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Abstract. In this chapter the guiding line is the mathematical work that students 
develop in modeling tasks. We report first on MWS studies adopting the idea of a 
modeling cycle. In these studies the MWS framework gives insight into the processes 
involved in students’ work and it also sheds light upon the complex relationship 
between reality and mathematics, and the multifaceted relationship between the 
process of problem solving and the underlying educational goals. We question the 
consistency of a sharp separation between mathematics and reality and, assuming that 
mathematical modeling is what mathematicians do when they work on models, we 
look at this work outside of education. Rather than steps of translation between reality 
and mathematics, we have to think of modeling as a coupling of reality and mathemat-
ics that should allow students to develop insight into, and understanding of, both 
mathematics and reality. We also look to epistemological studies that distinguish 
between modeling and mathematization, and characterize modeling by (1) plurality of 
models (2) operativity (3) subjective and social interpretation. The plurality of models 
for a given reality has been exploited in research studies to design tasks that put at 
stake transitions or coordination between specific domains corresponding to different 
a priori suitable working spaces. In these studies mathematical work contributes to 
clarify and operationalize models as well as to give meaning to abstract mathematical 
notions. A MWS perspective could then break with a conception of modeling as an 
activity pursued individually and for individual competencies. In addition, considering 
the three dimensions of a working space should help to avoid a reduction of modeling 
to a translation, and of mathematics to a language. 

Keywords. Mathematical Working Spaces, Connected Working Spaces, Modeling in 
education, Plurality of models, Operativity of models, Social aspects of modeling. 
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11.1 Introduction: modeling and students’ mathematical work 

There are a variety of approaches to modeling in mathematics education 
that regard both educational aims (cognitive and social) and task concep-
tion. In this chapter the guiding line is the mathematical work that stu-
dents develop in modeling tasks. How do researchers characterize this 
work and the way in which it contributes to students’ development of 
their mathematical conceptualizations and personal and social capabili-
ties? How does the theory of MWS with the idea of work and the three 
dimensions, semiotic, instrumental and discursive1 help this characteri-
zation? How does it help to analyze a priori the design of modeling situ-
ations and to make sense a posteriori of students’ work in these situa-
tions?  

Our investigation aims to characterize the specific contribution of 
MWS within the variety of approaches to educational modeling. We do 
not try to take into account all the frameworks in this variety. Through-
out this chapter, we reference particular frameworks when necessary. As 
a start, we consider the idea of a “modeling cycle” (Blum & Ferri, 2009) 
to describe students’ potential and actual trajectories in problems involv-
ing “reality” and mathematics. In the rest of the chapter, we refer to oth-
er approaches, especially those to modeling in science and at work, and 
discuss learning objectives that various frameworks assign to modeling. 

11. 2 MWS and modeling cycle 

Despite researchers’ growing adoption of a MWS perspective, research 
studies about modeling with this perspective are still scarce.  We review 
in this section a majority of these studies and notice that the idea of a 
modeling cycle is part of their theoretical framework together with 
MWS. We examine the contribution brought about by MWS in these 
research studies. Further, we discuss assumptions underlying this idea of 
a modeling cycle in the light of mathematical work in order to try to ex-
plore more deeply the potential of MWS.  

                                                      
1 A MWS is organized on two different planes, epistemological and cognitive. Here 

the three “dimensions” involve both epistemology and cognition and helps us to char-
acterize mathematical work in modeling without considering two-way processes be-
tween the planes (geneses). We discuss this later. 
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The modeling cycle is organized in steps. Two initial steps consist of 
the elaboration of a real model, particularly by simplifying and structur-
ing a real situation. It is followed by steps of translation, one of which 
associates the real model and a mathematical model. This is called math-
ematization. The next step, interpretation, associates real results and 
mathematical results. Among the existing MWS studies, Nechache 
(2018) analyzes a phase she named “describing reality” that corresponds 
to the first steps in the modeling cycle. Nechache’s study deals with a 
random experiment, a repeated Bernoulli trial with a stopping rule. She 
demonstrates that building a real model requires introducing probabilis-
tic hypothesis (equiprobability of events, independence of successive 
trials) and then more or less formal knowledge in probability. Figure 1 
summarizes this analysis. The MWS framework allows Nechache to 
analyze this work as participating in the discursive dimension of a pre-
probabilistic working space. Blum and Leiss (2007) also evidence the 
construction of geometric relationships in the step of simplifying and 
structuring in a task related to distances in a real life situation. In their 
work, mathematical work starts before the step that they label mathe-
matization. This demonstrates that regardless of how it is labeled in the 
modeling cycle, the real model is actually a mathematical model, pro-
vided that mathematics are not restricted to typical content knowledge. 

 

 

Fig.11.1 A modeling cycle in probability theory (adapted from Nechache 2018) 

Nechache also analyzes the process of mathematization in probability. 
This process goes from a real model to a probabilistic one, allowing pre-
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diction making. It actually involves the interaction of the pre-
probabilistic working space at stake in the previous phase, and a more 
standard probabilistic working space. She discusses three methods cur-
rently used in this process. The first method models the experiment by 
way of random variables and laws of probability. The work uses formal-
ism and rules associated with random variables and is mostly in the dis-
cursive dimension. In the second method, the model is a weighted tree 
diagram and the work favors the semiotic and instrumental dimensions: 
Each node of the tree denotes a possible outcome at a given step. The 
computation of the probabilities follows “mechanical” rules rather than 
discursive reasoning. Finally, in the third method, the model is a simula-
tion on a spreadsheet. Recognizing the spreadsheet’s capabilities and 
obtaining adequate formulas and organization is not obvious, but re-
quires reflection and combining instrumental and discursive dimensions. 
The outcome of Nechache’s study was that the MWS framework allows 
an in depth a priori analysis of steps in the modeling cycle, and then of 
the stakes of modeling activity for students, especially with regard to 
mathematical conceptualizations. 

