
HAL Id: hal-03636634
https://hal.science/hal-03636634v1

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Lexicographic Preference Trees From Positive
Examples

Hélène Fargier, Pierre-François Gimenez, Jérôme Mengin

To cite this version:
Hélène Fargier, Pierre-François Gimenez, Jérôme Mengin. Learning Lexicographic Preference Trees
From Positive Examples. 32th AAAI Conference on Artificial Intelligence (AAAI 2018), Feb 2018,
New Orleans, United States. pp.2959-2966, �10.1609/aaai.v32i1.11808�. �hal-03636634�

https://hal.science/hal-03636634v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22542

Official URL

DOI : https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17272

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Fargier, Hélène and Gimenez, Pierre-
François and Mengin, Jérôme Learning Lexicographic Preference
Trees From Positive Examples. (2018) In: 32th AAAI Conference
on Artificial Intelligence (AAAI 2018), 2 February 2018 - 7
February 2018 (New Orleans, United States).

Abstract

This paper considers the task of learning the preferences of
users on a combinatorial set of alternatives, as it can be the
case for example with online configurators. In many settings,
what is available to the learner is a set of positive examples of
alternatives that have been selected during past interactions.
We propose to learn a model of the users’ preferences that
ranks previously chosen alternatives as high as possible. In
this paper, we study the particular task of learning conditional
lexicographic preferences. We present an algorithm to learn
several classes of lexicographic preference trees, prove con-
vergence properties of the algorithm, and experiment on both
synthetic data and on a real-world bench in the domain of
recommendation in interactive configuration.

1 Introduction
Modern, interactive decision support systems like recom-
mender systems or configurators often handle a very large
set of possible decisions/alternatives. The task of finding the
alternatives that best suit their preferences can be challeng-
ing for users, but the system can guide them towards their
optimal decision if it has some knowledge of their pref-
erences. In many settings, the users’ preferences are not
known in advance. This is especially the case of systems
that enable anonymous users to browse the catalogues: such
systems must be able to acquire users’ preferences.

That is why preference learning has emerged in the last
decade as an important field; many interesting results are re-
ported in e.g. the book edited by (Fürnkranz and Hüllermeier
2011), or the proceedings of recent Preference Learning or
DA2PL (Decision Aid to Preference Learning) workshops.
A general problem is: given a set of observed preferences,
induce a model of preferences that best explains these ob-
servations, within a certain class of models. As input, it is
often assumed that the observed preferences are given as a
set of pairwise comparisons or partial rankings of alterna-
tives (Joachims 2002); or can be elicitated online by asking
the user to choose between two alternatives (Viappiani, Falt-
ings, and Pu 2006; Koriche and Zanuttini 2009).

But in some circumstances, such input is not available.
This is especially the case of some anonymous on-line con-
figurators, where little information is stored about interac-

tions. However, e-commerce companies in general keep a
history of past sales. Sold items have been chosen by users,
so they must be ranked high in their preferences, but not nec-
essarily in the very top; indeed a user may be led to eventu-
ally choose an item which is not the optimal one in her pref-
erence order: for instance because of the difficulty to grasp
all possible options, a phenomenon called “mass confusion”
(Huffman and Kahn 1998), because of the influence of an
advertisement, or because her preferred item is unavailable.
Yet, this list of highly ranked items does provide information
about the users’ preferences.

Our aim in this paper is to study how the users’ prefer-
ences can be learnt from this sales history. Note that this
is different from a classification problem where one would
want to separate alternatives between, say, acceptable ones
and not acceptable ones. In our problem, we want to rank the
alternatives. If, for instance, the colour red appears more of-
ten in the sales history than the colour yellow, then we want
to induce a model that ranks alternatives with the colour red
higher than alternatives with the colour yellow – maybe in
association with some other criteria.

Research on the representation and learning of prefer-
ences has brought forward several types of models. Numer-
ical models, like linear ranking functions or additive util-
ities (Joachims 2002; Freund et al. 2003; Schiex, Fargier,
and Verfaillie 1995; Gonzales and Perny 2004; Braziunas
2005), are rich families of models, especially if one allows
high-dimensional feature spaces. Research in Artificial In-
telligence has also brought forward ordinal models, like CP-
nets (Boutilier et al. 2004) and several extensions or vari-
ants. Lexicographic preferences are another family of ordi-
nal models. This kind of preference is based on the impor-
tance of the attributes: when comparing two outcomes, their
values for the most important attribute are compared; if the
two outcomes have different values for that attribute, then
the one with the preferred value is deemed preferable to the
other; otherwise one looks at the next most important at-
tribute, and so on. This model can be extended by allowing
the preferences on the values of an issue to depend on the
values of more important ones. The relative importance of
issues is no longer a linear order, but a “lexicographic pref-
erence” tree (Fraser 1993; 1994; Brewka and others 2006;
Wallace and Wilson 2009; Booth et al. 2010).

