
HAL Id: hal-03636667
https://hal.science/hal-03636667v1

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collaborative Processes Behavioral Modeling
Mamadou Lakhassane Cisse

To cite this version:
Mamadou Lakhassane Cisse. Collaborative Processes Behavioral Modeling. Student Research Com-
petition (SCR), at Annual Symposium On Applied Computing (SAC 2018), Apr 2018, Pau, France.
pp.1702-1703. �hal-03636667�

https://hal.science/hal-03636667v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22471

Official URL

DOI : https://doi.org/10.1145/3167132.3167457

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Cisse, Mamadou Lakhassane Collaborative
Processes Behavioral Modeling. (2018) In: Student Research
Competition (SCR), at Annual Symposium On Applied Computing
(SAC 2018), 9 April 2018 - 13 April 2018 (Pau, France).

Student Research Abstract: Collaborative Processes Behavioral

Modeling

Mamadou Lakhassane Cisse
IRIT Laboratory

Toulouse

France

mamadou.cisse@irit.fr

lays in the fact that our approach can ease collaboration between

the tasks enacted in the different interconnect systems. Those

systems can also share the same outputs/inputs. In that case, it is

necessary to have a mechanism allowing to know which system

must produce which specific part of the output and synchronize it.

This abstract is structured as followed. The next section deals with

the related work followed by the approach and its uniqueness.

Implementation section briefly presents our prototype. Finally, we

make a conclusion and introduce perspectives on future works.

BACKGROUND AND RELATED WORK
Many approaches for representing collaborative approaches have

been proposed. We summarize here some of them.

In previous works, we addressed this topic by producing

CMSPEM [8], a SPEM extension adding concepts to support

collaboration in software processes. In CMSPEM, Kedji et al.

introduced concepts to represent the stakeholders of a project, the

artifacts manipulated and tasks to execute. Collaboration dynamic

aspects are formalized through a system of events. Vo et al. [5]

have defined some collaborations patterns that are a way of

defining, reusing and enacting collaborative software

development processes. In [5], they define two collaborations

pattern which serve as collaboration strategies: Duplicate in

Sequence with Multiple Actors and Duplicate in Parallel with

Multiple Actors and Merge. Yakindu [6] provides an editor for

editing and simulating statecharts but is not process-centered.

APPROACH AND UNIQUENESS
To bring solution to the issues addressed in the first section we

propose an approach which allows to represent collaborative

software processes and also their execution. Our approach

includes the Collaborative Processes Behavioral Metamodel

(CPBM). CPBM defines collaborative tasks behavior via UML

state-machines. CPBM is composed of three packages:

CPBM_Core, CPBM_Behavior and CPBM_Execution. The latter

encompasses necessary concepts to execute a software process. It

introduces concepts about tasks being performed by multiple

actors. The behaviors of CPBM runtime elements are represented

by states as Instantiated, In Progress, Finished, ….

ResourceElement represents any kind of executor. It can be a

human or a tool. A single task instance (STI) is the main

executable concept. It represents a work unit assignable to a single

actor or a tool. The execution of an STI depends on the definition

of some collaboration strategies [5].

PROBLEM AND MOTIVATION
Software engineering is a deeply collaborative activity. Therefore,

having tasks executed by more than one actor is common. Such

collaborative processes allow development teams to be more

efficient. They need to be adequately represented in order to serve

as a development model (for example in agile developments). For

that, we need a dedicated language allowing to model different

collaborative situations.

So far, some attempts to describe a collaborative process via

models have been made [1][2]. However, they do not address the

topic of tasks and roles organization within the development team
neither concepts about the states of each task and action to

perform to go from one state to another. In the other hand, SPEM

[3], which is the standard for software processes modeling, does

not address the execution of any kind of task and still less tasks

executed by several persons. Some approaches [4] deal with tasks

sequencing but they remain insufficient to precisely describe the

reality of software development. They depict a “weak

collaboration” in contrast to “strong collaboration” that is how the

same task is shared between actors playing the same role. Besides

modeling, the question of collaborative processes execution is

also hardly addressed, especially to support strong collaboration.
For this purpose, we need an executable language to clearly define

collaborative situation semantics.