Another study by Derouet (2019) analyzes a posteriori a process of 
mathematization in a classroom in light of MWS. The goal is to build a 
continuous probabilistic model for a phenomenon from statistical data. 
The analysis shows non trivial transitions between three domains (statis-
tics, mathematical functions, and continuous probabilities), and the po-
tential of the three dimensions of MWS for making sense of these transi-
tions. Derouet explains particularly a step of mathematization using the 
diagram of figure 2. The students look for a function that best fits a his-
togram, namely, a candidate for a density function modeling the phe-
nomenon. Derouet shows first a circulation between statistics and math-
ematical functions in the semiotic and instrumental dimensions. Students 
propose functions and the teacher operates a software displaying the 
graph of this functions and the histogram. Derouet notes that the work in 
the semiotic dimension (proposing functions that fit best) is at the stu-
dents’ initiative (in dark grey figure 2 left) while the teacher takes in 
charge most of the instrumental work (in light grey figure 2 left) . The 
discursive dimension of the continuous probabilities workspace is then 
solicited to check properties of the function with regard to probabilities 
(positivity, area under the curve) in connection with the semiotic work 
on mathematical functions (in dashed dark grey figure 2 right). Finally, 
there is work in the discursive dimension to adjust the function. This is 
performed primarily by the teacher (in light grey figure 2 right.) 
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In our interpretation, the outcome of the MWS framework is a fine 
grain analysis that brings deep insight into the stakes in this step of 
mathematization, i.e.: variety of knowledge activated by the students; 
choices about which actions should be left to the students as the teacher 
felt these were central to the situation; and the part the teacher takes in 
charge so that the situation progressed. Modeling is not seen as an indi-
vidual endeavor to discover the right model, but rather as a social pro-
cess where the parts respectively played by the teacher and the students 
are identified relatively to the dimensions.  

 

 
Fig. 11.2 A circulation between statistics, calculus and continuous probabilities 
working spaces. 

Derouet et al. (2017) note that the use of the MWS framework can en-
rich and strengthen the analysis of the modeling process based on the 
study of a cycle in connection with the resolution of a problem. Beyond 
this, the authors note that in an educational context, a modeling task 
aims not just at solving a real problem, but more deeply at exploring and 
understanding the numerous uses of a mathematical notion. After solv-
ing a problem though modeling, students have to perform specific work 
in order to better understand the model and the mathematical objects in-
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volved in the solution. This thus enriches the MWS, in particular the 
theoretical referential in the discursive dimension.  

Considering students’ work in modeling situations, the MWS frame-
work gives insight into the processes involved, and it also sheds light 
upon the complex relationship between reality and mathematics, and the 
multifaceted relationship between the process of problem solving and 
the underlying educational goals. This is good news but it also raises 
questions. If the steps of describing reality involve mathematical 
knowledge and the real model includes some mathematics, how is it 
consistent with a sharp separation between mathematics and reality? If 
working at the interface of reality and mathematics, as considered in 
probability theory by Derouet (2019) and by Nechache (2018), involves 
non trivial transitions and choices of dimensions, how can we think of 
the processes involved beyond a simple translation? What are the cogni-
tive processes in work that aims at understanding the model and the ob-
jects involved? How can they be described, with geneses or with other 
cognitive notions? 

11.3 The work of mathematicians in the social activity of 
modeling 

Traditionally, statistics and probabilities are domains favored by second-
ary curricula for a mathematical approach to real-world phenomena. 
From the years 2000 the interest for involving real-world contexts in a 
wider variety of domains of learning, beyond statistics and probabilities, 
grew in mathematics education, as witnessed by the introduction of the 
OECD “Programme for International Student Assessment” (PISA) in-
cluding a mathematics literacy test asking students to apply their math-
ematical knowledge to solve problems set in real-world contexts. Re-
garding math education research, the ICMI Study 14: Applications and 
modeling in mathematics education (Blum, 2002) was an important 
landmark. In it, Blum stressed that, “Today mathematical models and 
modeling have invaded a great variety of disciplines,” and that “mathe-
matising real situations as well as interpreting, reflecting and validating 
mathematical results in ‘reality’ are essential processes when solving 
literacy-oriented problems.” The ICMI study started a very lively stream 
of educational research and put a growing focus on mathematics as an 
important activity in society. However nearly twenty years afterwards, 
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much remains to be done in order to conceptualize the complex relation-
ship between mathematics and modeling. 

Derouet’s and Nechache’s studies deal with statistics and probabili-
ties, and rely on epistemological and didactical knowledge in order to 
study modeling processes: It is more or less common knowledge that 
random phenomena cannot be approached without some mathematical 
apparatus. In contrast, in other domains researchers most often deal with 
modeling by starting from a simple conception of reality and its relation-
ship to mathematics. For instance, Blum and Ferri (2009, p. 45) explain 
that by reality they mean “the rest of the world outside mathematics in-
cluding nature, society, everyday life and other scientific disciplines.” 
While this conception avoids being locked into philosophical debates 
about mathematics and reality, it does not shed much light upon the va-
riety of intervention of mathematics in domains of modeling. This chap-
ter aims to help close this gap, as the idea of mathematical work is cen-
tral here. Mathematical modeling is what mathematicians do when they 
work on models and thus, it is useful to look at this work outside of edu-
cation as a source of inspiration. One way is to build upon observations 
of mathematical modelers’ practices.  Another possibility is to look at 
epistemological studies of modeling and consider these as source of sec-
ond hand information about the work of modeling. 

