
HAL Id: hal-03636707
https://hal.science/hal-03636707

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cooperative SoS Architecting Approach Based On
Adaptive Multi-Agent Systems.

Teddy Bouziat, Valérie Camps, Stéphanie Combettes

To cite this version:
Teddy Bouziat, Valérie Camps, Stéphanie Combettes. A Cooperative SoS Architecting Approach
Based On Adaptive Multi-Agent Systems.. 6th International Workshop on Software Engineering for
Systems-of-Systems (SeSoS 2018), May 2018, Gothenburg, Sweden. pp.8-16. �hal-03636707�

https://hal.science/hal-03636707
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22380

Official URL

DOI : https://doi.org/10.1145/3194754.3194756

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bouziat, Teddy and Camps, Valérie and
Combettes, Stéphanie A Cooperative SoS Architecting Approach
Based On Adaptive Multi-Agent Systems. (2018) In: 6th
International Workshop on Software Engineering for Systems-of-
Systems (SeSoS 2018), 29 May 2018 (Gothenburg, Sweden).

ABSTRACT

This paper focuses on Systems of Systems (SoS) modeling and
architecting. SoS architecting deals with the way that independent
components of a SoS can be dynamically structured and can change
autonomously their interactions in an efficient manner to fulfill the
goal of the SoS and to cope with an evolving environment.
In this context we defined a new model called SApHESIA (SoS

Architecting HEuriStIc based on Agents) focusing on the environ-
ment and its dynamics. We also proposed a cooperative heuristic
to control interactions exchanges between components. These
contributions are then instantiated to a case study and evaluated
through two scenarii. Obtained results are finally discussed and
some perspectives are given.

1 INTRODUCTION

Since the World War II, researchers tend to develop methodologies
and tools to build and control the development of more and more
complex systems and projects.
This is the apparition of the System of Systems (SoS) concept,

that spreads in civil domain such as crisis management or logistic
systems. A SoS is a complex system characterized by the particular
nature of its components: these latter, which are systems, tend
to be managerially and operationally independent as well as geo-
graphically distributed. This specific characterization led to re-think
research areas of classic System Engineering such as definition, tax-
onomy, modeling, architecting and so on. SoS architecting focuses
on the way independent components of a SoS can be dynamically

DOI: 10.1145/3194754.3194756

structured and can change autonomously their interactions in an

e!cient manner to ful"ll the goal of the SoS and to cope with the

high dynamics of the environment.

 is paper deals with two SoS research areas: SoS modeling

and SoS architecting. To achieve the "rst point, we propose a

new model called SApHESIA (SoS Architecting HEuriStIc based on

Agents) taking into account the environment in which the SOS is

involved. is is one of the originalities of SApHESIA. We have

used set theory and agent paradigm to de"ne this model that takes

into account the characteristics of SoS. Secondly, we present a new

SoS architecting proposition based on the Adaptive Multi-Agent

System (AMAS) approach that advocates full cooperation between

all the components of the SoS through the concept of criticality.

 is criticality is a metric that represents the distance between

the current state of a component system and its goals. In this

proposition, the SoS architecture evolves during time to self-adapt

to the dynamics of the environment in which it is plunged, while

taking into account the respective local goals of its components.

We also propose a management and visualization tool to observe

and act on the SoS during its functioning both at the overall level

and at the component systems level. e actions can concern links

between component systems (which can be dynamically added or

deleted), parameters, etc. Finally we instantiate this model on two

scenarii (military domain) in order to validate the e!ciency, the

functionally adequacy and the robustness of our SoS architecting

proposition.

 e paper has the following structure: at "rst main properties

and characteristics of SoS are brie%y discussed, and we propose our

de"nition of SoS. A&er this, the SApHESIA principles are described,

followed by experimentations and results analysis.

2 SYSTEM OF SYSTEMS

Concepts of SoS and SoSE (SoS Engineering) appeared when System

Engineering (SE) focused on how to design a group of more or less

independent complex systems working together to ful"ll a higher

goal.

Authors have given a lot of de"nitions from various areas ([15],

[20]) but unfortunately they propose neither a consensual de"nition

of SoS nor common characteristics of SoS. Research e'orts have

then been put on SoS taxonomy and theoretical foundations during

these last ten years in order to "nd a generic de"nition [18], [14],

[6].

