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We consider the selection of prediction models for Markovian time series. For this purpose, we study the theoretical properties of the hold-out method. In the econometrics literature, the hold-out method is called out-of-sample and is the main method to select a suitable time series model. This method consists of estimating models on a learning set and picking up the model with minimal empirical error on a validation set of future observations. Hold-out estimates are well studied in the independent case, but, as far as we know, this is not the case when the validation set is not independent of the learning set. In this paper, assuming uniform ergodicity of the Markov chain, we state generalization bounds and oracle inequalities for such method; in particular, we show that the out-of-sample selection method is adaptative to noise condition.

Introduction

Many models in time series involve the one-step prediction of the next value knowing past values, and hold-out or out-of-sample (OOS) method is probably the most commonly used model selection method in practice. This method consists in splitting the sample of size n + m in two parts: a training set of length n and a validation set of size m. The training set is used to derive a nite collection of candidate prediction functions and we chose the function with the best performance on the validation set. It turns out to look like picking a prediction function from a nite collection; however, we must be careful with the dependence between the learning set and the validation set for the Markov case. For time series, splitting the data into a training subset and a validation subset of future observations is an option implemented in most statistical or machine learning software. This standard evaluation procedure works very well in practice (see, for example, Tashman [START_REF] Tashman | Out-of-sample tests of forecasting accuracy: an analysis and review[END_REF] for OOS to assess the model's accuracy). In the machine learning community, Cerqueira et al. [START_REF] Cerqueira | Evaluating time series forecasting models: an empirical study on performance estimation methods[END_REF] compare the performances between OOS and other methods empirically; they found that OOS produces the most accurate estimates for real time series. The authors think that the main reason for the performance of OOS method is the preservation of the temporal order of the observations. For the independent and identical distributed (i.i.d.) case, the hold-out theoretical properties are well known, and, for example, in the classication case, it adapts to the noise conditions (see Blanchard and Massart [START_REF] Blanchard | Discussion: Local rademacher complexities and oracle inequalities in risk minimization[END_REF]). However, as far as we know, there are few theoretical results for the OOS method for dependent data. Some studies assess the asymptotical performance of related methods like cross-validation (see Arlot and Celisse [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]) in the context of regression (Burman and Nolan [START_REF] Burman | Data dependent estimation of prediction functions[END_REF]). But, for model selection, in the case of dependent observations, cross-validation is known to be severely aected by dependence (see Chu and Marron [START_REF] Chu | Comparison of two bandwidth selectors with dependent errors[END_REF]). Other authors investigate methods of model selection for dependent data, which focus more on penalization (see Alquier and Wintenberger [START_REF] Alquier | Model selection for weakly dependent time series forecasting[END_REF]) or on complexity measure such that Rademacher complexity (Mohri and Kuznetsov [19]) or stability bounds (Mohri and Rostamizedeh [20]). Empirical risk minimization has also been studied in the framework of uniformly ergodic Markov chains (see Bin et al. [START_REF] Bin | Learning from uniformly ergodic markov chains[END_REF]). To be exhaustive, we can also cite some studies on the asymptotic convergence rate for estimating nite Markov chain transition matrices (see Falahatgar et al. [START_REF] Falahatgar | Learning markov distribution: Does estimation trump compression[END_REF], Hao et al. [START_REF] Hao | On learning markov chains[END_REF], and [START_REF] Han | Optimal prediction of markov chains with and without spectral gap[END_REF]). Note that such results are dicult to apply to massive models like Deep networks (Zhang et al. [START_REF] Zhang | Understanding deep learning (still) requires rethinking generalization[END_REF]). Indeed, these authors show, through extensive systematic experiments, that these traditional approaches fail to explain why large neural networks generalize well in practice. Eventually, OOS is still the standard method for model selection in time series, especially for Deep learning models. If the data are drawn from a process indexed in time order, the validation set is no longer independent from the learning set, and the classical i.i.d. theory of hold-out does not hold anymore. This paper aims to provide generalization bounds and oracle inequalities for the selected prediction model by the OOS method in a Markovian framework. Our paper is organized as follows: in the next section, we will present the observations, models, notations, and concentration inequalities for uniformly ergodic Markov chain. In the third section, we give rst exponential inequalities, generalization bounds, and oracles inequalities for the model selected with OOS method. In this section, we use only the boundedness property of the loss function, and under additional assumptions, we improve these bounds in the fourth section. Finally, in the fth section, we rene these bounds under noise conditions and show our main result: the OOS method is still adaptative to noise conditions for uniformly ergodic Markov chain. We postpone long proofs in the Appendix.

2. The model 2.1. Assumptions and denitions for the observed process. We consider (Y t ) t∈Z , an Y-valued, k-order Markov chain, where Y is a Polish state space. We assume that (Y t ) t∈Z is time homogenous, stationary, and uniformly ergodic. Let p be xed a integer with p ≥ k, then the markovization (X t ) t∈Z of (Y t ) t∈Z with: (1)

X t := (Y t , • • • , Y t-p ) T ,
will be a time homogenous, stationary, uniformly ergodic Markov chain of order 1. We are going to state some denitions from the theory of general state space Markov chains, based on Gareth and Rosenthal [START_REF] Gareth | General state space markov chains and mcmc algorithms[END_REF].

Denition 1. Let us denote K its transition kernel. K(x, .) is the distribution of X n+1 conditioned on X n = x. Denote by Q its stationary law, i.e. the probability distribution such that

x∈X Q(dx)K(x, dz) = Q(dz).
We dene the total variational distance of two distributions P and Q dened on the same state space (X , A) as (2)

d T V (P, Q) := sup A∈A |P (A) -Q(A)|.
Since (Y t ) t∈Z is uniformly ergodic, (X t ) t∈Z will be uniformly ergodic, and constants C > 0 and 0 < ρ < 1 exist such that:

(3)

sup x∈X d T V (K n (x, .), Q) ≤ Cρ n .
2.2. Estimated functions and loss functions. We want to estimate a one-step prediction model:

g * (Y t-1 , • • • , Y t-p ),
which minimizes the expectation of a real bounded loss function L. According to equation (1), the observations are a realization of

(X 1 , • • • , X n , X n+1 , • • • , X n+m ). the variables (X 1 , • • • , X n ) constitute
the learning set, and the variables (X n+1 , • • • , X n+m ) the validation set. Let us introduce some denitions: Denition 2. We will introduce the notion of prediction and loss functions.