11.3.1 Insights from the workplace 

Frejd and Bergsten (2016) take a didactical transposition approach. They 
typologize workplace practices around the relationship between a client 
in need of a model for practical application, the modeler, and an expert 
that brings the relevant knowledge. While arguing that the typology 
could be a starting point for a transposition into educational settings, 
they recognize that there is still a long way to go. Their study allows 
them to criticize “policy makers referring to PISA league tables as an 
argument for curricular reform without providing analyses of how math-
ematical modeling is conceptualized and operationalized” (p. 31). In fur-
ther interpretation, Frejd and Bergsten (2018) characterize mathematical 
modeling professional activity by four components: description, under-
standing, abstraction, and negotiation. From this characterization, they 
draw a “check-list” of didactic principles to be used in the design of 
modeling activities within mathematics teaching. An interesting princi-
ple is related to technology use “crucial for modeling work but also in 
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itself (involving) a modeling activity.” This echoes the role of the com-
puter as a key component in the instrumental dimension of the work in 
studies like Derouet’s. 

In another study, Huincahue and Vilches (2019) define mathematical 
modeling as an activity in which two or more disciplines converge. For 
them, a mathematical modeler necessarily works in interdisciplinary 
teams, each discipline bringing its own contribution, but without hierar-
chical disciplinary preferences. Their empirical study shows modeling as 
a cyclical process of dialogue between mathematicians and specialists of 
a domain (like epidemiology or agriculture). The dialogue aims at elabo-
rating a common understanding while discussing ways to approach a 
problem. The work is always directed by the need of a solution in the 
domain, but from the mathematician’s point of view, the actual outcome 
is the model(s) rather than the solution, and possibly a base for new de-
velopments in mathematics. 

Finally, it is worth mentioning research focused on numeracy (i.e., 
reasoning and applying simple numerical concepts) from a modeling 
perspective. Wake (2015) is concerned that modeling activities in 
schooling are very different as compared to mathematical activity at 
workplaces. Rather than steps of translation between reality and mathe-
matics, he thinks of modeling as a coupling of reality and mathematics 
that allows students to develop insight into, and understanding of, both 
mathematics and reality. Building from this, Wake goes on to identify 
(ibid, p. 13) three objectives for teaching/learning. Namely, students 
should become “able to: 

• develop critically and mathematically informed models of complex 
realities; 
• both construct and deconstruct (...) models of complex situations;  
• understand how the structure of models of (workplace) realities and 
the structure of their mathematical counterparts (inter-)relate;”. 
Wake then adds that education must 
“• prioritize mathematical models that afford insight into typical struc-
tures important in workers’ practices and that are found in and across 
workplaces; 
• involve learners in repetitive use of models in ways that ensures they 
engage substantially with issues of variability.” 
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11.3.2 Epistemological studies of modeling 

Lagrange (2021) draws from studies by Francophone authors, Roux 
(2011), Bouleau (2014) and Varenne (2014). The idea of mathematiza-
tion is questioned. It is necessary to distinguish between mathematizing 
processes (quantification, formalization, inductive and deductive reason-
ing, etc.) and the mathematization of a domain, which systematizes these 
processes until building a theory where deductive proof is the unique 
source of truth. This is the case for many domains taught in physical sci-
ences at secondary level (think for instance of Newton’s theory of uni-
versal gravitation), but modeling does not necessarily require this sys-
tematization and often it is not possible (think for instance of climate). 
While mathematizing processes can be important in modeling they do 
not by themselves differentiate modeling from mathematization. Accord-
ing to Roux (2011), modeling can be characterized:  
(i) by locality: "whereas mathematization has a global aim, modeling is 
always local, and to say the least, fragmentary: the model assumes itself 
to be only one way among others to give an account not of reality, but of 
some of its aspects only"; 
(ii) by operativity: "whereas mathematization presents itself as a theory 
whose sole purpose is knowledge, modeling has an operative and inter-
ventionist component: a model is a device that allows one to act on what 
is being modeled, whether by supplementing, controlling or modify-
ing."2 

Drawing from Bouleau (2014), Lagrange (2021) extends this charac-
terization:  

A corollary of (i) is the multiplicity of models for a given reality. The 
example of automobile traffic helps to identify a variety of models each 
taking into account aspects of traffic complexity and measurement (…) 
Concerning (ii) the operative character of the model should not hide an 
"interpretative" component which concerns the subject engaged in 
modeling and thus its social context. This component distinguishes 
modeling from mathematization, where deductive reasoning sets aside 
societal issues. 

Distinguishing between modeling and mathematization, epistemologi-
cal studies thus allow characterization of modeling by (1) a plurality of 
models which makes possible to account for local aspects of a reality (2) 

                                                      
2 All translations from French sources are our own translations. 
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operativity and therefore proximity to simulation, (3) a subjective and 
social interpretative component.  

Varenne (2014) insisted on varied types of simulation. As Varenne put 
it, a simulation can be just a “phenomenological model” giving account 
of visible functioning, or it can be a “second order model” when it is 
based on a previous modeling. This is consistent with different roles that 
digital simulation can play in modeling (Derouet et al., 2017). The first 
one occurs when building a real model with a simulation close to the ini-
tial situation (urn model or a calculator used to simulate rolls of dice or 
coin, in probability). The second role presupposes a stronger mathemati-
cal expertise in the MWS of the domain at stake as, for example, the im-
plementation of an algorithm.  