A Cooperative SoS Architecting Approach
Based On Adaptive Multi-Agent Systems

Teddy BOUZIAT
Valérie CAMPS

Stéphanie COMBETTES
teddybouziat@gmail.com
Valerie.Camps@irit.fr

Stephanie.Combettes@irit.fr
IRIT Lab, University of Toulouse - Paul Sabatier

Toulouse, France

2.1 Main Properties and Characteristics of SoS
Maier in [18] was the "rst to characterize SoS; he gave "ve main
properties accepted by researchers working on SoS ([14],[21]), that
distinguishes a SoS from a traditional complex system. e opera-
tional independence means that a component system removed
from the SoS continues to operate independently. e manage-
rial independence means that a component system takes its own
decisions concerning what it has to do. e geographical dis-
tribution means that in a SoS, exchanges between component
systems only concern information di'usion. An emergent behav-
ior at the SoS level is the production of an overall behavior that was
not implemented (and so not predicted) in its component systems.
Finally, an evolutionary development is a dynamic development
that takes care and integrates the changes (structure, use etc.) that
occur within the SoS at runtime.
Some convergences between the di'erent characterizations of Gorod
[13], Sauser [6] [4] and Bjelkemyr [5] exist. us they propose the
ABCDE characteristics that distinguish classic systems from SoS.
Autonomy is derived from the operational and managerial inde-
pendence and refers to the independence of the component systems
from each other and from the SoS itself. Conversely to classical
systems, component systems of SoS are autonomous. Belonging
is a balance between autonomy and the loss of a part of the inde-
pendence for the bene"t of the SoS goals. It is also the ability to
give/accept assistance to/from others component systems to con-
tribute to the goal(s) of component systems. Conversely to classical
systems, in SoS, component systems have the choice to belong or
not to a SoS by negotiating and evaluating their interests in or-
der to ful"ll their own purposes. Connectivity is the capability
to connect component systems as they need. In SoS, component
systems manage their connectivity that evolves during time. Di-
versity refers to the notion of variety in a system, which is a direct
reference to the Law of Requisite Variety of Ashby [2]. e la�er
states that to maintain its stability, a system must have a level of
variety at least equals to the variety of the environment (the outside
of the system) it evolves in. is variety enables to cope with the
changes that occur in the environment. In SoS, this characteristic
is essential because of the environment dynamics, and it can be
increased for example, by adding new component systems into the
SoS. Emergence means the apparition of phenomena produced by
a system, this apparition not only being the result of the simple sum
of its parts. [16] considers the emergence as being the movement
from low-level rules to higher-level sophistication. In SoS, the idea is
to create conditions where both foreseen and unforeseen behaviors
appear to cope with the environment dynamics.

2.2 Our Proposition of SOS De nition
We propose, here, the following de nition of SoS taking into ac-
count the addressed characteristics : a SoS is composed of interacting
systems, called component systems, that are autonomous and may
evolve in a dynamic environment. A SoS may have a central man-
agement with its own objectives and can use subordination to force
component systems to act as desired.
Component systems and SoS have operational and managerial

independences. ey may be geographically distributed and their
dynamic interactions can give rise to an emergent behavior at the

SoS level. ey adapt themselves to the evolution of the SoS during

time and to the constraints of their environment. SoS are open

(component systems can join or leave the SoS during functioning).

We proposenine criteria to evaluate existing generic SoSmod-

els and to show their limitations. e "ve "rst ones correspond

to the Maier’s criteria (heterogeneity, managerial independence,

geographical distribution, operational independence, interactions

between component systems) while the four other ones concern

the SoS and the environment models: modeling of SoS (ability

to model one SoS as an autonomous entity with its own goals),

dynamic environment modeling (ability to model the dynamic

environment in which the SoS evolves), global expressiveness

(ability to express problem in order to model the SoS), andmetric

de nition (ability to de"ne useful metrics, e.g. the global cost or

the performance of the SoS).

We only found two SoS models in the literature: (i) a model based

on set theory [3] and (ii) a based-wave model [1]. Both have a lack

concerning their realism and fail concerning our evaluation criteria.

 e model based on set theory [3] seems hard to use for studying

real cases of SoS because of its lack of expressiveness. Furthermore,

the interactions between component systems in both models are

not used, and the environment is not addressed or not dynamic.

However as [12] explains, the autonomous adaptation of a system

is always relative to the environment in which it is immersed. e

adaptation process “is not in the system, nor in its environment, but

between them”; a system and its environment in%uence each other

through a coupling, very close to the notion of structural coupling

de"ned by [19]. In other words, the system acts in the environment

to achieve what it was designed for. e environment being open,

there is no guarantee that :

• the actions undertaken by the system have the desired

e'ects,

• nor that an entity in the environment has acted in contra-

diction with the purpose of the system during the decision-

making process,

• nor that the state of the environment has changed since

its last perception.

 en the “response” of the environment to the action of the system

constitutes a pressure, a constraint that the system has to take

into account in order to adjust, to learn the proper behavior that

guarantees the expected overall functionality of the system.

 is analysis (a deeper one can be found in [7]) leads us to

propose a new generic SoS model to "ll these lacks.