• A measurable function g from Y p into Y will be called a prediction function.

• Let L be a real, positive, measurable, bounded function dened on Y 2 . Without loss of generality, we can always rescale the function L such that |L(y, y )| ≤ 1. L will be called a loss function.

• With a slight abuse of notation, we will denote: (4)

L(g(X t )) := L (g(Y t-1 , • • • , Y t-p ), Y t ) .
• Let X be a random vector with the stationary law Q of the Markov chain (X t ) t∈Z . The expected loss of a measurable function g will be:

(5)

L(g) = E Q (L(g(X))) .
• Let F be the set of measurable functions from Y p into Y. The best prediction function, g * , is the function that minimizes the loss function applied to the one-step prediction under the stationary law:

(6)

g * = arg min g∈F E Q L (g(X t )) .
For example, if Y is nite, and L is the misclassication loss function: L(y, y ) = 1 y =y , g * will the best prediction of the following state

Y t knowing Y t-1 , • • • , Y t-p .
To estimate g * , we seek prediction function ĝ among a set of possible functions G ⊂ F by minimizing an empirical loss function on the learning set

(X 1 , • • • , X n ):
Denition 3. Let L be a loss function.

• The empirical estimation of g * , among a set of possible functions G, will be dened as:

ĝ (X 1 , • • • , X n ) = arg min g∈G n t=1 L (g(X t )) . (7) 
• The estimated function ĝ depends on X 1 , • • • , X n and is a random function. If we observe the realization

x 1 , • • • , x n of X 1 , • • • , X n , we will observe a realization ĝ(x 1 , • • • , x n ) of ĝ(X 1 , • • • , X n ).
For convenience, since our results are valid for any realization ĝ(

x 1 , • • • , x n ) of ĝ(X 1 , • • • , X n ),
we will denote (8)

ĝn 1 := ĝ(x 1 , • • • , x n ).
The set of possible function G depends on user choice. In pratice, we have to chose between several sets {G k } 1≤k≤N , where N is a nite integer. Each set G k denes a empirical minimizer:

(9)

(ĝ n 1 ) k = arg min g∈G k n t=1 L (g(x t )) .
Our goal is to chose the best prediction function among ((ĝ n 1 ) k ) 1≤k≤N . Note that the learning loss L need not be equal to L; it can also be a proxy function easier to optimize. If the set of possible functions G k is large, the function (ĝ n 1 ) k may have poor performances on future observations of the process (X t ) t∈Z , even if the empirical learning loss is small. We say that (ĝ n 1 ) k overts the learning set (X 1 , • • • , X n ). Hence, it is wise to assess the performance of the estimated model on an out-of-sample set X n+1 , • • • , X n+m : Denition 4. Let g be any measurable function from Y p into Y. The empirical, out-of-sample loss of g will be: [START_REF] Chu | Comparison of two bandwidth selectors with dependent errors[END_REF] 

Lm (g) = 1 m n+m k=n+1 L(g(X k )).
Note that, by the law of large number, the empirical loss Lm (g) converges, almost surely, towards the theoretical loss L(g):

L(g) a.s.

= lim m→∞ Lm (g).

Remark 1. For an integer b ≥ 0, let us write L b (ĝ n 1 ), the expected loss of any minimizer ĝn 1 for a vector X n+1+b of future observations conditionally to the realization

(X 1 = x 1 , • • • , X n = x n ): (11) L b (ĝ n 1 ) = E (L(ĝ n 1 (X n+b+1 )) |X 1 = x 1 , • • • , X n = x n ) .
A direct application of the uniform ergodicity of the Markov chain shows that, for a nite b, we can approximate the expectation of the loss L b by the theoretical loss L. Hence, with the notations of denition 1, for any realization

x 1 , • • • , x n of X 1 , • • • , X n : ( 12 
)
|L b (ĝ n 1 ) -L(ĝ n 1 )| ≤ Cρ b .

Exponential inequalities.

To study the link between the empirical loss [START_REF] Chu | Comparison of two bandwidth selectors with dependent errors[END_REF] and the theoretical loss (5), we need uniform inequalities between the empirical mean and the expected mean (as in Lugosi [START_REF] In Györ | Principles of nonparametric learning, chapter Pattern classication and learning theory[END_REF]). This section aims to give such inequalities. First, let us introduce the notion of mixing time, which allows us to evaluate the speed of the convergence of a Markov Chain to its stationary distribution.

Denition 5. Let (X t ) t∈Z be a time homogeneous, uniformly ergodic, Markov chain. Let the total variation distance be dened by equation ( 2). The mixing time t mix is dened by:

d(t) := sup x∈X K t (x, •) -Q T V , t mix (ε) = min{t : d(t) ≤ ε}, and t mix = t mix ( 1 4 
).

The fact that t mix is nite is equivalent to the uniform ergodicity of the chain (see Roberts and Rosenthal [START_REF] Roberts | General state space markov chains and mcmc algorithms[END_REF]). If we introduce an integer gap b between the learning and validation sample as a technical tool, a straightforward adaptation of Corollary 2.10 and equation (3.27) of Paulin [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF] yields the following proposition:

Proposition 1. Let C ≥ 1 and 0 ≤ ρ < 1 be the positive constants in equation (3). For any realization

x 1 , • • • , x n of X 1 , • • • , X n , real number 0 ≤ ε ≤ 1, integers 0 ≤ b < m,
with the notations of denitions 4, 3, and 5:

(13)

P ± 1 m -b n+m k=n+1+b L(ĝ n 1 (X k )) -L(ĝ n 1 ) > ε ≤ exp -2 (m -b)ε 2 9t mix + Cρ b .
Moreover, according to equation (3.30) of Paulin [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF], we have

Cρ b ≤ 2 exp -b ln(2) tmix , so (14) 
P ± 1 m -b n+m k=n+1+b L(ĝ n 1 (X k )) -L(ĝ n 1 ) > ε ≤ exp -2 (m -b)ε 2 9t mix + 2 exp - b ln(2) t mix .
Now, we introduce the notion of pseudo spectral gap briey; see Paulin [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF] for a detailed presentation. Denition 6. For a Markov chain with transition kernel K(x, dz) and stationary distribution Q, we dene the spectrum of the chain as