Finally for Bouleau (2014), the contribution of mathematics is in the 
work of the mathematician, that he describes as the search for simple 
ideas without which the models would be too complex to be interpreted. 
In other words, mathematicians quantify and formalize, but it is not for 
the sake of quantification and formalization, or to serve an idiosyncratic 
way to reach a solution, but as means to express simple ideas for other 
specialists. This is consistent with the Huincahue and Vilches (2019) 
observations reported above. Beyond simplification, the authors point 
out that mathematical modeling allows inexpensive experimental work 
as explained by a professional they observed:  “Imagine the environmen-
tal engineers who model the movement of suspension particles from one 
continent to another … how can you measure that? Probe balloons in the 
stratosphere are very expensive ... then you model it!” 

11.3.3 An example 

Inspired by the above studies, Lagrange (2021) gives the example of a 
classroom situation for 12th grade students aiming at finding a function 
that models the main cable of a suspension bridge. In a first phase, the 
students looked at pictures of bridges and could easily conjecture that a 
parabola “fits” the cable and that they would be able to find a function 
for a given bridge by adjusting parameters. This would be a phenomeno-
logical model that possibly allows solving some concrete problems. In 
parallel, the students did not show a deep understanding of principles of 
bridge design. For instance, they overlooked the role of the suspenders 
(vertical cables equally spaced that connect the main cables and the 
deck). The goal of the situation was not principally to solve a problem, 



11 modeling in Education: New Perspectives Opened by the Theory of MWS 

11 

but rather to understand principles of bridge design and to develop the 
associated capacities in mathematics and physics. Therefore, further 
phases of the situation offered students tasks to investigate four models 
of a suspension bridge and learn about the cable properties. A first mod-
el was based on a mock-up of the bridge. The deck was represented by a 
succession of equal weights, suspended to a cable at equal horizontal 
distance. Such a mock-up embodies the idea that there is no compression 
in the deck, a fundamental property of suspension bridges. It is abstract-
ed into a physical model of the evolution of tensions along the cable by 
way of recurrence formulas. A second model was a broken line in ana-
lytic geometry. Recurrence between tensions at suspension points at 
equal horizontal distance allows computing recursively the coordinates 
of these points. As a third model, a computer simulation made this com-
putation dynamically. It displayed the broken line with dynamical varia-
tions, when parameters like the number of suspension points and the 
value of the horizontal component of the tensions were animated. Final-
ly, a continuous model was obtained by considering an infinite number 
of suspension points. It was a quadratic function, as conjectured by stu-
dents, but obtained by using fundamental concepts in physics and math-
ematics in interaction rather than by phenomenological observation. In 
this model, too, the horizontal component of the tensions could be a pa-
rameter. This showed the importance of this quantity: suspension bridge 
designers have to consider that increasing the height of pillars reduces 
the tensions and then the necessary resistance of the cable and of the an-
chor points, but also increases cost and constraints. The professionals, 
thus, have to make a balance between those two parameters in a given 
geological and geographical configuration.  
 

 
Fig.11.3  The suspension bridge. A question and four models (adapted from 
Lagrange 2021). 

Although the four models can be seen as organized linearly from the 
mock-up to the mathematical function, this organization cannot be 
thought of in a modeling cycle, as all four models are both real and 
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mathematical. In contrast, this characterization of four models echoes 
the above consideration of a plurality of models for a given phenome-
non, as well as the role that mathematics plays in these models. Mathe-
matizing occurs in each model. It simplifies, but does not hinder the 
physical nature of the bridge and the operativity of the model. It makes 
visible the parameters that are crucial for professional designers. The 
example is also consistent with the Huincahue and Vilches (2019) defi-
nition of mathematical modeling as an activity in which two or more 
disciplines converge, because a branch of physics (statics) is deeply at 
stake. Further, this example is also in line with Wakes’ (2015) concern 
for modeling activities that couple reality and mathematics and reduce 
the gap between school and workplace. 

11.4 Modeling: connecting a plurality of working spaces 

In the preceding section the idea of work helped to overcome a too sim-
ple dichotomy between reality and mathematics and show the stakes 
brought about by insights from the workplace and from epistemology. In 
this section, we look more closely at the potential of the idea of working 
space. First, we consider the contribution of the three dimensions: semi-
otic, instrumental, and discursive. We begin with a famous citation from 
Galileo:  

“Nature is written in that great book which ever is before our 
eyes—I mean the universe—but we cannot understand it if we do 
not first learn the language and grasp the symbols in which it is 
written. The book is written in mathematical language.”  

Galileo’s thinking is not far from the above-mentioned idea of math-
ematics as means to make the world intelligible, provided that “great 
book” and “language” are understood as metaphoric forms. Unfortunate-
ly, they are often taken literally, as mathematics is considered to be a 
language into which reality has to be translated.3 A great strength of the 
MWS framework is that it supports avoiding this reduction. Mathemati-
cal work on a model is certainly not possible without means for repre-
senting. However, these means cannot be thought of as a standard preex-

                                                      
3 For instance, MEN/DGESCO-IGEN (2013), an official document for the French 

curriculum (lycée, grades 10 to 12) characterizes modeling as “Traduire en langage 
mathématique une situation réelle” (Translate a real situation into the mathematical 
language.) 
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isting mathematical language, as they have specificities and their elabo-
ration is part of the work. Moreover, the work on a model is not reduced 
to symbolic manipulation. All studies mentioned above, both at the 
workplace and in the educational context, consider instruments which 
are specialized for a domain and have a mathematical basis. Finally, 
working on a model also involves reasoning in both the domain of mod-
eling and in mathematics. In short, MWS is a good candidate for concep-
tualizing the work on a model. This is because the three dimensions take 
into account respectively the semiotic systems, the instruments, and the 
modes of reasoning used in this work. Furthermore, the notion of space 
encompasses the specificities of these dimensions with regard to the 
model beyond their mathematical nature. 