Lexicographic preference trees are the model that we

Learning Lexicographic Preference Trees from Positive Examples
Hélène Fargier, Pierre-François Gimenez, Jérôme Mengin

IRIT, CNRS, University of Toulouse, 31000 Toulouse, France
{fargier, pgimenez, mengin}@irit.fr

choose in this paper for two main reasons. First, this is an
ordinal model, which is sufficient to represent a ranking of
alternatives. Furthermore, the restricted expressivity of the
lexicographic preference trees makes them easier to learn
while being generally an accurate representation of human
behaviours (Gigerenzer and Goldstein 1996). Finally, one
can quickly (in polytime) perform some interesting requests
for recommendation, such as finding an optimal object or an
optimal value for some attribute.

Learning lexicographic preference models have been
studied by e.g. (Schmitt and Martignon 2006; Dombi, Im-
reh, and Vincze 2007; Yaman et al. 2008), while (Booth et
al. 2010; Bräuning and Hüllermeyer 2012; Bräuning et al.
2017; Liu and Truszczynski 2015) studied learning of lexi-
cographic preference trees. But all these works assume sets
of pairwise comparisons as inputs, while we seek to learn
from sales history. Preference learning is also different from
learning a (lexicographic) rank-based classifier, as proposed
by e.g. (Flach and Matsubara 2007): the latter task takes as
input a set of positive and negative instances of a concept.

The paper is structured as follows. The next Section sum-
marizes the lexicographic preference tree models and intro-
duces the LP-tree classes we aim to learn. Section 3 details
the probabilistic model on which our approach is based. The
algorithmics is developed in Section 4. Section 5 describes
experiments on synthetic data and Section 6 on a real-world
dataset in the domain of recommendation in interactive con-
figuration.

2 Lexicographic preference trees

Notations

We consider a combinatorial domain over a set X of n dis-
crete attributes, each attribute X having a finite domain X .
An outcome is an instantiation of X . We use upper-case,
bold letters to represent tuples of attributes; if U is such a
tuple, then the set of assignments of U is denoted by U,
and the corresponding lower-case letter will generally de-
note such an assignment: u ∈ U. A (complete) outcome is
therefore a tuple o ∈

∏

X∈X X; we denote by X the set of

all of them. o[U] denotes the projection of o onto U: it is
a partial outcome, i.e. an instantiation of U; we say that o
extends o[U].

If U and V are disjoint tuples of attributes, UV will de-
note their concatenation – with similar notations for assign-
ments: if u ∈ U and v ∈ V then uv ∈ UV. If U and
V are not disjoint, we say that u and v are compatible if
u[U ∩V] = v[U ∩V].

A preference is modelled as a transitive binary relation
over the domain of interest, X in our case. We consider in
this paper that indifference is not allowed; the relation is said
to be strict and we denote it ≻: o ≻ o′ indicates that o is
(strictly) preferred to o′. We denote by rank(≻,o) the rank
of outcome o in the relation ≻: the “best” outcome has rank
1, the worst has rank |X |.

Lexicographic preference trees

In the formal model proposed by (Booth et al. 2010), a lexi-
cographic preference tree, or LP-tree for short, is composed

of two parts: a rooted tree indicating the relative importance
of the attributes, and tables indicating how to compare out-
comes that agree on some attributes. Each node of the im-
portance tree is labelled with an attribute X ∈ X , and is
either a leaf of the tree, or has one single, unlabelled outgo-
ing edge, or has |X| outgoing edges, each one being labelled
with one of these values. No attribute can appear twice in a
branch. For a given node N , Anc(N) denotes the set of at-
tributes that label nodes above N . The values of attributes
that are at a node above N with a labelled outgoing edge in-
fluence the preference at N . We denote by Inst(N) the set of
nodes above N with a labelled outgoing edge and inst(N)
the tuple of values of the labels between the root and N .

Example 1. An example of a LP-tree is depicted in Fig-
ure 1a. Let N be the leftmost leaf labelled C, we have
Anc(N) = {A,B} and inst(N) = a.

Moreover, one conditional preference table CPT(N) is
associated to each node N of the tree: if X is the attribute
that labels N , then the table contains (consistent) rules of
the form v : >, where v is a (possibly partial) instantiation
of the attributes in Anc(N) r Inst(N), and > is a strict to-
tal order > over X . Every LP-tree L induces a (possibly
partial) strict order over X , denoted ≻L, as follows: for any
node N labelled by X , consider a pair of complete outcomes
o and o′ such that o[Inst(N)] = o′[Inst(N)] = inst(N) and
o[V] = o′[V] = v for some rule v : > in CPT(N) with
v ∈ V; N is said to decide the pair (o,o′), and o ≻L o′ if
and only if o[X] > o′[X].

A branch of a tree is complete iff all attributes appear in it;
if all the branches of a tree are complete, then the tree itself
is said to be complete. The preference relation induced by a
LP-tree is total if and only if the tree is complete (Bräuning
and Hüllermeyer 2012). In this case, every outcome has a
well-defined rank in the preference relation (and there is
only one optimal outcome, ranked 1). (Lang, Mengin, and
Xia 2012) have shown that it can be computed in polytime
and that, for a given rank, finding an outcome with that rank
can also be done in polytime. In the following, we will deal
with complete trees and ranking only.

Linear LP-trees and k-LP-trees

In this paper, in addition to general LP-trees, we will be in-
terested in a syntactic restriction called linear LP-tree and a
extension called k-LP-tree.