S 2 := λ ∈ C\0 : (λI -K) -1
does not exist as a bounded linear operator on L 2 (Q) . We also dene the time reversal of K as the Markov kernel

K * (x, dz) := K(z, dx) Q(dx) Q(dz).
Then, the linear operator K * is the adjoint of the linear operator K on L 2 (Q). We dene a new quantity, called the pseudo spectral gap of K, as

γ ps := max k≥1 γ (K * ) k K k /k , where γ (K * ) k K k denotes the spectral gap of the self-adjoint operator (K * ) k K k .
Now, a straightforward adaptation of Theorem 3.4 of Paulin [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF] gives: Proposition 2. Let (X t ) t∈N be a stationary Markov chain with spectral gap γ ps , and a real number

0 ≤ ε ≤ 1. Let f ∈ L 2 (Q) with, for every x, |f (x) -E Q (f )| ≤ B. Let V f = V ar Q (f ),
and

S = n i=1 f (X i ), then: (15) 
P (± (S -E Q (S)) > nε) ≤ exp - n 2 ε 2 γ ps 8(n + 1/γ ps )V f + 20nεB
.

From this proposition, we deduce a lemma, proven in the Appendix, that will be used in the last section:

Lemma 1. With the same assumptions than the previous proposition 2, for any 0 < δ < 1:

P ± (E Q (S) -S) ≤ 8 (γ ps + 1) γ 2 ps nV f log 1 δ + 20 γ ps B log 1 δ ≥ P ± (E Q (S) -S) ≤ 8 γ ps (n + 1/γ ps )V f log 1 δ + 20 γ ps B log 1 δ ≥ 1 -δ (16) 
Finally, proposition 2 and equation (3.27) of Paulin [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF] yield the following proposition: Proposition 3. Let (X t ) t∈Z be a stationary Markov chain with pseudo spectral gap γ ps . For any function g, let us denote V g = V ar(L(g(X t )) the variance of the loss function computed with the stationary law. Then, for any realization

x 1 , • • • , x n of X 1 , • • • , X n , real number 0 ≤ ε ≤ 1, integers 0 ≤ b < m,
with the notations of denitions 4 and 3, since Cρ b ≤ 2 exp -b ln(2) tmix :

P ± 1 m -b n+m k=n+b+1 L(ĝ n 1 (X k )) -L(ĝ n 1 ) > ε ≤ exp - (m -b) 2 ε 2 γ ps 8((m -b) + 1 γps )V ĝn 1 + 20(m -b)ε + 2 exp - b ln(2) t mix . (17) 

First bounds with Hoeffding-type inequality

In this section, we will use only the boundedness property of the loss functions. We obtain bounds valid for all models, but they can be loose under particular noise conditions. 

x 1 , • • • , x n of X 1 , • • • , X n , integers b and m, with 0 ≤ b < m: (18) P ± Lm (ĝ n 1 ) -L(ĝ n 1 ) > ε + b m ≤ exp -2 (m -b)ε 2 9t mix + 2 exp - b ln(2) t mix .
Proof. We begin to prove [START_REF] Massart | Ecole d'été de probabilité de Saint-Flour XXXIII[END_REF] with the sign +. We have, on the event Lm (ĝ n

1 ) -L(ĝ n 1 ) ≥ b m : 0 ≤ 1 m n+m k=n+1 L(ĝ n 1 (X k )) -L(ĝ n 1 ) - b m ≤ 1 m n+m k=n+b+1 L(ĝ n 1 (X k )) - (m -b) m × L(ĝ n 1 ) = m -b m 1 m -b n+m k=n+b+1 L(ĝ n 1 (X k )) -L(ĝ n 1 ) ≤ 1 m -b n+m k=n+b+1 L(ĝ n 1 (X k )) -L(ĝ n 1 ).
So, by proposition 1:

P 1 m n+m k=n+1 L(ĝ n 1 (X k )) -L(ĝ n 1 ) > ε + b m ≤ P 1 m -b n+m k=n+b+1 L(ĝ n 1 (X k )) -L(ĝ n 1 ) > ε ≤ exp -2 (m -b)ε 2 9t mix + 2 exp - b ln(2) t mix . Now, on the event Lm (ĝ n 1 ) -L(ĝ n 1 ) < b m , we have P 1 m n+m k=n+1 L(ĝ n 1 (X k )) -L(ĝ n 1 ) > ε + b m = 0.
So,

P Lm (ĝ n 1 ) -L(ĝ n 1 ) > ε + b m ≤ exp -2 (m -b)ε 2 9t mix + 2 exp - b ln(2) t mix .
This shows equation ( 18) with the sign +.

For the sign -, remark that, on the event

L(ĝ n 1 ) -Lm (ĝ n 1 ) ≥ b m : 0 ≤ L(ĝ n 1 ) - 1 m n+m k=n+1 L(ĝ n 1 (X k )) - b m ≤ m -b m L(ĝ n 1 ) - 1 m n+m k=n+b+1 L(ĝ n 1 (X k )) = m -b m L(ĝ n 1 ) - 1 m -b n+m k=n+b+1 L(ĝ n 1 (X k )) ≤ L(ĝ n 1 ) - 1 m -b n+m k=n+b+1 L(ĝ n 1 (X k )),
and by the same argument as previously, we get equation [START_REF] Massart | Ecole d'été de probabilité de Saint-Flour XXXIII[END_REF] for the sign -Using this proposition, we can state an exponential bound for the theoretical loss function. The proof is based on a suitable choice of b and is given in the Appendix.

Theorem 3.1. With the notations of proposition 1, for any realization

x 1 , • • • , x n of X 1 , • • • , X n , and 
0 ≤ ε ≤ 1: (19) 
P ±( Lm (ĝ n 1 ) -L(ĝ n 1 )) > ε ≤ 2 exp ln(2) t mix + 1 exp - mε 2 ln(2) (1 + 9 ln(2))t mix .