In the MWS framework, the plurality of models for a given reality has 
led authors to consider a plurality of working spaces. In the “Alphonso” 
task (Kuzniak & Nechache, 2020, 2021), students have to compute the 
area of a piece of quadrilateral land in which the lengths of the sides are 
given. The observation shows each student building their own model 
after implicit assumptions. The student activity can be seen as the organ-
ization of personal geometrical working spaces adjusting their view of 
the task and their geometrical knowledge. This is also the case in the 
“Gutter” task, (Montoya et al., 2017) presented in Chapter 5.2.2 of this 
book. The study reports on pre-service teachers solving an optimization 
problem: finding the best way to fold a sheet of metal in order to create a 
gutter that maximizes water flow. The pre-service teacher course was in 
four years numbered from one (younger students) to four (older stu-
dents) and the study involved year one, two and four students.  Only 
year four students had been taught calculus. The researchers observed 
differences between procedures favored on the one hand by year one and 
two students, and on the other hand by year fours students. They ana-
lyzed these differences with respect to students’ personal working spac-
es. Year four students’ personal spaces were close to a reference work-
ing space in calculus. In other words, these students recognized the task 
as a standard problem for which official calculus procedures exist and 
have to be applied. For them it was clear that the water flow depends on 
the choice of the length on one side, and this dependency was modeled 
as a quadratic function with the symbolism, instruments, and mode of 
reasoning attached to mathematical functions. In contrast, the other stu-
dents’ procedures varied. The researchers identified personal spaces the 
students arranged on purpose by using their knowledge in geometry and 
measure. Sometimes students based their answer on their (false) intuition 



14 Jean-baptiste Lagrange, Jaime A Huincahue Arcos and Giorgos Psycharis 

14 

about a model of an optimal gutter without considering variation. For 
students who did consider variation, the model was not a function but 
rather a collection of configurations in which to pick up an optimum. In 
these studies, researchers interpret students’ procedures by identifying 
different underlying models and associated personal working spaces cor-
responding to different understandings of a reality and to different con-
ceptualizations in various mathematical domains.  

The possibility of varied models and associated working spaces for a 
given reality was exploited in other studies to explicitly design tasks that 
put at stake transitions or coordination between specific domains corre-
sponding to different a priori suitable working spaces. Derouet (2019), 
for example, considered suitable working spaces, respectively in statis-
tics, mathematical functions, and continuous probabilities. We men-
tioned above the situation of modeling a suspension bridge proposed by 
Lagrange (2021) that draws from a plurality of models of the main cable. 
Lagrange explains that the work on each model is related to a specific 
working space with a specific system of symbols, specific instruments, 
and specific ways of reasoning. In a first phase of group-work, a study of 
each model was devoted to a specific group of students. A second phase 
mixed the groups so the students—each one an expert of a particular 
model, could find together links between the models and then make con-
nections between the working spaces. The a posteriori analysis of an ex-
periment was done by considering the various connections the students 
had made and the dimensions implied. 

In these examples, the plurality of working spaces with no hierarchy 
between them echoes the work in interdisciplinary teams of professional 
modelers. Mathematics is involved neither as “the queen of sciences,” 
nor as a pure “servant.” Mathematical work clarifies and operationalizes 
models, but it also contributes to giving meaning to abstract mathemati-
cal notions.  

11.5 Learning by modeling: questions for the MWS framework 

In this part, our goals are to investigate questions dealing with the objec-
tives assigned to modeling tasks or situations based upon the MWS 
framework. Further, we explore here the methods and concepts used in 
this framework to analyze a priori and a posteriori what students learn 
and how they learn.  
Objectives 
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We mentioned at the beginning of section 3 the stream of educational 
research following the 2002 ICMI study 14. With regard to objectives, 
this stream is characterized by a focus on modeling competences. It is 
reflected by the fact that six of the eight crucial issues proposed by Blum 
(2002) mention these competences. Issue five stresses particularly that 
modeling activities “will have to ‘compete’ with other components of 
the mathematics curriculum.”  This is a difference with the studies 
adopting the MWS perspective. First, the situations investigated by Der-
ouet (2019) and Nechache (2018) are motivated by objectives clearly 
inscribed into the mathematics curriculum. Moutet (2019) is another ex-
ample. His study puts the physics curriculum in view. It proposes and 
analyzes a teaching unit in relativity theory that puts at stake the physical 
notions of time and simultaneity. This is an example where mathematics 
is involved in order to make physical ideas accessible. As for Lagrange 
(2021) the objective is not that students reach a new curricular content, 
but rather that they understand more consistently notions already taught 
in calculus, algorithmics, analytical geometry, and physics. Also with 
regard to objectives, Psycharis, Kafetzopoulos, and Lagrange (2021) an-
alyze a situation that does not aim at specific curricular notions. This 
study focuses on developing students’ functional thinking by working on 
covariation in four different working spaces. The proposed situation is 
based on the same gutter optimization task described above in our dis-
cussion of Montoya, Viola, and Vivier’s 2017 research. However, there 
is a difference: Whereas Montoya, Viola, and Vivier characterize a pos-
teriori personal working spaces by observing students’ self-generated 
procedures, Psycharis, Kafetzopoulos, and Lagrange start from the a pri-
ori identification of four possible models. One first model is a sheet of 
paper that can be folded in order to make a mock-up of the gutter. The 
second is a dynamic geometry (DG) construction representing a section. 
The third model is also in DG but involves the covariation of measures. 
The fourth one is a mathematical function. Four working spaces are as-
sociated with the four models in order to analyze a priori and a posteriori 
students’ work on the four models and then examine student understand-
ing of covariation.  