To address these issues, we have proposed to manage

collaborative processes by providing (1) a metamodel equipped

with constructs to describe multi-instance tasks; (2) a set of

collaborative patterns; (3) an operational semantics enabling

execute a multi-instance task based on the selected pattern; (4) a

process management system supporting flexibility by late binding

so that users can choose, at enactment time, appropriate

collaborative patterns corresponding to their organizational

model. Considering system-of-systems, the underlying interest

https://doi.org/10.1145/3167132.3167457

For this purpose, we can use workflow patterns-based strategies

[7] to set the execution sequencing depending on the availability

of resources and/or inputs and tasks synchronization. Strategies

are dynamically chosen depending on the problem faced at

enactment time. As an example, we can choose parallel or

sequential execution depending on whether all the actors are

available at the same time or not. Another reason motivating

strategy choice, can be the link between instances. They can be

linked through the sharing of artifact. This situation is observable

when a given instance must use the output of another instance.

Finally, we have developed a prototype of a process engine for

executing collaborative process.

IMPLEMENTATION
To handle the execution of collaborative processes, we have

implemented a process engine Collaborative Process Engine.

Mainly our prototype allows project teams to upload a process

model formatted in xml and generate all the single task instances

to be enacted. Given project development is collaborative, the

project manager can, choose how many instances of every task he

wishes and also the collaboration strategy for each. The strategies

depend on the chosen workflow patterns among those we

addressed in our approach section. To this date, our prototype is

working with a set of patterns based on parallel or sequential

execution. The parallel pattern means that the STIs are executed

simultaneously followed by a merge of the different outputs. The

sequential one means that every STI must wait for the

precondition to be fulfilled. Those STIs are assigned to actors

with inputs and expected outputs. The resource assignation will

allow every stakeholder to know his own tasks and the sequencing

between them. Finally, every actor will be able to graphically

visualize the states of his tasks.

CONCLUSION AND FUTURE WORK
This paper addresses a real-life modeling issue. Collaboration

processes behavioral modeling is indeed an interesting research

domain and has to be more deeply exploited.

During collaboration modeling, many elements have to be taken

into account such as how to represent collaboration processes,

which collaboration strategy to use, how to follow the execution

of every instance of tasks, among all. To answer those issues, our

contribution has been to propose an approach to manage

collaborative processes with a flexible PMS supporting

unexpected situations at enactment time and collaborative tasks

performed by several actors.

Moreover, we have also implemented a Collaboration Process

Engine (CPE) to support collaboration processes execution and

tasks states visualization.

This paper has potentially opened fruitful research directions. The

use of collaboration strategies has to be extended in order to allow

our CPE to support more complex strategies. The behavior of the

runtime elements is expressed through UML State Machines. In

addition, we plan on supporting dynamic addition, removal of

instances of tasks during execution time. Also, events and actions

to switch from a state to another (e.g. In Progress to Finished)

have to be refined to take into account resources availability and

work product instances states.

REFERENCES
[1] Hawryszkiewycz, I.T., 2005. A metamodel for modeling collaborative systems.

Journal of Computer Information Systems 45, 63–72.

[2] Cánovas Izquierdo, J.L., Cabot, J., 2016. Collaboro: a collaborative (meta)

modeling tool. PeerJ Computer Science 2, e84. doi:10.7717/peerj-cs.84

[3] OMG-SPEM 2.0, http://www.omg.org/spec/SPEM/2.0 (2008)

[4] Briggs, R., Kolfschoten, G., Gert-Jan, V., & Douglas, D. (2006). Defining key

concepts for collaboration engineering. Proc. AMCIS 2006, 17. ISO 690

[5] Vo, T.T, Coulette, B., Tran, H.N., Lbath, R. An Approach to Define and Apply

Collaboration Process Patterns for Software Development. Model-Driven

Engineering and Software Development, Springer, CCIS series, Vol 580, pp

248-262. 2015. ISBN 978-3-319-27868-1.

[6] Yakindu: Homepage. https://www.itemis.com/en/yakindu/state-machine/

[7] Van Der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P.

(2003). Workflow patterns. Distributed and parallel databases, 14(1), 5-51.

[8] Kedji, K.A., Lbath R., Coulette, B., NASSAR, M., Barese, L., Racaru F. 2014.

Supporting collaborative development using process models: a Tooled

Integration-focused Approach. Journal of Software : Evolution and Process

(JSEP). February 2014, Wiley online library. DOI: 10.1002/smr.1640.

Figure 1: CPBM_Execution package structure