A rst oracle inequality. Let ((ĝ n

1 ) k ) k=1,••• ,N denote a nite collection of prediction functions obtained by processing a realization of training sample of length n. In an ideal world, a benevolent oracle would tell us which index k minimizes the theoretical loss: [START_REF] Mohri | Stability bounds for stationnary φ-mixing and β-mixing processes[END_REF] 

k = arg min k∈{1,••• ,N } L((ĝ n 1 ) k ).
However, all we can do is to chose the index k that minimizes the empirical validation loss:

k = arg min k∈{1,••• ,N } Lm ((ĝ n 1 ) k ). (21) 
An oracle inequality between the optimal and the empirical choices k and k may be written:

(22) E L((ĝ n 1 ) k) -L(g * ) ≤ C L((ĝ n 1 ) k) -L(g * ) + γ(n) n .
Where, C is a factor at least as large as 1, γ(n) is a slowly growing function, and L(g * ) is the best expected loss. The term inf k (L ((ĝ n

1 ) k ) -L(g * )) = L((ĝ n 1 ) k) -L(g * )
is called the bias term, and the term γ(n) n , the variance term. The concept of oracle inequality was advocated in Donoho and Johnstone [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] and is now widely used (see Candes [START_REF] Candes | Modern statistical estimation via oracle inequalities[END_REF]). To establish the oracle inequality, we will begin by inequalities between empirical and theoretical losses for k and k. The theorem 3.1 and union bound give the following theorem: Theorem 3.2. For any realization

x 1 , • • • , x n of X 1 , • • • , X n , and 0 ≤ ε ≤ 1: P L((ĝ n 1 ) k) -Lm ((ĝ n 1 ) k) > ε ≤ N 2 exp ln(2) t mix + 1 exp - mε 2 ln(2) (1 + 9 ln(2))t mix ,
and

P Lm (ĝ n 1 ) k -L (ĝ n 1 ) k > ε ≤ N 2 exp ln(2) t mix + 1 exp - mε 2 ln(2) (1 + 9 ln(2))t mix .
We deduce then, an upper bound of expectations between the empirical et theoretical losses:

E L((ĝ n 1 ) k) -Lm ((ĝ n 1 ) k) ≤ ln eN 2 exp ln(2) tmix + 1 (1 + 9 ln (2)) t mix ln (2) m ,
and

E Lm (ĝ n 1 ) k -L (ĝ n 1 ) k ) ≤ ln eN 2 exp ln(2) tmix + 1 (1 + 9 ln (2)) t mix ln (2) m .
Proof. We can write:

E L((ĝ n 1 ) k) -Lm ((ĝ n 1 ) k) ≤ E max L((ĝ n 1 ) k) -Lm ((ĝ n 1 ) k) , 0 ≤ E max L((ĝ n 1 ) k) -Lm ((ĝ n 1 ) k) , 0 2 = 1 0 P L((ĝ n 1 ) k) -Lm ((ĝ n 1 ) k) > √ t dt ≤ ln eN 2 exp ln(2) tmix + 1 (1 + 9 ln (2)) t mix ln (2) m .
The proof of the second inequality is symmetric. Now, remark that,

L (ĝ n 1 ) k -L (ĝ n 1 ) k = L((ĝ n 1 ) k) -Lm ((ĝ n 1 ) k) + Lm ((ĝ n 1 ) k) -Lm (ĝ n 1 ) k + Lm (ĝ n 1 ) k -L (ĝ n 1 ) k ,
with, by denition, Lm ((ĝ n

1 ) k) -Lm ((ĝ n 1 ) k) ≤ 0.
Hence, we have

L (ĝ n 1 ) k -L (ĝ n 1 ) k ≤ sup k∈{1,••• ,N } (L ((ĝ n 1 ) k ) -Lm ((ĝ n 1 ) k )) + sup k∈{1,••• ,N } ( Lm ((ĝ n 1 ) k ) -L ((ĝ n 1 ) k )),
and we get the following oracle inequality:

Theorem 3.3. For any realization

(x 1 , • • • , x n ) of (X 1 , • • • , X n ),
we have:

E L((ĝ n 1 ) k) -L (ĝ n 1 ) k ≤ 2 ln eN 2 exp ln(2) tmix + 1 (1 + 9 ln (2)) t mix ln (2) m .
Or, if we denote by g * the best prediction function:

E L((ĝ n 1 ) k) -L(g * ) ≤ L (ĝ n 1 ) k -L(g * ) + 2 ln eN 2 exp ln(2) tmix + 1 (1 + 9 ln (2)) t mix ln (2) m .
Note that this bound rate is of the same order as in the independent case when m goes toward innite.

All the bounds in this section depend on the unknown constant t mix , however, this constant can be estimated from the data (see Wolfer and Kontorovich [START_REF] Wolfer | Estimating the mixing time of ergodic markov chains[END_REF]).

Fast rates with Bernstein-type inequality

We can remove the square root in the bound of theorem 3.3 by increasing the empirical hold-out error estimate by a small constant factor and using Berstein-type inequality (like in Bartlett et al. [START_REF] Bartlett | Model selection and error estimation[END_REF]). When the theoretical loss is small, the inequalities obtained may be better than the previous inequalities.

4.1. Exponential bound for L(ĝ n 1 ). We begin to establish exponential bounds for slightly modied empirical losses. As in section 3.1, we will write a generalization bound by considering the last m -b validation data. Hence, an application of the proposition 3 yields the following proposition, proven in the Appendix: Proposition 5. With the notations and assumptions of proposition 3, let 0 < a < 1 be a xed constant. 

For, any realization

(x 1 , • • • , x n ) of (X 1 , • • • , X n ),
P L(ĝ n 1 ) - 1 1 -a Lm (ĝ n 1 ) > ε + b m ≤ exp   - (m -b)γ ps a(1 -a)ε 8 1 + 1 γps + 20   + 2 exp - b ln(2) t mix . (24) 
Using this proposition, with a suitable choice of b, we can get exponential bounds for P 1 1+a Lm (ĝ n 1 ) -L(ĝ n 1 ) > ε and P L(ĝ n 1 ) -1 1-a Lm (ĝ n 1 ) > ε . These bounds are stated in the following theorem. The proof may be found in the Appendix. Theorem 4.1. With the notations and assumptions of proposition 3, for any realization

x 1 , • • • , x n of X 1 , • • • , X n , 0 < a < 1, and 0 ≤ ε ≤ 1: (25) P 1 1 + a Lm (ĝ n 1 ) -L(ĝ n 1 ) > ε ≤ 1 + 2 exp ln(2) t mix exp   - a(1 + a)mε 4t mix 8 1 + 1 γps + 20   ,

and

(26

) P L(ĝ n 1 ) - 1 1 -a Lm (ĝ n 1 ) > ε ≤ 1 + 2 exp ln(2) t mix exp   - a(1 -a)mε 4t mix 8 1 + 1 γps + 20   .
4.2. Bound for the generalization error. In the same framework as section 3.2, we consider