A linear LP-tree is a LP-tree with a single branch and un-
conditional preference rules only, like the tree in Figure 1b.
It is a strong expressive restriction: linear LP-trees represent
the usual, unconditional lexicographic preference relations,
and corresponds to LP-trees with unconditional local pref-
erences and unconditional importance relation as defined by
(Booth et al. 2010).

(Bräuning and Hüllermeyer 2012; Bräuning et al. 2017)
extend the expressiveness of LP-trees by allowing to label
a node with a set of attributes, considered as a single high-
dimensional attribute: the rules in the conditional preference
table of the node define orders on the Cartesian product of
the domains of its attributes. Note that any (strict) preference
relation can in principle be represented by such a LP-tree –

A
a > ā

B

a
b > b̄

C

ā

c̄ > c

C
b : c > c̄
b̄ : c̄ > c Bb̄ > b

abc ≻ abc̄ ≻ ab̄c̄ ≻ ab̄c
≻ āb̄c̄ ≻ ābc̄ ≻ āb̄c ≻ ābc

(a) A LP-tree.

A a > ā

B b > b̄

C c̄ > c

abc̄ ≻ abc ≻ ab̄c̄ ≻ ab̄c
≻ ābc̄ ≻ ābc ≻ āb̄c̄ ≻ āb̄c

(b) A linear LP-tree

A a > ā

BC bc > b̄c̄ > b̄c > bc̄

abc ≻ ab̄c̄ ≻ ab̄c ≻ abc̄
≻ ābc ≻ āb̄c̄ ≻ āb̄c ≻ ābc̄

(c) A 2-LP-tree

Figure 1: Different LP-trees and the preference relations they induce.

possibly by labelling the root with a set that contains all at-
tributes and an order over the full domain X . Generally, we
restrict this expressivity by fixing the maximum number of
attributes labelling a node. We denote k-LP-tree the trees
whose nodes are labelled by at most k attributes. Figure 1c
shows a 2-LP-tree whose preference relation cannot be ex-
pressed with a regular LP-tree.

3 Learning a preference relation from sales

histories

The probabilistic model

As exposed in the introduction, the input of the learning pro-
cess is a sales history, i.e. a multiset H ⊆ X . Its elements are
positive examples, outcomes corresponding to products that
may have been, for instance, configured by users of some
configurator and bought. Each user has a preference rela-
tion ≻̆ among products, and is free to configure the prod-
ucts according to her preference. However, for some reasons
like the influence of advertisements, she may end up with a
product which is not her most preferred one.Yet, the higher
an outcome is ranked in the user’s preference, the greater the
probability that she ends up with it.

Formally, our idea is to consider that there is a ground,
hidden preference relation ≻̆, and an associated probability
distribution p≻̆ over X which is decreasing and monotonic
w.r.t. ≻̆, i.e. if o ≻̆o′ then p≻̆(o) ≥ p≻̆(o

′). We consider
that H is a set of outcomes that have been drawn according
to the distribution p≻̆. In this paper, we study the problem of
learning a LP-tree L which explains H.

In practice, we can split the learning set H into several
clusters and thus reduce the variability of the preferences
inside each cluster. Even though each cluster includes the
preference of multiple users, they have similar preferences,
which can be represented with a unique ground preference
relation, with p≻̆ also accounting for the variations between
the preferences of these users.

The ranking loss

In order to evaluate our learning algorithms, we must mea-
sure how good the learnt preference relation ≻ is w.r.t. the
hidden preference relation ≻̆.

The two distances mostly used to compare preference re-
lations are the Kendall distance and the Spearman distance.

These distances penalise as much a rank error on preferred
items or on least preferred items.But for recommendation
purposes, identifying the preference relation on the preferred
items is more useful than identifying it on the least preferred
ones.

In order to have a relevant measure, we introduce the no-
tion of ranking loss, defined as the normalized difference
between the expected ranks of the two relations according
to the ground probability p≻̆:

rlossp
≻̆
(≻̆,≻) =

1

|X |

(

Ep
≻̆
[rank(≻, ·)]− Ep

≻̆
[rank(≻̆, ·)]

)

It is also equal to the mean of the rank differences for
all items, weighted by their probabilities of appearance, and
normalized by the maximum rank:

rlossp
≻̆
(≻̆,≻) =

1

|X |

∑

o∈X

p≻̆(o)(rank(≻,o)− rank(≻̆,o))

Proposition 1. Let ≻̆ and ≻ be two preference relations and
p≻̆ a probability distribution decreasing w.r.t. ≻̆. Then 0 ≤
rlossp

≻̆
(≻̆,≻) < 1. Furthermore, if p≻̆ is strictly decreasing

w.r.t. ≻̆, then rlossp
≻̆
(≻̆,≻) = 0 iff ≻̆ =≻.

