Wi-Fi beacons, for instance.

Fig. 3. Difference between theoretical and actual p

The fundamental principle of the developed model is that the

UAVs will be attracted by users, having opposite charges, and

repelled by other UAVs, like charges.

Each user has a weight, the quantity of charge. This feature

can be used to prioritize users, by type of demanded service or

importance, firefighters, organizers, etc. Earlier we introduced

the sensing range d. If two drones sensing disks cross each

other, a repulsive force will exert on these UAVs. Both

forces are computed by using Coulomb’s law taking into

consideration both charges and the distance between the two

of them. Each drone movement results from the sum of this

two vectors, attractive and repulsive forces. We opted for this

solution so if a UAV is connected to lots of users and another

drone crosses its sensing range, it will remain static. Only the

intruding UAV will repel.

In our implementation, POIs are placed by using a bidi-

rectional uniform distribution. Of course, depending on the

scenario, more suitable distributions could be used. As for

the users, we use the following algorithm. Each user belongs

to a specific POI (in this paper, users are equally distributed

among POIs). A direction is randomly chosen with a uniform

distribution [0, 2π]. The distance from the Point of Interest

then follows a normal distribution with standard deviation σ.

We want to focus on the impact of the ”attractiveness” of

the POI on the efficiency of the drone positioning algorithm.

For this purpose, we define the covering range, equal to the

sensing range d and a probability p that the distance between

a user and its POI is lower than d.

For each simulation, σ is then chosen as a function of p
and d. Figure 3 shows pout as a function of p, where pout is

the probability that a user is at a distance < r from any POI.

We can notice some side effects:

1) the area is finite;

2) a user can be far from its POI but close to another one.

These effects lead to a pout value greater than p. This

impact is more significant for small values. In this paper, we

focus on scenarios where users cluster around the POI. As

a consequence, we will not take into consideration the small

values of p.

Other meaningful parameters regarding the implementation

are presented in Table I. In the next section, we introduce the

performance results of our method, as well as the results of

the comparison between Cd, C∞ and k∞.



Fig. 4. User coverage Cd,0

Fig. 5. Coverage comparison between different flavors of our method

IV. SIMULATIONS AND RESULTS

In this section, different test-cases with their results and

conclusions about the proposed model will be presented.

A. General results

To start with, we need to check if the drones are indeed

trapped by isolated users. We start with 5 Points of Interest

and 5 UAVs, departing from the management center at (0, 0).
In the results presented in figure 4 we clearly see that our

assumptions are confirmed. As the UAVs leave from the

same spot flying towards the POIs, they get ”stuck” covering

isolated users around (0, 0). As a consequence, the coverage

ratio is low, specially for low values of p.

The need for diversity regarding the UAVs’ start points is

thus confirmed. Of course, to limit the deployment costs, all

the drones will still leave from (0, 0). We will activate the

user detection on each drone when it is already flying. Either

when it is in a random position or over the POI.

In the next part, we study the impact of location information

on the deployment.

B. Location-based versus location independent

In this section, we analyze the performance of our crowd-

based algorithm, Cd, and a location-based version, C∞. We

can add this information by increasing the sensing range to

∞. We will then look at both location-based schemes (C∞,P ,

C∞,R) and crowd-based schemes (Cd,P , Cd,R).

By analyzing the comparison between Cd,P and Cd,R, in

figure 5, we notice that adding some information on potential

user positions, by taking into account the POIs, increases

the coverage probability by 20%, even though there are 50%
chances that the users are located near the point of interest.

We could be tempted to think that having the exact location

of each user could be an advantage for covering everyone.

Because each drone has a limited coverage range, on the

other hand, having this information could be a disadvantage,

as a UAV could thus move forward to an unreachable user.

Looking at the comparison between Cd,P and C∞,R or C∞,P

we can make the following conclusion. Detecting users only

when they are in the drone’s sensing range has the same

performances as knowing all the user positions from the

beginning. The interest of gathering all the exact positions is

minimal compared to the complexity of the gathering method.

The measurement of the coverage rate is done by taking

into account only the users that are in the coverage range,

as explained previously. By not having any information as

input to our algorithm, Cd,R, the coverage rate remains low

in comparison to the other schemes, hence the importance of

POIs.

C. Equivalence between C∞ and k∞ in a POI based location
scenario

As mentioned earlier, we want to compare the proposed

model to other solutions. Our work can also be seen as a

method of user clustering. Our solution is then compared to

a clustering algorithm like k-means, a classical wildly used

location-based solution.

We extensively analyzed the coverage rate of both algo-

rithms by varying between 5 and 30 the number of UAVs.

With an infinite sensing range for the drones, C∞,P we can

be as close as possible to k-means, k∞,P . In figure 6 we

can see that our model is performing exactly as k-means in

this situation. Both are having the same information, they

can cover the users in the same proportion, even if they use

different approaches.

We looked then to Cd,P . In figure 7, we present the

user coverage comparison between Cd,P and k∞,P . Globally,

our algorithm, without exact knowledge of user positions,

but drones activated at POI, performs well in comparison

with the clustering mechanism. In this figure, we notice that

the clustering method have slightly better results than our

algorithm. The initial position information helps k∞ to better

place the clusters’ centroids, by taking into account the local

information.

As the difference regarding user coverage is fairly small

between our model and the clustering algorithm, we con-

sider that our contribution is substantial as it demands little

resources, no exact location information and no centralized

computations. In the next section, we present our conclusions

on our work as well as some future works.

V. CONCLUSION AND FUTURE WORKS

In this paper, a novel method of node deployment for a

network of UAVs used as access points is presented. By

looking at the existing solutions of deployment, two major



Fig. 6. Coverage comparison C∞,P and k∞,P

Fig. 7. Coverage comparison Cd,P and k∞,P

classes can be distinguished, location-based and location-

independent solutions. With regard to our scenario, we choose

to introduce a deployment method that is neither location-

based, nor location-independent. For this reason, we propose

to describe it as a ”crowd-based” method.

We came up with a solution based on Coulomb’s law. The

users are positively charged, and the UAVs are negatively

charged, being attracted to users. After presenting the model,

some numerical results are described. Also, we compared our

model to k-means, a location-based solution. By looking at the

comparison, we notice that our solution performs very well,

even compared to a location-based algorithm, the benefit being

that our proposal demands no exact location information and

no centralized computations are needed to deploy the nodes.

We are currently working on some experimentations by

implementing our model on UAVs, to confirm these results. A

real-world implementation will introduce some bias we want

to evaluate: there is, of course, no Coulomb’s law available,

and we need to use network sensing to drive UAV mobility.

Of course, user mobility is an important point we will study.

Being distributed and easy to implement, our solution should

be efficient in a mobile scenario. We also plan to implement a

covered users’ threshold. Under this limit a UAV will not stop

over some covered users, continuing to search better coverage

positions.

Besides, we plan to test our model with multiple physical

channels by using the color scheme previously described. Our

solution is built to behave as a distributed clustering algorithm

in such a situation.

Furthermore, as all simulations detailed above are using

some users equally distributed between the points of interest,

we can imagine introducing some weight on each POI to

proportionally distribute users among them. Another idea is

to do an extensive study on the behavior of our method in the

case that there is no point of interest defined.
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