((ĝ n 1 ) k ) k=1,••• ,N
, a nite collection of prediction functions obtained by processing a realization of training sample of length n. We recall that the function with index k minimizes the empirical validation loss [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF], and the function with index k minimizes the theoretical loss [START_REF] Mohri | Stability bounds for stationnary φ-mixing and β-mixing processes[END_REF]. Now, the theorem 4.1 and union bound give the following result: Theorem 4.2. With the notations and assumptions of proposition 3, for any realization

x 1 , • • • , x n of X 1 , • • • , X n , 0 < a < 1 and 0 ≤ ε ≤ 1: P 1 1 + a Lm (ĝ n 1 ) k -L (ĝ n 1 ) k > ε ≤ N 1 + 2 exp ln(2) t mix exp   - a(1 + a)mε 4t mix 8 1 + 1 γps + 20   ,
and

P L((ĝ n 1 ) k) - 1 1 -a Lm ((ĝ n 1 ) k) > ε ≤ N 1 + 2 exp ln(2) t mix exp   - a(1 -a)mε 4t mix 8 1 + 1 γps + 20   .
So we get an upper bound of the expectations of these expressions:

E 1 1 + a Lm (ĝ n 1 ) k -L (ĝ n 1 ) k ≤ 4t mix 8 1 + 1 γps + 20 ln eN 2 exp ln(2) tmix + 1 a(1 + a)m ,
and

E L((ĝ n 1 ) k) - 1 1 -a Lm ((ĝ n 1 ) k) ≤ 4t mix 8 1 + 1 γps + 20 ln eN 2 exp ln(2) tmix + 1 a(1 -a)m .
Proof. We can write:

E 1 1 + a Lm ((ĝ n 1 ) k)) -L((ĝ n 1 ) k)) ≤ E max 1 1 + a Lm ((ĝ n 1 ) k)) -L((ĝ n 1 ) k)) , 0 = 1 0 P 1 1 + a Lm ((ĝ n 1 ) k)) -L((ĝ n 1 ) k)) > t dt ≤ 4t mix 8 1 + 1 γps + 20 ln eN 2 exp ln(2) tmix + 1 a(1 + a)m .
The proof of the second inequality is symmetric. Now, remark that:

L((ĝ n 1 ) k) -L((ĝ n 1 ) k)) = L((ĝ n 1 ) k) - 1 1 -a Lm ((ĝ n 1 ) k) + 1 1 -a Lm ((ĝ n 1 ) k) - 1 1 -a Lm ((ĝ n 1 ) k)) + 1 1 + a Lm ((ĝ n 1 ) k)) -L((ĝ n 1 ) k) + 2 a 1 -a 2 Lm ((ĝ n 1 ) k ,
with, by denition,

1 1-a Lm ((ĝ n 1 ) k) -1 1-a Lm ((ĝ n 1 ) k)) ≤ 0. Hence, we have L((ĝ n 1 ) k) -L((ĝ n 1 ) k)) ≤ sup k∈{1,••• ,N } L ((ĝ n 1 ) k ) - 1 1 -a Lm ((ĝ n 1 ) k ) + sup k∈{1,••• ,N } 1 1 + a Lm ((ĝ n 1 ) k ) -L ((ĝ n 1 ) k ) + 2 a 1 -a 2 Lm ((ĝ n 1 ) k ,
and we get the following inequalities for the empirical choice of the index k:

Theorem 4.3. With the notations and assumptions of proposition 3, for any realization

(x 1 , • • • , x n ) of (X 1 , • • • , X n ),
and 0 < a < 1, we have:

E L((ĝ n 1 ) k) -L((ĝ n 1 ) k)) ≤ 4t mix 8 1 + 1 γps + 20 ln eN 2 exp ln(2) tmix + 1 a(1 -a)m + 4t mix 8 1 + 1 γps + 20 ln eN 2 exp ln(2) tmix + 1 a(1 + a)m + 2a 1 -a 2 L((ĝ n 1 ) k).
Or, if we denote by g * the best prediction function:

E L((ĝ n 1 ) k) -L(g * ) ≤ 1 + 2a 1 -a 2 L((ĝ n 1 ) k) -L(g * ) + 4t mix 8 1 + 1 γps + 20 ln eN 2 exp ln(2) tmix + 1 a(1 -a)m + 4t mix 8 1 + 1 γps + 20 ln eN 2 exp ln(2) tmix + 1 a(1 + a)m + 2a 1 -a 2 L(g * ).
These bounds are not exactly like an oracle inequality [START_REF] Roberts | General state space markov chains and mcmc algorithms[END_REF]; however, they are better than the bounds of the previous section if the theoretical loss L (ĝ n 1 ) k is small enough. An extreme and rare case will be when L (ĝ n 1 ) k = 0, and, in such case, the bounds of the previous theorem are of order O 1 m . Note that, all the bounds in this section depend on the unknown constants t mix and γ ps , but they can be estimated from the data (see Wolfer and Kontorovich [START_REF] Wolfer | Estimating the mixing time of ergodic markov chains[END_REF]).

Fast rate under noise conditions

The previous condition L (ĝ n 1 ) k = 0 may be seen as a rough noise condition. We can try to rene our analysis because hold-out enjoys excellent theoretical properties under noise conditions for the i.i.d. case (see Blanchard and Massart [START_REF] Blanchard | Discussion: Local rademacher complexities and oracle inequalities in risk minimization[END_REF], Boucheron et al. [START_REF] Boucheron | Theory of classication: A survey of some recent advances[END_REF] or Massart [START_REF] Massart | Ecole d'été de probabilité de Saint-Flour XXXIII[END_REF]). Hence, we will investigate OOS properties in the Makov case under similar conditions for the noise. In this section, we assume that the state space Y is discrete, that L is the misclassication loss function: L(y, y ) = 1 y =y , and the functions g

(Y t-1 , • • • , Y t-p ) are the predictions of the following state Y t knowing Y t-1 , • • • , Y t-p .
Hence, we take advantage that for discrete observations, the prediction of the following state is a classication task. First, we give the assumption on the noise.