3 OVERVIEW OF SAPHESIA PRINCIPLES

SApHESIA (SoS Architecting HEuriStIc based on Agents) enables

to model a SoS by focusing on its environment as well as on the

interactions between its Component Systems (CS) while using the

multi-agent system paradigm. It consists of the SoS (made of CS

and goals) as well as its environment (made of entities and rules).

3.1 Component System Model

A component system CS is the smallest part of a SoS and rep-

resents an element of the second S of SoS. It is de"ned as CS =

{T ,R,Aq,L, F ,G,Cost} where

• T is the type of CS within the SoS,

Figure 1: Components Overview of SApHESIA Model

• R = {R1, ...,Rn } is the set of its resources,

• Aq = {Aq1, ...,Aqq } is the set of acquaintances of CS ,

• L = {L1, ...,Lq } is the set of links of CS with others com-

ponent systems,

• F = {F1, ..., Fm } is the set of its functionalities,

• G = {G1, ...,Gp } is the set of its goals, and

• Cost ∈ R is the cost of CS .

More precisely, the type is a string that represents a kind of

component systems in the SoS.

A resource Ri is a structure Ri = {type : Strinд,quantity :

Float} which represents the passive elements (i.e. which has no

e'ector) in the SoS.

An acquaintance is an oriented association between two com-

ponent systems (aqCS = {CS
′}) meaning that the "rst CS knows

the second CS ′.

A link is an oriented channel (lCS = (CS ′, soa)) enabling ex-

changes (of communication or resources) from CS towards CS ′,

where soa ∈]0, 1] is the strength of this association (i.e. the quality

of the channel).

A functionality F is an e'ector that can a'ect (i) its own re-

sources and/or the ones of other CS of the SoS as well as (ii) the

links between CS. F = { f , t ,p} where t is the execution time of

F, p ∈ [0, 1] is the performance (i.e. the probability of success)

of F and f = Conditions → E f f ects is a function of F where

Conditions and E f f ects are sets that represent respectively the

conditions for f to be executed (e.g. a certain quantity of resources

or the existence of a link between two CS or the existence of a CS)

and the e'ects applied on the SoS or the environment once f is

executed (e.g. a certain quantity of resources or the existence of a

link between two CS). In the SApHESIA model, the functionalities

need to be de"ned by the SoS designer, so they are considered as

system inputs. us, di'erent con"gurations of the SoS can be

tested by the designer and they can help him to do tuning in order

to decision-making values.

A goal is the special state that CS tries to reach with a given

priority. is state can be i) to own a certain quantity of a type of

resource or ii) the existence of a link between one CS and another

one.

A cost is associated with each CS , representing its charge and

the charge for the SoS when it uses it. is charge depends on the

problem.

3.2 SoS Model

We propose to model a SoS as SoS = {S,G} where

• S is the set of component systems and

• G is the set of goals, which may be a subset of the goals of

the component systems of S according to the type of the

degree of central management of the SoS.

3.3 Environment Model

An environment is de"ned as E = {Entities,Rules} where

• Entities is a set of entities that represent active indepen-

dent objects which are able to a'ect the environment or

the SoS itself and

• Rules is a set of rules that model exterior constraints ap-

plying to the SoS.

An entity is an active independent object that is not a part of the

SoS . It is de"ned as a set of sets : Ei = {T ,R,Aq,L, F ,G} where

• T is the type of Entities ,

• R = {R1, ...,Rn } is a set of resources,

• Aq = {Aq1, ...,Aqq } is a set of acquaintance,

• L = {L1, ...,Lq } is a set of links,

• F = {F1, ..., Fm } is a set of functionalities, and

• G = {G1, ...,Gp } is a set of goals.

 ese six elements are similar to those of the CS presented in 3.1.

Nevertheless an entity can be linked to another entity or to a CS

contrary to CS that can only be linked with each other.

A rule (Rule = {Conditions → E f f ects}) models how the envi-

ronment reacts, evolves and interacts with the SoS. A rule a'ects

all the entities in the environment and/or all CS in the SoS that

ful"ll the Conditions .

Figure 1 sums up the relationships between the elements previously

described that compose SApHESIA model.

3.4 Criticality as Heuristic for Architecting SoS

Criticality is a concept used in the AMAS (Adaptive Multi-Agent

Systems) approach in order to make the agents cooperate and the

system self-organize. e AMAS approach [9] enables to solve prob-

lems for which an a priori solution does not exist. More concretely,

this approach allows to design complex systems whose the overall

function is not implemented in the parts (agents) of the system.

It focuses on the design of multi-agent system (called Adaptive

Multi-Agent Systems) that uses self-organization to make the col-

lective function emerge, and to make the agents adapt themselves

to the environment changes. In others words, the behaviors of each

agent will lead to change the organization (or architecture) of the

multi-agent system and so to produce a new collective function.