Proof. All the ranks belong to {1, . . . , |X |}, so (rank(≻
,o) − rank(≻̆,o))/|X | < 1 for every o, thus rlossp

≻̆
(≻̆,≻

) < 1. The other two properties follow from the rearrange-
ment inequality (Hardy, Littlewood, and Pólya 1952, sect.
10.2): given two sequences of real numbers r1 ≤ . . . ≤
rN and p1 ≥ . . . ≥ pN , it holds that r1p1 + . . . +
rNpN ≤ rσ(1)p1 + . . . + rσ(N)pN for every permutation

σ of {1, . . . , N}; if the sequences are strictly increasing /
decreasing, the minimum is only attained when σ is the iden-
tity. In our case, the ri’s correspond to the ranks of the out-
comes as ordered by ≻̆, the pi’s correspond to the probabil-
ities and σ is the permutation that results in the ranks corre-
sponding to ≻.

In our learning setting, the target preference is unknown,
so we cannot measure the ranking loss of an induced pref-
erence. However, since the ranking loss of the induced pref-
erence is a sum of the ranks of the outcomes weighted by
their probabilities of being drawn, we aim to minimize it by

minimizing the normalized empirical mean rank of a set of
positive training examples H drawn according to p≻̆:

rank(≻,H) =
1

|X |

1

|H|

∑

o∈H

rank(≻,o)

Note that this optimization problem does not directly depend
on p≻̆, only on the set of examples. Although p≻̆ explains
why H does not contain only one outcome – the optimal one
according to a hidden target LP-tree – our algorithms below
do not directly use it, only through the sample H.

4 A greedy learning algorithm

In this Section, we describe a greedy algorithm that learns
a k-LP-tree and approximately minimizes this measure. The
approach follows the generic scheme defined by (Booth et
al. 2010; Bräuning and Hüllermeyer 2012) to learn LP-trees
from examples of pairwise comparisons, but we adapt it to
learn from positive examples instead.

Algorithm 1 builds the tree in a greedy way, from the root
to the leaves, considering, at every step, the subset of the
sales history compatible with the current partial instantia-
tion. Given u ∈ U with U ⊆ X , let

H(u) = {o ∈ H | o[U] = u}

denote the set of outcomes in H that extend u. Then, at a
given currently unlabelled node N (initially, the root node),
line 3 considers the set H(inst(N)) of outcomes in the sales
history that are compatible with the assignments made in the
branch between the root and N . Function chooseAttributes
returns the set of attributes and the CPT that will label the
node. The tree is then expanded below N according to the
set of labels returned by function generateLabels.

Algorithm 1: Learn a k-LP-tree from a sample H

Input: X , a set of outcomes H over X
Output: L the learnt k-LP-tree
Algorithm LearnLPTree(X ,H)

1 L ← unlabelled root node
2 while L contains some unlabelled node N do
3 (X, table) ← ChooseAttributes(N)
4 label N with attributes X and CPT table
5 L ← GenerateLabels(N,X)
6 for each l ∈ L do add new unlabelled node

to L, attached to N with edge labelled with l

7 return L

Choice of node labels

Given a node N , function chooseAttribute returns an at-
tribute and a CPT so as to explain as well as possible the
set of outcomes: we want to induce a LP-tree that ranks as
high as possible the elements of H(n), where n = inst(N).

Suppose first that we already know that N must be la-
belled with attribute set X. Our algorithm learns a CPT that

consists of a single, unconditional preference rule.1 It is not
difficult to see that the values of X should be ordered ac-
cording to their number of occurrences in H(n) in order to
minimize the empirical rank of H.

Example 2. Consider two attributes A and B with respec-
tive domain {a, a′, a′′} and {b, b′}. Assume that H contains
45 outcomes distributed as follows:

ab ab′ a′b a′b′ a′′b a′′b′

10 9 8 7 6 5

Suppose that we have chosen attribute A to label the root of
an induced LP-tree, then the associated CPT should contain
the order a > a′ > a′′ over A, since a has 19 occurrences in
H, a′ has 15 occurrences, and a′′ has 11 occurrences.

In order to decide which attribute, or set of attributes,
should label N , consider two attributes X,Y /∈ Anc(N),
and suppose that {X} is chosen for N . Then Y will appear
below X in the induced LP-tree, and will be deemed less
important. Let x∗ and y∗ be the values for X and Y respec-
tively that have the most occurrences in H(n); then, accord-
ing to the semantics of LP-trees, for every values x′ ∈ X ,
x′ .= x∗, and y′ ∈ Y , y′ .= y∗, every outcome that ex-
tends nx∗y′ will be considered to be preferred over every
outcome that extends nx′y∗. Since H is assumed to be rep-
resentative of the preference relation, it should be the case
that |H(nx∗y′)| > |H(nx′y∗)| for every pair (x′, y′) ∈
(X \ {x∗})× (Y \ {y∗}); thus the inequality should hold if
we take averages as well:

∑

y′∈Y \{y∗}

|H(nx∗y′)|

|Y | − 1
>

∑

x′∈X\{x∗}

|H(x′y∗)|

|X| − 1

If the reverse inequality holds, then it cannot be the case that
X is more important than Y , and X should not label N .

Example 3. Consider again the dataset of example 2:

|H(ab′)|

|B| − 1
= 9/1 > (8 + 6)/2 =

|H(a′b)|+ |H(a′′b)|

|A| − 1

therefore A is chosen for the root. The resulting LP-tree cor-
rectly orders the outcomes according to their numbers of oc-
currences in H.