Assumption on the noise (H):

• A function ω(.) exists such that ω(x)/

√

x is non-increasing and, for any function g,

V ar (1 g =g * ) ≤ ω(L(g) -L(g * )),
where the expection are computed under the stationary law of the Markov chain

(X t ) t∈Z . • Let τ * m denote the smallest positive solution of ω(ε) = √ mε.
Again, in the same framework as sections 3.2, and 4.2, we consider ((ĝ n 1 ) k ) k=1,••• ,N , a nite collection of prediction functions obtained by processing a realization of training sample of length n. The function with index k minimizes the empirical validation loss [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF], and the function with index k minimizes the theoretical loss [START_REF] Mohri | Stability bounds for stationnary φ-mixing and β-mixing processes[END_REF]. We can then set the following proposition. We prove this proposition in the Appendix. Proposition 6. Let us assume the assumption on the noise (H), for any realization

x 1 , • • • , x n of X 1 , • • • , X n ,
integers b and m, with 0 ≤ b < m, real numbers 0 ≤ ε ≤ 1, and 0 < θ < 1:

P L (ĝ n 1 ) k -L(g * ) -(1 + θ) L (ĝ n 1 ) k -L(g * ) > ε + (1 + θ)2b m ≤ N exp - 1 1 + θ θγ ps (m -b) 16(1 + 1 γps )mτ * m + 80θ ε + 2 exp - b ln(2) t mix . (27) 
5.1. Exponential bound under noise condition. We can now state an exponential bound under noise condition. The following theorem is proven in the Appendix.

Theorem 5.1. Let us assume the assumption on the noise (H), for any realization

x 1 , • • • , x n of X 1 , • • • , X n ,
and 0 < θ < 1:

P L (ĝ n 1 ) k -L(g * ) -(1 + θ) L (ĝ n 1 ) k -L(g * ) > ε ≤ N + 2 exp ln(2) t mix exp - 1 4t mix (1 + θ) θγ ps mε 16(1 + 1 γps )mτ * m + 80θ . (28) 
Finally, taking expectation, we get the oracle inequality:

E L (ĝ n 1 ) k -L(g * ) ≤ (1 + θ) × L (ĝ n 1 ) k -L(g * ) + 4t mix (16(1 + 1 γps )mτ * m + 80θ) θγ ps m ln e 2 exp ln(2) t mix + N . (29) 
Remark 2. Assume the Mammen-Tsybakov noise condition with exponent α hold (see Mammen and

Tsybakov [START_REF] Mammen | Smooth discrimination analysis[END_REF]), that is, we can choose w(r) = r h α/2 for some positive h. Then, τ * m = (mh α )

-1/(2-α) , and the corollary translates into

E L (ĝ n 1 ) k -L(g * ) ≤ (1 + θ) × L (ĝ n 1 ) k -L(g * )+ 4t mix (16(1 + 1 γps )h -α/(2-α) m 1-1/(2-α) + 80θ) θγ ps m ln e 2 exp ln (2) 
t mix + N = (1 + θ) × L (ĝ n 1 ) k -L(g * )+   320t mix γ ps m + 4t mix 16(1 + 1 γps )h -α/(2-α) θγ ps m 1/(2-α)   ln e 2 exp ln(2) t mix + N   . (30) 
Remark 3. If the state space Y is equal to {0, 1}, and if the conditional expectation function:

η(Y t-1 , • • • , Y t-p ) = E (Y t |Y t-1 , • • • , Y t-p ) is such that for all y t-1 , • • • , y t-p ∈ Y p , |2η(y t-1 , • • • , y t-p ) -1| > h, then the Mammen-Tsybakov noise condition holds with α = 1.
The rate of the oracle inequality will then be fast:

E L (ĝ n 1 ) k -L(g * ) ≤ (1 + θ) × L (ĝ n 1 ) k -L(g * )+   320t mix γ ps m + 4t mix 16(1 + 1 γps )h -α/(2-α) θγ ps m   ln e 2 exp ln(2) t mix + N   . Hence, if L (ĝ n 1 ) k -L(g * ) = 0, E L (ĝ n 1 ) k -L(g * ) ≤ O 1 m .
Remark 4. Let p ≥ 1 be a xed integer and consider the set of homogenous ergodic Markov chains of order p with Y = {0, 1}. Let us denote A the set of possible transition kernels:

A = {P (Y t = 1|y t-1 , • • • , y t-p ), (y t-1 , • • • , y t-p ) ∈ {0, 1} p } = [0, 1] 2 p .
Now, put the uniform measure on A, then the Lebesgue measure of the set of models such that the Mammen-Tsybakov noise condition does not hold with α = 1 will be null. Indeed,

P (Y t = 0|y t-1 , • • • , y t-p ) = P (Y t = 1|y t-1 , • • • , y t-p ) = 1
2 for some y t-1 , • • • , y t-p , means that a linear constraint for the coecients of the transition kernel exists and such set is of Lebesgue measure 0. Hence, for almost all models, an h exists such that, for all

y t-1 , • • • , y t-p ∈ Y p , |2η(y t-1 , • • • , y t-p ) -1| > h,
and we get the previous rate for the oracle inequality.

6. Appendix 6.1. Proof of lemma 1. We will prove the lemma for the sign +, the proof for the signis the same. By the proposition 2, we have for any 0 < δ < 1:

P E Q (S) -S > 8 γ ps (n + 1/γ ps )V f log 1 δ + 20 γ ps B log 1 δ ≤ exp   - γ ps 8 γps (n + 1/γ ps )V f log 1 δ + 20 γps B log 1 δ 2 8 (n + 1/γ ps ) V f + 20B 8 γps (n + 1/γ ps )V f log 1 δ + 20 γps B log 1 δ    ≤ exp   - 8(n + 1/γ ps )V f log 1 δ + 40 8 γps (n + 1/γ ps )V f log 1 δ B log 1 δ + 1 γps 20B log 1 δ 2 8 (n + 1/γ ps ) V f + 20B 8 γps (n + 1/γ ps )V f log 1 δ + 20 γps B log 1 δ   ≤ exp   -log 1 δ 8(n + 1/γ ps )V f + 40B 8 γps (n + 1/γ ps )V f log 1 δ + 1 γps (20B) 2 log 1 δ 8 (n + 1/γ ps ) V f + 20B 8 γps (n + 1/γ ps )V f log 1 δ + 20 γps B log 1 δ   ≤ δ.
Noting that n, completes the proof 6.2. Proof of theorem 3.1. We prove [START_REF] Mohri | Generalization bounds for non-stationary mixing processes[END_REF] with the sign +, the proof for the signis symmetric.