To give rise to this new overall function, agents uses the concept
of cooperation between each other and their environment. e
cooperation of an agent is the social a�itude that makes an agent
help other agents (itself included) to ful"ll its goals. us an agent
has to choose the action that is the most helpful for the others and
for it. e best cooperative action is chosen according to the current
di!culty of agents through a metric called the “criticality”.
 e AMAS approach instantiates the notion of an agent’s critical-

ity to the problem to be solved. Criticality is the distance (possibly
temporal, spatial or even logic distance) between the current situa-
tion of the agent and its local goal; the more the agent is far from
its goal, the more it considers that its current situation is critical
[17]. It then de"nes the cooperative local treatments it must apply
to reduce the criticality of the most critical agent (possibly itself),
avoiding that this process leads another agent to become more
critical.

We presented in [8] a generic and computable de"nition of criti-
cality as a function taking as inputs, a subset of perceptions and its
goals concerning these perceptions. e criticality C of an agent i
at time t is

Ci (t) = F (p1(t), ..., pn (t), Sдoal)
where P(t) = {p1(t), ..., pn (t)} is the entire set of perceptions of the
agent i and Sдoal is a subset of P . To know the result of one of its
actions on its own criticality an agent needs to know the anticipated
criticality of this action. Formally, the anticipated criticality of an
agent i for an action a is de"ned as

CAi (t , a) = Ci (t) + E f f (a)
with Ci (t) the criticality of a at time t and E f f (a) a function giv-
ing the e'ect in term of criticality for the action a . Finally, the
anticipated criticality can be calculated for a sequence of actions
A = {a1, a2, ..., an } as

CAi (t , A) = Ci (t) + Σi ∈[1,n]E f f (ai).

3.5 Instantiation of Criticality in SApHESIA
As we want to use the concept of criticality in order to propose
a generic cooperative decision algorithm for architecting SoS, we
propose a generic formulation of criticality for a CS based on the
SApHESIA model.
We "rst adapt the de"nition of this concept to SApHESIA ac-

cording to the resources and goals of a CS. us, the current state
of a CS is represented by the perceptions of its current resources
and the state it tries to reach is represented by its goals. We de"ne a
criticality for each goal д in the set of goals G of the component sys-
tem CS . is criticality has to represent the distance of ful"llment
of д. e criticality Cд (t) of the goal д at time t can be de"ned by:

Cд(t) =

(1) : 1 −
1

eα×∆д (t)
(3) :

atan((α × ∆д(t)) +
Π

2
Π

(2) :
1

eα×∆д (t)
(4) : 1 −

atan((α × ∆д(t)) +
Π

2
Π

(1) the goal д has to be equal to a given quantityQu of Re (resource),

(2) the goal д has to be di'erent from a given quantity Qu of Re ,

(3) the goal д has to be smaller or equal to a given quantity Qu of

Re ,

(4) the goal д has to be greater or equal to a given quantity Qu of

Re ,

where ∆д(t) is the di'erence between the given quantity Qu and

the current amount of resource Re of CS and α is a coe!cient

in%uencing the shape of the curve. For example, if the goal д

concerning a resource Re has to be greater (resp. smaller) than

a given threshold quantity Qu, then the criticality of д has to be

high if Re is smaller (resp. greater) than Qu, and small if the Re is

greater (resp. smaller) than Qu. ese sigmoid functions have been

chosen as their shapes correspond to the meaning of each goal.

Nevertheless one issue is that the criticality of di'erent CS of a SoS

can be calculated in various ways [17]. For example a criticality

may belong to I1 = [β,γ] whereas another one to I2 = [β
′
,γ ′]. To

solve this point a normalization of criticalities has to be done from

I1 to I2 and vice versa; a proposition is given in [7].

3.6 Cooperative Decision Algorithm for

Component Systems

A component system is modeled as an autonomous entity (agent)

having a Perceive − Decide − Act cycle. e proposed decision

algorithm 1 is implemented during its Decision phase in order to

choose the most cooperative action (here a functionality).

1 CoopTable As Dictionnary < Functionality,Dictionnary <

ComponentSystem,List < Float >>> ;

2 forall f ∈ Fi do

3 forall CSj ∈ Li ∪Ai do

4 CoopTable(f)(CSj) =

CoopTable(f)(CSj) ∪ askAnticipatedCrit(CSj , f) ;

5 forall CSk ∈ (Li ∪Ai) do

6 CoopTable(f)(CSj) = CoopTable(f)(CSj) ∪

askAnticipatedCrit(CSj ,CSk , f) ;

7 end

8 Sort CoopTable(f)(CSj);

9 end

10 end

11 returnminmaxFunc(CoopTable) *Choose f that minimize the

max of criticality*;

Algorithm 1: Cooperative Decision Algorithm of CSi

Basically each component systemCSi = {Ti ,Ri ,Aqi ,Li , Fi ,Gi ,Costi }

has to construct the cooperative table and to choose the most coop-

erative functionality.