We can generalize the approach to sets of attributes. Con-
sider two sets of attributes X and Y that do not contain any
attribute from Anc(N) and that are not included into one an-
other. Suppose that N is labelled with X, the associated CPT
can order the instantiations of X according to their number
of occurrences in H(n). Let U = X \Y be the set of vari-
ables that are in X and not in Y and let V = Y \ X. Let
x∗ (resp. y∗) be the most frequent instantiation of X (resp.
Y) in H. Then for every x′ ∈ X \ {x∗}, v′,v′′ ∈ V, ev-
ery outcome that extends nx∗v′ will be preferred to every
outcome that extends nx′v′′. In particular, if y∗ is the most
frequent instantiation of Y in H, let v′′ = y∗[V], then for

1This is not restrictive, since function chooseAttribute that we
describe below separates the values of an attribute into several
branches as long as there are enough examples to induce mean-
ingful orders over the domains of subsequent attributes.

every instantiation u′ of U which is not compatible with x∗,
if x′ = u′ · y∗[X], it should be the case that outcomes that
extend nx∗v′ are more frequent in H than those that extend
nx′v′′ = nu′y∗. Hence it can be shown that we should have

∑

v′∈V\{y∗[V]}

|H(nx∗v′)|

|V| − 1
>

∑

u′∈U\{x∗[U]}

|H(nu′y∗)|

|U| − 1
(1)

Note that, since we allow sets of attributes at the nodes of
LP-trees, several LP-trees can represent the same relation –
the extreme structure being a LP-tree with a single node that
contains all the attributes and an order of the 2n possible
combinations of values. LP-tree nodes should not be larger
than necessary: we now propose a way to recognise nodes
that may be shrunk.

We do not want to build LP-trees with node sizes larger
than necessary. We now propose a way to recognise when
this may happen.

Suppose that X ⊃ Y and that for every x,x′,x′′ ∈ X
such that |H(nx)| > |H(nx′)| > |H(nx′′)| and x[Y] =
x′′[Y] we also have x′[Y] = x[Y] = x′′[Y]. Then we say
that Y decomposes X at N (w.r.t. H).

The intuition is that Y decomposes X at N (w.r.t. H) if
node N labelled with X could be replaced with a node la-
belled with Y just above a node labelled with X \Y.

Example 4. Consider again the attributes of example 2, and
suppose that > orders {A,B} as follows:

ab > ab′ > ab′′ > a′b > a′b′ > a′b′′

Then ab > ab′ > ab′′ and ab[A] = ab′′[A] = a, and indeed
ab′′[A] = ab[A] = ab′[A]; similarly, a′b > a′b′ > a′b′′ and
a′b[A] = a′b′′[A] = a′, and indeed a′b′′[A] = a′b[A] =
a′b′[A]. This preference relation could be represented with
a tree with a single node containing both variables, but also
with a tree with A at the root and B below it.

Note that a k-LP-tree with decomposable nodes can al-
ways be transformed into a k-LP-tree without decomposable
nodes, by “decomposing” these nodes.

Algorithm 2 enumerates the set G of all subsets of X −
Anc(N) with cardinality ≤ k for some fixed k, starting the
search with some initial X ∈ G; every time it encounters a
new Y ∈ G, it checks whether this Y proves that X cannot
be the label of N . We say that Y disproves X if:

• Y ⊃ X and X does not decompose Y; or

• Y ⊂ X and Y decomposes X; or

• Y .⊃ X and Y .⊂ X and the reverse of (1) holds.

The next result validates our method for choosing at-
tributes, as it shows that, given enough examples, our algo-
rithm correctly identifies a target LP-tree:

Proposition 2. Consider a hidden k-LP-tree L̆ with non-
decomposable nodes only. Let H be a multiset of out-
comes such that the empirical distribution pH, defined by
pH(o) = |H(o)|/|H|, is strictly decreasing w.r.t. ≻L̆. If
Algorithm 1 uses Algorithm 2 for chooseAttributes and if
generateLabels always returns X when called for attribute
X, then the returned k-LP-tree exactly represents ≻L̆.

Algorithm 2: Choose an attribute and its CPT

Input: X , node N , a set of outcomes H over X , k
the maximal number of attributes per label

Output: A set of attributes X and a preference table
T

Algorithm ChooseAttributes(X , N,H, k)
1 G ← the set of attributes sets of size at most k
2 n ← inst(N) ; X ← any set of attributes of G
3 x∗ ← argmaxx∈X |H(xn)|

4 for each Y ∈ G r {X} do
5 y∗ ← argmaxy∈Y |H(yn)|

6 if Y disproves X then X ← Y ; x∗ ← y∗

7 >← an order of X according to the counts
{|H(xn)|}x∈X

8 return X, >

Proof. We will look for the root node label; the same rea-
soning applies to other nodes. Several k-LP-trees can usu-
ally correspond to a same relation. We will look for the label

of the k-LP-tree L̆ whose root node, labelled by X, is not
decomposable.