Since 0 ≤ ε ≤ 1, if b = mε 2 1+9 ln(2) , then ε -b m > 0.
Using the proposition 4, we have:

P ±( Lm (ĝ n 1 ) -L(ĝ n 1 )) > ε ≤ exp -2 (m -b)(ε -b m ) 2 9t mix + 2 exp - b ln(2) t mix . Now, if b = mε 2 1+9 ln(2)
, then b -1 ≤ b ≤ b, and we get

P ±( Lm (ĝ n 1 ) -L(ĝ n 1 )) > ε ≤ exp -2 (m -b)(ε -b m ) 2 9t mix + 2 exp ln(2) t mix exp - b ln(2) t mix .
Moreover,

exp -2 (m -b)(ε -b m ) 2 9t mix + 2 exp ln(2) t mix exp - b ln(2) t mix = 2 exp ln(2) t mix + exp -m 2(1 -b m )(ε -b m ) 2 9t mix - b ln(2) mt mix exp - b ln(2) t mix = 2 exp ln(2) t mix + exp - m t mix 2(1 -b m )(ε -b m ) 2 9 - b ln(2) m exp - b ln(2) t mix . Now, 2(1 -b m )(ε -b m ) 2 9 - b ln(2) m = 2(1 - ε 2 1+9 ln(2) )(ε - ε 2 1+9 ln(2) ) 2 9 - ε 2 ln(2) 1 + 9 ln(2) ≥ ε 2 2(1 - 1 1+9 ln(2) )(1 - 1 1+9 ln(2) ) 2 9 - ln(2) 1 + 9 ln(2) = ε 2 2 9 1 - 1 1 + 9 ln(2) 3 - ln(2) 1 + 9 ln(2) > 0,
and nally 6.3. Proof of proposition 5. First, we will prove that for a stationary uniformly ergodic Markov chain (X t ) t∈Z and any function g ∈ G:

exp -2 (m -b)(ε -b m ) 2 9t mix + 2
(31)

P 1 1 + a 1 m m k=1 L(g(X k )) -E(L(g(X))) > ε ≤ exp   - mγ ps a(1 + a)ε 8 1 + 1 γps + 20   ,
where E(L(g(X))) is computed under the stationay law of (X t ) t∈Z .

Since 0 ≤ L(g(X)) ≤ 1, 0 ≤ L(g(X)) 2 ≤ L(g(X)) ≤ 1, and V (L(g(X))) ≤ E(L(g(X)))(1 -

E(L(g(X)))) ≤ E(L(g(X))).
Moreover,

P 1 1 + a 1 m m k=1 L(g(X k )) -E(L(g(X))) > ε = P 1 m m k=1 L(g(X k )) -E(L(g(X))) > aE(L(g(X))) + (1 + a)ε .
Let t = aE(L(g(X))) + (1 + a)ε, by the proposition 2, we have:

P 1 m m k=1 L(g(X k )) > t ≤ exp - m 2 t 2 γ ps 8(m + 1/γ ps )E(L(g(X))) + 20mt = exp - mt 2 γ ps 8(1 + 1 mγps )E(L(g(X))) + 20t
Now, and we deduce equation (31). Now, using equation (3.27) of Paulin [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF], we get

P 1 1 + a 1 m -b n+m k=n+b+1 L(ĝ n 1 (X k )) -L(ĝ n 1 ) > ε ≤ exp   - (m -b)γ ps a(1 + a) 8 1 + 1 γps + 20 ε   +2 exp - b ln(2) t mix .
Finally, by the same arguments as in the proof of proposition 4, we get equation [START_REF] Tashman | Out-of-sample tests of forecasting accuracy: an analysis and review[END_REF]. The proof of equation ( 24) is symmetric. . Since b > b -1, equation ( 23) yields 

P 1 1 + a Lm (ĝ n 1 ) -L(ĝ n 1 ) > ε ≤ exp   - γ ps a(1 + a) 8 1 + 1 γps + 20 m - b m ε - b m   + 2 exp ln(2) t mix exp - b ln (2) 
8 1 + 1 γps + 20     1 - a(1 + a) 4 ln(2) 8 1 + 1 γps + 20 ε     1 - a(1 + a) 4 ln(2) 8 1 + 1 γps + 20   - 1 4t mix γ ps       × exp   - a(1 + a)mε 4t mix 8 1 + 1 γps + 20   .
Now, since ε ≤ 1, and, by equation (3.9) of Paulin [START_REF] Paulin | Concentration inequalities for markov chains by marton couplings and spectral methods[END_REF],

γ ps ≥ 1 2tmix ⇔ 2 ≥ 1 2tmixγps , we get P 1 1 + a Lm (ĝ n 1 ) -L(ĝ n 1 ) > ε ≤   2 exp ln(2) t mix + exp   -γps a(1 + a)mε 8 1 + 1 γps + 20      1 - a(1 + a) 4 ln(2) 8 1 + 1 γps + 20   2 - 1 2          × exp   - a(1 + a)mε 4t mix 8 1 + 1 γps + 20   .
Finally, noting that a(1+a) 

g k = min k∈{1,••• ,N } 1 m + b m+b t=1 L(g k (X t )) and g k = min k∈{1,••• ,N } L(g k ).
We will give bounds involving the m last variables: Lm (g k ) := 1 m m+b t=b+1 L(g k (X t )). Note that, for any function g k : (32)

1 m + b m+b t=1 L(g k (X t )) - 1 m m+b t=b+1 L(g k (X t )) ≤ 1 m + b m+b t=1 L(g k (X t )) - 1 m + b m+b t=b+1 L(g k (X t )) ≤ b m + b , and 
1 m m+b t=b+1 L(g k (X t )) - 1 m + b m+b t=1 L(g k (X t )) ≤ m + b m(m + b) m+b t=b+1 L(g k (X t )) - m m(m + b) m+b t=1 L(g k (X t )) ≤ b m(m + b) m+b t=b+1 L(g k (X t )) ≤ b m + b , (33) so 
(34) 1 m m+b t=b+1 L(g k(X t )) - 1 m m+b t=b+1 L(g k (X t )) ≤ 2b m + b .
By the lemma 1 and the union bound, with probability at least For 0 < θ < 1 we have: 

1 -δ, for all k ∈ {1, • • • , N }, L (g k ) -L(g * ) ≤ Lm (g k ) -Lm (g * ) + 8(1 + 1 γps ) log N δ γ ps m × ω (L(g k ) -L(g * )) + 40 log N δ γ ps m , and 
L(g * ) -L g k ≤ Lm (g * ) -Lm g k + 8(1 + 1 γps ) log N δ γ ps m × ω L g k -L(g * ) + 40 log N δ γ ps m . Since L g k -L(g * ) ≤ L (g k ) -L(g * ),

3. 1 .