The Cooperative Table Construction: is table contains the

anticipated criticalities lists ofCSi as well as its neighborhood for all

the functionalities it can apply. To construct it, CSi asks for the an-

ticipated criticality of its neighborhood (using Aqi and Li) for each

functionality f ∈ Fi with the function askAnticipatedCrit(CSj , f)

(line 4 of algorithm 1) with CSj and a functionality f as inputs.

 is function returns the value of the anticipated criticality of CSj
if CSi applies f on CSj . is anticipated criticality is saved in a

new line (identi"ed by a couple (CSj , f)) of the cooperative table

CoopTable . e anticipated criticalities of other component sys-

tems (including CSi) are added to this line through the function

askAnticipatedCrit(CSj ,CSk , f) that returns the anticipated criti-

cality of CSk if CSi applies f on CSj (line 6). Finally, all the lines

are sorted from the highest criticality to the lowest one (line 8).

TheMostCooperative FunctionalityChoice : OnceCoopTable

built, CSi chooses the most cooperative functionality in terms of

criticality (minmaxFunc) to minimize the maximum of neighbor-

hood criticality. Indeed, from an AMAS point of view, each CS tries

to “help” its neighborhood by choosing the functionality that, in the

worst case, causes the minimum raise of criticality. is cooperative

behavior applied by all the CSs can be seen as a totally decentral-

ized and cooperative heuristic only based on a local comparison of

anticipated criticalities.

4 PROPOSED TOOLS, EXPERIMENTATIONS

AND RESULTS

A&er a brief description of the managing tool implemented in order

to architect SoS with SApHESIA, this section presents an instantia-

tion of SApHESIA model with the Missouri Toy Problem [11], the

scenarii and metrics and then discusses the obtained results.

4.1 Overview of SApHESIA Managing Tool

Figure 2: A Functionality Creation

 e SApHESIA managing tool enables to study SoS architecting

by simulating interactions between CSs in a dynamic environment.

It is made of two components:

• the SoS and Environment Generator that generates the

simulation from the inputs describing the SOS and its en-

vironment. It enables (i) to add or remove CSs and entities

during the simulation, (ii) to change all the di'erent prop-

erties of a CS (resources, links, goals, etc.). us the e'ects

of these changes (on the SoS or on the environment) may

be seen at runtime, without re-launching the simulation to

update these e'ects. e use of SApHESIA Modeling Lan-

guage (SML) based on XML "les containing the description

of a prede"ned SoS and environment in a SML Parser &

Compiler, enables to facilitate the GUI generator when a

large SoS is created from scratch. Figure 3 shows the CSs

creation and "gure 2 shows an example of functionality

creation.

• the Core Simulator, composed of an engine and a viewer,

which enables to run the simulation scenario de"ned by the

SoS and Environment Generator. For that, the engine uses

the components (SoS and environment) loaded with the

SML Parser & Compiler; e viewer automatically shows

in a window the data (such as resources, criticality etc.)

chosen to be displayed while the simulation is running.

 e state of CSs and the links between them as well as

entities can then be visualized.

4.2 Instantiation of SApHESIA to the Missouri

Toy Problem

 e Missouri Toy Problem is a SoS architecting scenario initially

presented by [10] and then extended by [11]. Its goal is to relay

commands and ISR data from a ground station to a carrier ba le group

via Unmanned Aerial Vehicles (UAVs) and satellites A or B. e ground

station cannot communicate directly with the carrier ba�le group.

Modeled as a SoS, the types of CSs and their functionality are (i) the

ground station (Ground type in SApHESIA) whose functionality

is to send a signal to satellites and UAVs; (ii) the UAV (UAV type)

whose functionality is to send a signal; (iii) the satellite A (SatA
type) whose functionality is to send a signal to UAVs and other

satellites A (not to satellites B); (iv) the satellite B (SatB type) whose

functionality is to send a signal to UAVs and other satellites B, (not

to satellite A) and (v) the carrier ba�le group (Carrier type) whose

functionality is to receive a signal from a component system but

not from the ground station.

Constraints : Ground cannot exchange with Carrier and SatA
cannot exchange with SatB and vice versa.

Resources are the signals (received and sent). e functionality

FSend represents the sending of a signal; it consumes one Siдnal of

the sender and generates one to the receiver. Perturbations in the

environment can be events such as cyber-a�acks, weather issues,

jamming of communication links or the unavailability of CSs.

4.3 Evaluation Criteria and Associated Metrics

 is section de"nes the three evaluation criteria and the associated

metrics we propose for the evaluation.