There is then a common concern in studies adopting a MWS perspec-
tive about making students consider notions taught in varied fields in 
synergy. This concern is reflected by the consideration of working spac-
es specific to each field. This focus on the knowledge to be taught clear-
ly differentiates these studies from research putting at stake modeling 
competences. It could denote a similarity with theories such as realistic 
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mathematics education (RME). For RME, modeling is a means to bring 
students to mathematical concepts from a "reality" (Gravemeijer & 
Doorman, 1999). Modeling intervenes in the RME approach at the mo-
ments of first meeting (of "reinvention") in mathematics. A model of 
some reality is built, and after that it becomes an abstract tool for doing 
mathematics. This tool, labeled model for, has a representational and an 
instrumental dimension derived from the model of, but representations 
and instruments belong to mathematics. Gravemeijer and Doorman 
(1999) explain that “students’ final understanding of the formal mathe-
matics should stay connected with (…) everyday-life phenomena.” 
However, this connection is conceived as a background reference for 
students’ practice of formal mathematics rather than as a relationship 
between a domain of reality and the mathematical knowledge at stake.  

As a difference to RME, it seems that although modeling in the MWS 
framework is oriented towards mathematical knowledge, it has a poten-
tial for keeping a relationship between the mathematics learned and the 
various fields involved in the modelization and also, the social circum-
stances in which this relationship has been built. To go further, MWS 
studies on modeling could benefit from Wakes (2015, p. 684) reflection:  
(…) workplaces provide rich sources of (...) realities, (...) providing pur-
pose and a meaningful context in which to understand and explore an 
emerging mathematical model. The mathematical models developed in 
this way have the potential to provide insight, crucially into both the re-
ality and the mathematics in contrast to the RME approach that focused 
ultimately on understanding the mathematics.  

In line with this, studies on modeling could break with a narrow con-
ception in which modeling is an activity pursued individually and for 
individual competencies. As noted above, modeling at the workplace is a 
social activity and implies the identification of specific working spaces 
and the collaboration of specialists of each space. In this latter concep-
tion, the stake for students is not to reach individual abilities for solving 
real world problems, but rather to participate in a collective task. Here, 
students take advantage of existing knowledge and develop this 
knowledge by interaction with others.  

 Consequence on design: an example 

In order to exemplify the opportunities brought by workplace contexts, 
let us consider an example from professional sea navigation. Vroutsis, 
Psycharis, and Triantafillou (2018) proposed students a typical problem 
from this sector. Starting from a given position, a ship must pass through 
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a dangerous area with underwater obstacles. The area was represented 
on a navigational chart and the captain had marked two landmarks on 
this chart as reference points. The students were asked to use the land-
marks and specific professional measures (bearing, range, and horizontal 
angle) and tools (parallel ruler, divider) in order to find a way to steer 
the ship to ensure its safe passage. They then had to rediscover a naviga-
tional technique: describe an arc of a circle that avoids the obstacles by 
steering the ship and keeping a constant angle between the two land-
marks. As a parallel aim, the students also learned about inscribed an-
gles. The realistic context (original workplace problem), the practition-
er’s tools (measures) and the workplace constraints (rules) acting as 
boundary objects revealed the insufficiency of school taught knowledge. 
It thus highlights a discontinuity between formal mathematics and the 
genre of mathematics developed in the workplace.  

When we analyze this task, we see that the problem involves two work-
ing spaces: one is professional navigation and the other is geometry. The 
professional context marks the three dimensions —representations, in-
struments used, and modes of reasoning— of the navigation working 
space. Thus, it differs from a geometrical working space in the school 
context. A third working space, programming, could take into account 
the prevalence of programming in professional modeling and of elec-
tronic devices in contemporary navigation. In order to bring the working 
spaces to life and help students develop connections, group-work could 
be organized in phases like in the suspension bridge situation reported 
above. In a first phase of group-work, three different tasks could be dis-
tributed to groups of students. One task, proposed to groups of students 
labeled sailors, would be in a navigation working space. A professional 
would present the problem and the technique used to go through danger-
ous areas. Students would have to implement the technique to a practical 
case of navigation and discuss its effectiveness. Another task, proposed 
to groups of students labeled geometricians, would be in a geometrical 
working space. In this task, for two given points A and B, students 
would have to conjecture with the help of DG the positions of the points 
M, such as angle (MA, MB) would be a given constant. A third task 
could be proposed to groups of students labeled programmers. They 
would work on programming a trajectory for a point M with the con-
straint that angle (MA, MB) is constant. 

In a second phase, groups would be comprised of one sailor, one pro-
grammer, and one geometrician. The tasks would be to explain and con-
front the work done by each participant in the first phase and then, write 
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a mathematical justification of the navigational technique and of the 
program (fig. 11.4). A collective classroom discussion could follow that 
emphasizes the contribution of mathematics to professional techniques. 
A further discussion point would be the care that should be exercised 
when applying to the real world: Good sailors will constantly double 
check!  
 