Let Yi be a set of i attributes and Yj a set of j attributes
different from Yi. Let i, j ∈ [1, k], i ≤ j and let compare
Yi and Yj . There are two possibilities:

First case, suppose that Yi .⊂ Yj . We can use inequality
(1) to determine which one is not the root.

Second case, suppose that Yi ⊂ Yj . We can’t compare
Yi and Yj with inequality (1). There are two possibilities
: either Yi decomposes Yj or not. If Yi decomposes Yj ,
then Yj is disproved because X is not decomposable. If Yi

doesn’t decompose Yj , then Yi is disproved. Indeed, if Yi

were the root label, it would decompose Yj .
Ultimately, the correct, non-decomposable set of at-

tributes X will eventually appear in the enumeration per-
formed by chooseAttributes; it is the only one that dis-
proves, and is not disproved by, all other candidates.

Managing the split

If function GenerateLabels always returns a blank label,
then every node in the tree built by Algorithm 1 will have
one child only, and the LP-tree produced will be a linear one.
In this case, the algorithm returns a LP-tree that minimizes
the empirical expected rank:

Proposition 3. Let X be a set of binary attributes. Algo-
rithm 1, when restricted to linear LP-trees, always returns
the linear tree L that minimizes the empirical expected rank

rank(≻L,H).

Proof. Given some linear LP-tree L, let X(L, i) be the vari-
able at depth i and x∗(L, i) its preferred value. Then

rank(L,o) = 2n −
n
∑

i=1

2n−iδ(L, i,o)

where δ(L, i,o) = 1 if o[X(L, i)] = x∗(L, i), 0 other-
wise (Lang, Mengin, and Xia 2012). Thus:

argmin
L

1

|H|

∑

o∈H

rank(L,o) = argmin
L

∑

o∈H

rank(L,o)

= argmin
L

∑

o∈H

(

2n −
n
∑

i=1

2n−iδ(L, i,o)

)

= argmax
L

n
∑

i=1

2n−i
∑

o∈H

δ(L, i,o)

= argmax
L

n
∑

i=1

2n−i|H(x∗(L, i))|

A linear LP-tree L∗ that maximises this sum must have,
at every level i, x∗(L∗, i) = argmaxx∈X |H(x)|. And the
rearrangement inequality indicates that the variables must be
ordered in L∗ in order of decreasing counts |H(x∗(L, i))|,
likewise Algorithm 1.

Learning unconditional lexicographic preferences may be
too restrictive, but we do not want to learn fully conditional
LP-trees, which would have a size exponential in the number
of attributes. One way to learn conditional LP-trees without
an exponential number of examples is to consider the num-
ber of examples that can be used to continue to induce the
tree below a given node N : if there is a child N ′ of N such
that |H(inst(N ′))| is below a fixed threshold τ , then we can
decide not to split; if H(N ′) contains too few examples, it
will not be useful anyway to induce the corresponding part
of the LP-tree. We use a function GenerateLabels that im-
plements this approach.

Using this threshold τ , the number of branches of the k-
LP-tree learnt is limited because each branch corresponds to

at least τ examples. So there are at most
|H|
τ

branches and
n|H|
τ

nodes. In Algorithm 2, at node N , one must count the
occurrences in H(inst(N)) of every value of every set of at

most k attributes; this can be done in O(
(

n
k

)

dk|H|), where d
is the maximum domain size of the attributes. The decompo-
sition check can be done in O(dk|H|). Furthermore, Algo-
rithm 2 is called for each node. The overall time complexity
of the learning algorithm is then O(n

(

n
k

)

d2k|H|2/τ).

Pruning

Algorithm 1 returns a tree L that approximately minimizes

the empirical expected rank rank(≻L,H) – within the class
of acceptable trees, defined by the chosen threshold. This
can lead to overfitting. A standard method to address this
problem is to use a score function that trades off, for a
given tree, a measure of how well the tree fits to the data
with a measure of the complexity of the tree: small mod-
els tend to have better generalization properties. We define:

Sφ(H,L) = −|H| · rank(≻L,H) − |L| · φ(|H|) where |L|
denotes the size of the model, i.e. the number of its nodes,
and φ is a penalty function. In our experiments, we choose
φ(|H|) = c, for c a real constant.

Once a LP-tree has been learnt, it can be pruned in or-
der to improve its φ-score. This procedure is executed in

a bottom-up fashion. For each non-leaf node N of L, we
check whether this node has several outgoing edges. If so,
each edge is redirected on the child of N associated to the
preferred value of X . If the score is improved, we keep this
pruned LP-tree; otherwise, we restore the original outgoing
edges.

5 Experimental study on randomly

generated data

The first experiments2 are run on randomly generated, reg-
ular LP-trees to verify how well a hidden LP-tree can be
rediscovered.

LP-tree generation

We randomly generated complete LP-trees (k = 1) with 10
attributes, each having 2 to 6 values (picked with uniform
distribution). Each tree was generated in a top-down fashion,
starting at the root: at each non-leaf node N , an attribute
not already chosen above is picked at random, as well as
an order of its values; with probability σ, where σ is a split
coefficient, N has as many children as X has values; with
probability 1− σ, N has a single child.