Functional Adequation: a decentralized architecting heuristic

leads to a SoS that is functionally adequate i.e. it achieves the ex-

pected overall function (from the viewpoint of an external observer

knowing the SoS purpose). e metric we propose for functional

adequacy is the Total Transmi�ed Signals TTS = GS
RS where GS is

the number of Siдnal resources generated by the Ground and RS is

the number of Siдnal e'ectively received by the Carrier .

E ciency: SApHESIA model enables to de"ne a performance

of a functionality used by a CS. e e!ciency of the SoS is related

to the use of the most e!cient CSs, i.e. the ones having the best

performance. is e!ciency is evaluated through a metric called

Cost representing the global cost of the SoS and which is inversely

proportional to the e!ciency of the SoS . Indeed the more e!cient

Figure 3: Managing Tool of SApHESIA

the SoS is, the lower the cost is. To compute Cost , the FSend func-

tionality is changed by adding a new resource called RCostSend
that saves how many times the CS sends a signal. e cost metric

is Cost = ΣSi ∈S(Si .Cost + Si .R(RCostSend)).

Finally, the minimum cost,MinCost , for transmi�ing all the signals

between Ground and Carrier for a given scenario represents the

most e!cient architecture. us, MinCost will be calculated for

the scenario and compared with the current cost of the architec-

ture. e functionality FSend of each CS increments the resource

RCostSend . Formally, CostRatio =
Cost

MinCost .

Robustness: we de"ned it as the degree to which a system or

component can function correctly in the presence of invalid inputs

or stressful environment conditions. To evaluate robustness of our

SoS architecting heuristic, some events representing failures of CSs

occur during the scenario. A failure disables the functionalities of

a CS by preventing it to receive/send signals or link with other CSs.

To cope with these failures, the SoS has to adapt by "nding new

CSs in order to achieve the SoS goal (to transmit the signal). Finally,

the evolution of TTS evaluates the robustness as it represents the

failure a CS that will prevent the SoS to be functionally adequate.

 e transmission of signals to the Carrier is then momently inter-

rupted and TTS does not evolve anymore. To summarize, the TTS

metric evaluates the functional adequacy, the CostRatio evaluates

the e!ciency and the TTS evolution evaluates the robustness.

4.4 Scenarii Description

 is section describes the scenarii by giving the available CSs for

the SoS , the initial values of the di'erent CSs resources and the

description of the scenario through the events that will be triggered.

Available Component Systems and Initialization Values:

In these scenarii, 21 CSs of di'erent types compose the SApH-

ESIA model : 1 Ground (д), 5UAV (ui , i ∈ [1, 5]), 8 SatA (ai , i ∈ [

1, 8]), 6 SatB (bi , i ∈ [1, 6]), and 1 Carrier (c).

Each type of CSs is agenti"ed according to the AMAS approach

(i.e. all the agents must be cooperative) and initialized with the pa-

rameters given in table 1. e SApHESIA engine is initialized with

a reinforcement link and a destruction link both equal to 0.1 (these

values have been experimentally determined). e reinforcement

link represents the strength of the link between two connected CSs.

Until the 2000 cycle the RuleSiдnal rule generates Siдnal with a rate

of 0.09, so the total number of signals is equal to 180 (0.09 × 2000).

MinimumCostCalculation. e table 2 gives the performances

of the FSend functionality for each CS. For example, the perfor-

mance of the FSend of UAVu1 to Satellite a1 is 0.5. is table enables

to calculate themost e!cient path i.e. the one composed of CSs with

the highest performances that is: Ground → u3 → a3 → Carrier .

 e value of RCostSend for each CS is given in table 1 enabling

to computeMinCost = 180× ΣSi ∈Opti (Si .Cost + Si .R(RCostSend))

with Opti = {Ground,u3,a3}. In our example, MinCost = 1080 =

180 × (Ground .Cost + u3.Cost + a3.Cost +

Ground .R(RCostSend) + u3.R(RCostSend) + a3.R(RCostSend)).

Scenario 1: Functional Adequacy, E ciency and Robust-

ness Testing. In this scenario, all CSs are running from cycle 0

to cycle 2000. At cycle 2000, CS a3 breaks down so that CSs are

no longer able to link or send signal to a3. We added this event

to test the robustness of the SoS i.e. that the CSs may "nd a new

path to send signals to Carrier . e SoS should then "nd the path

Table 1: Resources Initialization and Cost of each Component System

д u1 u3 a1 a2 OtherUAV Other SatA SatB c

RSiдnal 0 0 0 0 0 0 0 0 0

RResourceLink 0 1 1 1 1 1 1 1 1

RCostSend 1 1 1 1 1 2 2 2 X

G u1 u2 u3 u4 u5 a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 b5 b6 C

Cost 1 1 2 1 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2

Table 2: Performance pSend of Functionality FSend

G u1 u2 u3 u4 u5 a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 b5 b6 C

G 0.7 0.1 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

u1 0.1 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

u2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

u3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

u4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

u5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

a1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

a2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

a3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

a4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

a5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

a6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

a7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

a8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

b1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

b2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

b3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

b4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

b5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

b6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

C

Ground → u1 → a1 → Carrier (given as being now the best path

in the table 2). Simultaneously, from the cycle 2000, the signal gen-

eration is interrupted, in order to compare the number of generated

signals and the one of received signals (through the metric TTS) at

the cycle 7000 (the simulation end).