 

Fig. 11.4 A suitable group-work organization for the sea navigation situation. 

With this type of design, modeling activities could articulate learning 
and socialization while contributing to the education of students as citi-
zens and for their (future) professional/social life. This is a different 
way, as compared to modeling activities that aim primarily to foster in-
dividual modeling competencies.  
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Analyzing what students learn and how they learn 

In the preceding sections of this chapter, we did not specifically separate 
epistemology and cognition. Furthermore, we characterized working 
spaces by the three dimensions (semiotic, instrumental, discursive). This 
is also the case of studies on modeling whose authors observe “connec-
tions” (Lagrange, 2021) or “circulations” (Derouet, 2019) between di-
mensions of the working spaces and analyze these connections or circu-
lations as evidence of students’ progress relative to the goals of the situa-
tion. 

Beyond dimensions, the MWS theory (preceding chapters) considers 
three geneses that articulate poles of two planes labeled respectively 
epistemological and cognitive. The epistemological plane consists of 
human made entities (representamens, artefacts, rules of reasoning.) The 
cognitive plane is described in terms of processes (visualizing, construct-
ing, proving). Each genesis can be viewed as the activation of a pole of 
the epistemological plane by an individual or a collective subject for the 
corresponding process in the cognitive plane and is analyzed with regard 
to the subject’s cognition. Moutet (2019) considered an extended work-
ing space with a single cognitive plane, and two distinct epistemological 
planes, one in physics and the other in mathematics. Distinguishing two 
epistemological planes is consistent with the fact that in physics and 
mathematics, the three poles of the epistemological planes are specific to 
each field. A single cognitive plane presupposes that poles in the cogni-
tive plane can be associated to poles of a mathematical epistemological 
plane, as well as to poles of a physical epistemological plane. This 
choice helped Moutet to identify how students develop knowledge 
through geneses involving alternatively poles of the mathematics epis-
temological plane and poles of the physics epistemological plane. With 
regard to modeling, Moutet’s extended MWS is then centered on a sin-
gle model (the Minkowski diagram) alternatively considered from a 
mathematical and a physical point of view.4 Moutet also considered a 
model involving imaginary objects like a car traveling at nearly light 
speed.5 However, the elaboration of this model and the connection with 
the Minkowski model is not conceptualized in the MWS theory. 

This is different for Psycharis, Kafetzopoulos, and Lagrange (2021) 
who analyze how students progress in their understanding of covariation 

                                                      
4 For another example of an extended MWS about a model in engineering, see Cos-

mes Aragón, & Montoya Delgadillo (to appear). 
5 Paradoxically labeled “real model” in reference to Blum’s modeling cycle. 
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by working on a succession of models. At the theoretical level, their 
study draws from Minh and Lagrange (2016) that introduced the Con-
nected Working Spaces (CWS) framework. Minh and Lagrange were 
concerned that although at both the epistemological and cognitive levels, 
functions make sense because of their occurrence in many dissimilar set-
tings, teaching actually favors algebraic representations. They developed 
the CWS framework in order to take the following fact into considera-
tion: For students and teachers to fully consider each setting where func-
tions can make sense, they have to think of it as a particular working 
space allowing a specific type of scientific work and specific conceptual-
izations. Their hypothesis is that adequate teaching situations should or-
ganize students’ work in various non-algebraic and algebraic working 
spaces and allow connections between these. 

As explained above, in the situation analyzed by Psycharis, 
Kafetzopoulos, and Lagrange (2021), the students work in turn on four 
models of a gutter (sheet of paper, section in DG, measures in DG, 
mathematical function). Four working spaces are associated with the 
four models. The identification of connections between these working 
spaces in the three dimensions theorized in the CWS framework plays a 
role in the a priori and a posteriori analyses by focusing on key transi-
tions occurring when students are introduced to a new working space 
and by specifying the dimensions involved.  

Psycharis et al. (ibid) present episodes in various phases of work. We 
take the example of a phase where students were introduced to the DG 
working space. We extract here first a dialogue between the teacher (T) 
and students (S) while working to construct a dynamic rectangle 
(ABCD) to model a section of the gutter, and then the authors’ analysis 
in two parts.   

The dialogue:  

T: You will need one point for the lower part of the gutter and one point 
which describes the maximum folding. Then we need another point 
between these two points to describe every time the different folding, but 
first of all we need to find the restriction of the construction. 
S3: I propose to put point D in (0;0).  
S4: We have to create a point E as (0;10) in case we fold the metal plate 
in the middle so that we get a segment for positioning the free point C. 

After creating C, the students observed the folding in order to find an 
expression for the x-coordinate of A. Most of the groups attempted to 
find it through solving the equation x+x+y=20 for y. Students from dif-
ferent groups commented: “I tried to create A, as (20-2*x ; 0) but it did 
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not work!”, “We created A as (20-2*yC;0) and it worked!”, “As for us, 
we created A as (20-2*DC;0) and it worked also!  

The first part of the analysis uses the CWS framework. In order for 
students to take advantage of the DG possibilities they need to identify 
key elements of the model as geometrical objects using geometrical no-
tations. The teacher’s intervention is crucial, insisting on the choice of 
points defining a rectangle but the students also have their part: proposi-
tions for creating points E and D involving the constraints of the sheet, 
expression of the dependency of point A to point C. The work is in the 
instrumental dimension: adequate use of the instrument (DG) is at stake. 
The work also combines a semiotic dimension: students progressively 
integrate the notations of DG in order to express the x–coordinate of A. 