 1 Exponential bound. Let us consider out-of-sample data of length m in the future of the last learning observation X n . We will write a generalization bound by taking into account the last mb validation data. By doing so, we omit to take into account the b rst observations, but these observations account for at most b m in the empirical validation error because the loss function L is bounded by 1. So, we get: Proposition 4. With the notations of proposition 1, for any realization

  integers b and m, with 0 ≤ b < m, we get:

γ

  ps a(1 + a)mε

  for any k ∈ {1, • • • , N }, by summing the two inequalities, we obtainL (g k ) -L g k ≤ Lm (g k ) -Lm g k + 2 8(1 + 1 γps ) log N δ γ ps m × ω L g k -L(g * ) + 80 log N δ γ ps m .As Lm g k -Lm g k ≤ 2b m+b , with probability larger than 1 -δ,L g k -L g k ≤ 2b m + b + 2 8(1 + 1 γps ) log N δ γ ps m × ω L g k -L(g * ) + 80 log N δ γ ps m .Let τ * m be dened as the statement of the theorem.If L g k -L(g * ) ≥ τ * m+b , then ω L g k -L(g * ) / √ m + b ≤ L g k -L(g * )τ *m+b , and we haveL g k -L g k ≤

θ 2 2 L 2 8 2 L 2 ≤ 1 +L

 22221 g k -L(g * )g k -L(g * ) ≤ L g k -L(g * ) θ, we get, with probability larger than 1 -δ:L g k -L(g * ) ≤ (1 + θ)× L g k -L(g * ) g k -L(g * )-(1 + θ) L g k -L(g * ) + 2b m + b ≤ (1 + θ) 16(1 + 1 γps )(m + b)τ * m+b + 80θ θγ ps m log N δ .Note that we have done the reasoning ifL g k -L(g * ) ≥ τ * m+b . However, if L g k -L(g * ) < τ * m+b , the bound (35) is obvious. Now, we deduce from equation (35) thatP L g k -L(g * ) -(1 + θ) L g k -L(g * ) + 2b m + b > ε ≤ N exp -1 1 + θ θγ ps mε 16(1 + 1 γps )(m + b)τ * m+b + 80θ. Now, considering the actual chain (X t ) t∈N , in the framework of section 3.2, we get for any realizationx 1 , • • • , x n of X 1 , • • • , X n , integers b and m, with 0 ≤ b < m: P L (ĝ n 1 ) k -L(g * ) -(1 + θ) L (ĝ n 1 ) k -L(g * ) > ε + (1 + θ)2b m ≤ N exp -1 1 + θ θγ ps (m -b)ε 16(1 +

  6.4. Proof of theorem 4.1. We prove[START_REF] Zhang | Understanding deep learning (still) requires rethinking generalization[END_REF], the proof for (26) is symmetric. Let us dene b =

	ma(1+a)ε
	4 ln(2) 8 1+ 1 γps +20

  Proof of proposition 6. Let us considere a nite collection of functions {g 1 , • • • , g N }. For any integers b and m, with 0 ≤ b < m, and a sample (X 1 , • • • , X m+b ) where the m last variables (X b+1 , • • • , X m+b ) follow the stationary law of the Markov chain (X t ) t∈Z . Let us dene:

								2
			8 1+ 1 γps +20	≤ 1 14 , we have 1 -	a(1+a) 4 ln(2) 8 1+ 1 γps +20	-1 2 ≥ 0, and
									
	P	1 1 + a	Lm (ĝ n 1 ) -L(ĝ n 1 ) > ε ≤ 2 exp	ln(2) t mix	+ 1 exp	 -	a(1 + a)mε 4t mix 8 1 + 1 γps + 20	
	6.5.							

  .6. Proof of theorem 5.1. Applying the proposition 6 to 2(1 + θ)ε, we get . Following the same reasoning as in the proof of theorem 4.1, we getP L (ĝ n 1 ) k -L(g * ) -(1 + θ) L (ĝ n 1 ) k -L(g * ) > ε ≤ 

			P	L (ĝ n 1 ) k -L(g * ) 2(1 + θ)	-	L (ĝ n 1 ) k -L(g * ) 2	> ε +	b m	≤
			N exp -2	θγ ps (m -b) 16(1 + 1 γps )mτ * m + 80θ	ε + 2 exp -	b ln(2) t mix	.
	θmε γps )mτ * (16(1+ 1  m +80θ)2 ln(2)  2 exp Let us dene b = ln(2) t mix + N exp  -2θγ ps mε (16(1 + 1 γps )mτ * m + 80θ)	  1 -	θ γps )mτ * (16(1 + 1 m + 80θ)2 ln(2)	2	-	1 2	      ×
	exp -	θγ ps εm γps )mτ * (16(1 + 1 m + 80θ)2t mix	.
	Noting that	θ γps )mτ * 16(1+ 1 m +80θ ≤ 1 80 , we have
								2
				1 -	θ γps )mτ * (16(1 + 1 m + 80θ)2 ln(2)	-	1 2	≥ 0,
			2 exp	ln(2) t mix		+ N exp -	1 4t mix (1 + θ)	θγ ps εm 16(1 + 1 γps )mτ * m + 80θ	.
							1 γps )mτ * m + 80θ	+ 2 exp -	b ln(2) t mix	.

6and

P L (ĝ n 1 ) k -L(g * ) -(1 + θ) L (ĝ n 1 ) k -L(g * ) > ε ≤
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