Scenario 2: Deeper Robustness Testing. is scenario aims at

deeply testing the SoS robustness through the generation of several

failure events. A CS failure occurs every 100 cycles in order to

study how the SoS adapts. As the performance of CSs on FSend
is di'erent, the order of failures in%uences the SoS functioning.

Indeed, if all the CSs having a good performance fail "rst, the SoS

will have more di!culty to overcome the failures. We de"ned 3

sequences where the position of the failures on the most e!cient

CSs (OptCS =a1, a3, u1, u3) are di'erent :

seasy = {u2,u4,u5,a2,a4,a5,a6,a7,a8,b1,b2,b3,b4,b5,b6,OptCS}

smedium = {u2,u4,u5,a2,a4,a5,a6,OptCS,a7,a8,b1,b2,b3,b4,b5,b6}

shard = {OptCS,u2,u4,u5,a2,a4,a5,a6,a7,a8,b1,b2,b3,b4,b5,b6}

Ground andCarrier are not concerned; as they are respectively the

source and the destination of signals, their failures immediately

stop the SoS functioning. e TTS metric highlights the inability

of the SoS to send a Siдnal from Ground to Carrier .

4.5 Results Discussion

Figures 5 show the simulation results of Scenario 1. e curves

CostRatio, Signal, Criticality and TTS respectively show one aspect

of the evolution of the di'erent CSs. e curve F Send UAV1&3

shows how many times on the last 500 cycles the Ground has used

FSend with u1 and u3. e curve F Send shows how many times

this functionality has been used and with which CS.

At the beginning of the simulation, the number of transmi�ed

signals TTS increases, meaning that the SoS "nds its functional

adequacy. Before cycle 2000, Figure FSend shows thatGround uses

u3 more than u1 to send signal; the most e!cient path is used.

A&er cycle 2000, TTS is always increasing, showing that the SoS

is robust as it is still running even if a failure (of a3) has occurred.

TTS is highly increasing a&er turn 2000 because the generation of

signals is over. CostRatio increases even more because the failure

of a3 leads u3 and u1 to "nd alternative paths being less e!cient

than Ground → u1 → a1 → Carrier which is the current most

e!cient path. Curve FSend shows that "nally u1 is preferred to

Figure 4: Scenario 2: Evolution of TTS for the 3 Sequences

u3 because of this new most e!cient path. e F Send UAV1&3

curve con"rms that the most used CSs are Ground , u1, u3, a1 and

a3. CostRatio < 1.4 means that even with failures, the SoS "nds

e!cient alternative paths. is "rst scenario shows that the SoS ,

through the cooperative behavior of its CS, can "nd architectures

that are compliant with our evaluation metrics.

Figure 4 shows the evolution ofTTS for the second scenario deal-

ing with the robustness testing. Green, orange and red curves are

respectively the results for the seasy , smedium and shard sequences

of failures. First, these results show that the order of failures has

an important impact on the global functioning of the SoS as the

functionalities of the CS have di'erent performances.

 e TTS evolution shows that the SoS is no more able to send

Siдnal at cycle 1000 for seasy , at cycle 800 for smedium and at cycle

400 for shard , a failure appearing every 100 cycles. us, the SoS is

able to cope with a failure rate of 52% (10 failures), 41% (8 failures)

and 21% (4 failures) respectively for seasy , smedium and shard on a

total of 19 CS. is scenario illustrates the robustness of the SoS

driven by our cooperative heuristic : even with several CS failures,

the SoS (thanks to the ability of its CS to "nd new neighbors, to

self-organize), is able to "nd alternative architectures to continue

the signals sending. More details and results can be found in [7].

5 CONCLUSION AND PERSPECTIVES

 is paper deals with the modeling and architecting of SoS. We

have presented SApHESIA (SoS Architecting HEuriStIc based on

Agents) formalism, which takes into account the characteristics

of SoS, and especially the SoS environment, its dynamics and the

self-organization of its CSs. We also proposed a new SoS architect-

ing process based on the Adaptive Multi-Agent System (AMAS)

approach that advocates full cooperation between all the CSs of

the SoS through the concept of criticality. is criticality is a met-

ric representing the di!culty of an agent (CS) to reach its goal.