Given such a randomly picked LP-tree L̆, we draw a fixed
number of outcomes for H using a truncated geometric dis-
tribution: the probability of drawing an outcome o of rank r

in L̆ is pµ(r)=Kµ(1−µ)r−1, where 1/µ is the mean of pµ.
In the experiments described below, we used a split co-

efficient σ = 0.2 and µ was chosen such that the expected
value of the drawn rank is X/4: this value (which depends
on the sizes that have been picked for the attributes) ensures
that, if the root attribute has 2 values, then about 88% of the
outcomes are in the preferred subtree.

Results

We compared the three variants of the algorithm — LP-
Learning without pruning, LP-Learning with pruning and
linear LP-Learning — in terms of ranking loss between the
hidden and the learnt LP-trees, of size of the learnt tree, and
of CPU time necessary to learn the tree (including the prun-
ing when used). The splitting threshold was set to τ = 20
and the penalty function parameter c set equal to 1. Figure
2 shows the results3 for different sample sizes. Each point
represents the mean value on 750 hidden LP-trees.

Figure 2 shows a very good ranking loss. Notice that the
ranking loss of linear LP-trees seems to reach a threshold:
the hidden LP-trees are not linear, hence the relations they
represent are hard to capture with linear structures.

The size of the induced trees increases with the sample
size when no pruning is performed, but this size is signifi-
cantly reduced by the pruning. This, together with the fact
that the ranking loss of the pruned LP-trees is always bet-
ter than that of the unpruned LP-trees, suggest an overfitting

2The algorithms have been implemented in Java and have been
run on a computer with 8 GB of RAM, a single core 3.4 GHz. Code
available at https://github.com/PFGimenez/PhD.

3Because the cardinality of X can be huge, the ranking loss is
estimated with a Monte-Carlo sampling with 100,000 samples.

Figure 2: Ranking loss (left), size of the learnt LP-tree (middle) and learning time (right) w.r.t. the sample size.

of the pre-pruning phase. The pruning reduces the size of
the learnt LP-tree and enhances its precision, at the cost of a
increase in CPU time – that remains sustainable though.

6 Application to value recommendation in

product configuration
The experiments described in this Section are based on a
real world problem, car configuration, and the experimental
results are drawn for a real world data set, namely a sales
history provided by Renault, the French car manufacturer.4

The idea is to use the sales history to build one or several LP-
trees, representing the preferences of the past users (the at-
tributes in the LP-tree are the configuration variables). These
trees can then be used to recommend values during future
configurations: given a partial configuration (a partial instan-
tiation u ∈ U), the LP-tree builds in polynomial time (Lang,
Mengin, and Xia 2012) the best (according to the prefer-
ence relation it represents) outcome o compatible with u,
(i.e. o[U] = u[U]). The system then recommends the value
o[X], i.e. the value of X in the preferred completion of u.

Dataset and clustering

We use a dataset that is a genuine sales history containing
vehicles of the same type sold by Renault, the French car
manufacturer. The vehicles of this data set are described by
48 attributes (mostly binary) and the history contains 27088
items.

This sales history correspond to many customers and
there is not enough data to learn the preference relation of
each customer (an individual does not often buy a car). How-
ever, we can expect clusters of similar users which imply
clusters of similar sold products that can be found in the
sales history, using some classical k-means algorithm.We
can then learn a LP-tree for each cluster, that should approx-
imate the preferences of the customers that bought the items
in that cluster.

When making a recommendation for a partial outcome
u, we use the LP-tree of the cluster that is the nearest to
u. This means that, during a configuration session, different
LP-trees can be used at different depth in the configuration
process. We need to adjust our definition of the empirical
mean rank for several LP-trees {Li} and the orders they rep-

resent {≻i}: rank({≻i},H) = 1
|H|

∑

o∈H mini rank(≻i,o)

4Datasets available at http://www.irit.fr/∼Helene.Fargier/
BR4CP/benches.html

Experiment protocol

We use a 10 folds cross-validation protocol. For each item o
in the test set, we simulate a configuration session: we start
with an empty item u; for each attribute X ∈ X , chosen in
a random order, the recommender makes a recommendation
x̂ given u; we then instantiate X with the value o[X] that
has been really chosen by the user; the process is repeated
until all attributes have been instantiated. When all items in
the test set have been processed, we compute the ratio of
accepted recommendations, when the recommended value
x̂ matched the value o[X] that had been really chosen.

Results

The learning parameter τ is set equal to 20. The results for
the learning of unpruned LP-trees are shown in Figure 3.
First, we can remark a positive correlation between the pre-
cision rate and the normalised empirical mean rank. This
suggests that our theoretical score, the mean rank, is indeed
correlated with the experimental precision results.

The precision rate ranges from 78.2% (k=1, 1 cluster)
to 88.0% (k=3, 3 clusters); this high precision confirms the
practical interest of our approach on real dataset.

The value of the normalised mean rank is in itself inter-
esting, because a random LP-tree would have a normalised
mean rank equal to 50% while the LP-trees learnt have a
normalised mean rank between 1.2% (k = 1, 1 cluster) and
7 · 10−7% (k = 3, 3 clusters).