For the authors, this first part of the analysis alone does not give pre-
cise account of what students learnt and how. That is why they choose to 
combine with the activity theory framework Abstraction in Context 
(AiC), see Dreyfus et al. (2015). The abstraction in context theory was 
created to give account of conceptualization within contextualized tasks. 
This is how Psycharis et al. (2021) introduce AiC: 

AiC describes the process of abstraction by means of a model of three 
epistemic actions that researchers can be observe and analyze: 
recognizing (R), building-with (B) and constructing (C). Recognizing an 
already known mathematical concept, process or idea occurs when a 
student recognizes it as relevant in a given situation (...) Building-with 
comprises the combination of existing knowledge elements (i.e. 
recognised constructs) to achieve a goal (...) Constructing is carried out by 
integrating previous knowledge elements (constructions) by vertical 
mathematization to produce a new structure/construct (...)  

Then the second part of their analysis uses AiC. Drawing from their 
experience with folding the paper sheet, the students see the need to de-
fine a rectangle through four points and also to distinguish the point that 
‘causes’ the dynamic change of the construction (Recognizing). In order 
to organize the objects in the DG in a way consistent with the paper, the 
students make faulty and successful attempts to relate the coordinates of 
point A to measures dependent on point C (Building-with). In the end, 
different symbolizations for the coordinates of point A are suggested by 
different groups (Constructing) indicating students’ progressive coordi-
nation of their preceding sensual manipulation of the paper sheet with 
the available notation structures of DG.  

Analyses of the other steps confirm that at each step, students first 
connect a new working space to the former (Recognizing) and then de-
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velop conceptualizations (Building-with and Constructing) inside the 
new working space. Psycharis, Kafetzopoulos, and Lagrange conclude: 

AiC is powerful here to make sense of students’ progress but could not be 
put into operation without the structure provided by CWS. In addition, 
CWS distinguishes between three dimensions (instrumental, semiotic, and 
discursive) in students’ work that sheds light upon the AiC process of 
abstraction. 

Reporting on four studies in this section, we observed varied ways of 
dealing with students’ cognition in modeling work. Two studies (Der-
ouet, 2019 and Lagrange, 2021) assume that the connections or circula-
tions between working spaces are evidence of students’ progress. Anoth-
er one (Moutet, 2019 takes the classical MWS approach in considering a 
cognitive plane and geneses. Whereas the fourth study (Psycharis et al., 
2021), combines an activity theory framework with the CWS framework 
and concluded on a productive combination. There is no definite best 
method to address the question of what students learn and how they 
learn in modeling situations. However, it is promising to note that MWS 
offers internal means with the idea of the cognitive plane, as well as the 
ability to combine with a cognitive oriented framework. 

11.6 Conclusion 

We will conclude this study of the new perspectives opened by the 
working space theory by focusing on two fundamental constructs pre-
sented in this chapter that have proven productive: the idea of mathemat-
ical work and the three dimensions of this work (semiotic, instrumental 
and discursive). The idea of mathematical work helps to think of model-
ing without artificial separation between mathematics and reality. It then 
looks at mathematics as contributing to various models of a reality rather 
than as being confined to mathematizing reality into pure mathematical 
models. It also motivates consideration of modeling practices outside 
education. These practices offer a wide landscape with common trends. 
These include the plurality of models for a given reality where each 
model contains some mathematics, and the conception of modeling as a 
social activity involving specialists from different fields and people with 
various points of view. Models are plural relatively to the fields of 
knowledge involved (profession, physics, mathematics…) but also with 
regard to their operativeness. Analytic models coexist with algorithmic 
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simulations, and different models benefit from mutual connections. The 
idea of a plurality of working spaces reflecting this plurality of models, 
of fields, and of points of view is productive in the MWS studies. Fur-
ther, this idea allows addressing traditional mathematical fields. These 
include 1) probability, 2) topics involving physics and mathematics like 
relativity, and 3) wider issues like the understanding of covariation as a 
basis for functional thinking.  

At present, social aspects of modeling are not very developed in math 
education. The plurality of working spaces can help in an educational 
context to organize in the classroom collaboration and a discussion be-
tween fields and between points of view. Inspiration can be found from 
situations of modeling at the workplace. In this conception, there is no 
opposition between objectives in terms of socialization and in terms of 
knowledge. Socialization is based on the recognition of various forms of 
knowledge and the subsequent necessity of discussion and collaboration. 
Considering the three dimensions of a working space helps to avoid a 
reduction of the modeling activity to a pure translation— and of mathe-
matics to a language. As Psycharis, Kafetzopoulos, and Lagrange (ibid) 
say, the identification of these dimensions in each of the working spaces 
involved in a modeling situation provides the “structure” needed for 
well-grounded a priori and a posteriori analyses. Building upon this 
structure, it is possible to study students’ cognition along the modeling 
activity. We noted above two possibilities. One is to try to characterize 
“geneses” associating poles of epistemological planes and a cognitive 
plane. The other is to combine with an activity theory framework. 

Studies on modeling based on MWS are still small in number. Analyz-
ing some of these helped us in this chapter to open new perspectives for 
the design of modeling situations and for making sense of students’ 
learning in these situations. Beyond providing elements of a theoretical 
framework for researchers, we hope that this chapter will also be useful 
for mathematics educators at large at the methodological level. This 
could include thinking of contents or notions to be taught in relation with 
social settings in which these contents and notions exist and contribute 
in understanding the world. This could also include identifying varied 
models developed in these settings and their connections, conceiving 
spaces for working on each of these models and finally, organizing stu-
dents’ work and social interaction inside and across the working spaces. 
A wide field for experimentation and research opens up.  
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