In this proposition, the SoS architecture evolves during time to

self-adapt to its environment dynamics, while taking into account

the respective local goals of its components. We have presented

the tools used to manage and to visualize data of the studied SoS

model. Finally this model has been instantiated with two scenarii

in order to evaluate the e!ciency, the functional adequacy and the

robustness of the proposed SoS architecting.

One perspective is tomore investigate on the evaluation of SApH-

ESIA, especially by trying to compare it with other approaches (until

now, we did not "nd any case studies enabling such comparisons)

and another perspective is to investigate on criticality in order to

coupling interdependent AMAS (having di'erent criticality scales)

which have been independently designed.

REFERENCES
[1] P. Acheson, L. Pape, C. Dagli, N. Kilicay-Ergin, J. Columbi, and K. Haris. Un-
derstanding system of systems development using an agent- based wave model.
Procedia Computer Science, 12:21 – 30, 2012. Complex Adaptive Systems 2012.

[2] W. R. Ashby. An introduction to cybernetics. New York,J. Wiley, 1956.
[3] W. Baldwin and B. Sauser. Modeling the characteristics of system of systems.

2009 IEEE International Conference on System of Systems Engineering (SoSE), 2009.
[4] W. C. Baldwin, B. J. Sauser, and J. Boardman. Revisiting the ”meaning of of” as a
theory for collaborative system of systems. IEEE Systems Journal, 11(99):2215 –
2226, 2015.

[5] M. Bjelkemyr, D. Semere, and B. Lindberg. An engineering systems perspective
on system of systems methodology. In 2007 1st Annual IEEE Systems Conference,
pages 1–7, April 2007.

[6] J. Boardman and B. Sauser. System of systems - the meaning of of. In 2006
IEEE/SMC International Conference on System of Systems Engineering, April 2006.

[7] T. Bouziat. A Cooperative Architecting Procedure for Systems Of Systems based on
Self-adaptive Multi-Agent Systems. Phd thesis, Université de Toulouse, Toulouse,
France, November 2017.

[8] T. Bouziat, S. Combe�es, V. Camps, and P. Glize. La criticité comme moteur de
la coopération dans les systèmes multi-agents adaptatifs. In Journées Franco-
phones sur les Systèmes Multi-Agents (JFSMA), pages 149–158. Cepadues Editions,
October 2014.

[9] D. Capera, J. George, M. Gleizes, and P. Glize. e AMAS theory for complex
problem solving based on self-organizing cooperative agents. Proceedings of the
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises,
WETICE, 2003-January:383–388, 2003.

[10] D. A. DeLaurentis, K. Marais, N. Davendralingam, S. Yeob Han, P. Uday, Z. Fang,
and C. Guariniello. Assessing the Impact of Development Disruptions and
Dependencies in Analysis of Alternatives of System-of-Systems. TechReport
SERC-2012-TR-035, Purdue Uninersity, december 2012.

[11] L. Edward Pape II. A domain independent method to assess system of system
meta-architectures using domain speci!c fuzzy information. PhD thesis, Missouri
University of Science and Technology, 2016.

[12] P. Glize. L’adaptation des systèmes à fonctionnalité émergente par auto-
organisation coopérative. HDR, 2001.

[13] A. Gorod, B. Sauser, and J. Boardman. System-of-systems engineering manage-
ment: A review of modern history and a path forward. IEEE Systems Journal,
2(4):484–499, December 2008.

[14] M. Jamshidi. System of systems engineering - new challenges for the 21st century.
IEEE Aerospace and Electronic Systems Magazine, 23(5):4–19, May 2008.

[15] M. Jamshidi. Systems of Systems Engineering: Principles and Applications. CRC
Press, 2008.

[16] S. Johnson. Emergence: the connected lives of ants, brains, cities, and so�ware.
Scribner, 2001.

[17] S. Lemouzy. Systèmes interactifs auto-adaptatifs par systèmes multi-agents auto-
organisateurs : application à la personnalisation de l’accès à l’information. PhD
thesis, December 2011.

[18] M. Maier. Architecting principles for systems-of-systems. Systems Engineering,
1(4):267–284, 1998.

[19] H. Maturana and F. Varela. Autopoiesis and cognition: "e realization of the living.
Springer, 1980.

[20] D. of Defense. System of systems - systems engineering guide: Considera-
tions for systems engineering in a system of systems environment. Techreport,
Department of Defense, 2006.

[21] S. Selberg and M. Austin. Toward an evolutionary system of systems architecture.
18th Annual International Symposium of the International Council on Systems
Engineering, INCOSE 2008, 4:2394–2407, 2008.

Figure 5: Scenario 1: Simulation Results