The precision is maximum for 3 and 4 clusters. While
having several clusters increases the expressiveness, each
cluster contains fewer examples; this explains the drop in
precision with 5 clusters. With more attributes per node (the
parameter k) the expressivity is increased, hence a positive
impact on the precision.

The size of the model induced (which is the sum of the
sizes of the LP-trees learnt for each cluster) seems glob-
ally independent of the number of clusters. The effect of the
maximum number of attributes per node is stunning, from
2300 nodes with k = 1 to 90 nodes with k = 3. Pruning did
not seem to improve results on this dataset.

7 Conclusion and perspectives

This paper constitutes a first approach to the general prob-
lem of learning an ordinal preference model from positive
examples (and not from pairwise comparisons). We plan to
experiment our approach on more real-world datasets. We
also plan to study the sample complexity of our algorithms

Figure 3: Precision (left), normalised expected rank (middle) and size (right) of learnt unpruned LP-trees w.r.t. the number of
clusters and the maximum number of attributes per node k.

in a PAC setting since the experiments suggest that the rank-
ing loss is inversely proportional to the sample size. An-
other lead is the analysis of the computational complexity
of finding a LP-tree minimizing the empirical mean rank. In
parallel, searching for a scalable and practical algorithm of
exact optimization is worth investigating. We also wish to
extend the approach to other ordinal preference models like
CP-nets; or, more generally, an extension of this framework
to partial orders.

References

Booth, R.; Chevaleyre, Y.; Lang, J.; Mengin, J.; and Som-
battheera, C. 2010. Learning conditionally lexicographic
preference relations. In Proceedings of ECAI’10, 269–274.

Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Research 21:135–
191.

Bräuning, M., and Hüllermeyer, E. 2012. Learning condi-
tional lexicographic preference trees. In Fürnkranz, J., and
Hüllermeyer, E., eds., Proceedings of ECAI’12 Workshop.

Bräuning, M.; Hüllermeier, E.; Keller, T.; and Glaum, M.
2017. Lexicographic preferences for predictive modeling of
human decision making: A new machine learning method
with an application in accounting. European Journal of Op-
erational Research 258(1):295–306.

Braziunas, D. 2005. Local utility elicitation in GAI models.
In Proceedings of UAI’05, 42–49.

Brewka, G., et al. 2006. An efficient upper approximation
for conditional preference. In Proceedings of ECAI’06, vol-
ume 141, 472.

Dombi, J.; Imreh, C.; and Vincze, N. 2007. Learning lexico-
graphic orders. European Journal of Operational Research
183:748–756.

Flach, P. A., and Matsubara, E. T. 2007. A simple lexico-
graphic ranker and probability estimator. In Proceedings of
ECML’07, volume 4701, 575–582.

Fraser, N. M. 1993. Applications of preference trees. In
Proceedings of SMC’93, 132–136.

Fraser, N. M. 1994. Ordinal preference representations. The-
ory and Decision 36(1):45–67.

Freund, Y.; Iyer, R. D.; Schapire, R. E.; and Singer, Y. 2003.
An efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research 4:933–969.

Fürnkranz, J., and Hüllermeier, H., eds. 2011. Preference
learning. Springer.

Gigerenzer, G., and Goldstein, D. G. 1996. Reasoning the
fast and frugal way: Models of bounded rationality. Psycho-
logical Review 103(4):650–669.

Gonzales, C., and Perny, P. 2004. GAI networks for utility
elicitation. In Proceedings of KR’04, 224–234.

Hardy, G. H.; Littlewood, J. E.; and Pólya, G. 1952. In-
equalities. Cambridge university press, 2nd edition.

Huffman, C., and Kahn, B. E. 1998. Variety for sale:
Mass customization or mass confusion? Journal of retail-
ing 74(4):491–513.

Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of SIGKDD’02, 133–142.

Koriche, F., and Zanuttini, B. 2009. Learning conditional
preference networks with queries. In Proceedings of IJ-
CAI’09, 1930–1935.

Lang, J.; Mengin, J.; and Xia, L. 2012. Aggregating
conditionally lexicographic preferences on multi-issue do-
mains. In Principles and Practice of Constraint Program-
ming, 973–987. Springer.

Liu, X., and Truszczynski, M. 2015. Learning partial lex-
icographic preference trees over combinatorial domains. In
Proceedings of AAAI’15, volume 15, 1539–1545.

Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued con-
straint satisfaction problems: Hard and easy problems. In
Proceedings of IJCAI’95, 631–637.

Schmitt, M., and Martignon, L. 2006. On the complex-
ity of learning lexicographic strategies. Journal of Machine
Learning Research 7:55–83.

Viappiani, P.; Faltings, B.; and Pu, P. 2006. Preference-
based search using example-critiquing with suggestions.
Journal of Artificial Intelligence Research 27:465–503.

Wallace, R. J., and Wilson, N. 2009. Conditional lexico-
graphic orders in constraint satisfaction problems. Annals of
Operations Research 171(1):3–25.

Yaman, F.; Walsh, T. J.; Littman, M. L.; and Desjardins, M.
2008. Democratic approximation of lexicographic prefer-
ence models. In Proceedings of ICML’08, 1200–1207.

