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Abstract—This paper proposes to consider direct visual ser-
voing (DVS) for object manipulation by a robot arm. The
convergence domain limits of DVS are overcome by introducing
the non-linear scale space related to camera pose. Its use in a new,
yet little complex, direct cost can enlarge twice the convergence
domain of one state-of-the-art DVS, as many experiments of
symmetric object orientation control assess.

I. INTRODUCTION

Visual Servoing (VS) controls a robot to actively align
its camera stream to a desired view [6]. Image alignment
is also performed by warping in Simultaneous Localization
And Mapping (SLAM) [4] and Visual Odometry (VO) [16].
Usually, the alignment minimizes a cost function defined from
the desired image (or geometric data) and the current acquired
image. They either rely on matched features [11], [18], direct
minimization of image brightness differences, e.g. Photometric
VS (PVS) [7], or color-depth (RGBD) data [19], [2].

Most image alignment techniques have trouble balancing
precision and width of convergence domain. Feature-based
alignment can find its bound when matching features is im-
possible or imprecise [14]. On the other hand, direct alignment
is very precise but within a tight convergence domain, as the
seminal PVS work [7] showed (Fig. 1b). This fact limits direct
alignment approaches to frame-by-frame tracking [10].

Recent progresses have made both Direct VS (DVS) [8],
[9], [12], [5] and image alignment [1], [21] achieve large
convergence domains. One of the key ideas was to control
the Gaussian smoothing of images together with camera pose
Degrees of Freedom (DoF) [8], [1]. Image smoothing removes
local discontinuities of the image, hence those of the direct
cost function [15], enlarging its convergence basin (Fig. 1c).

This work extends these lines of work by introducing a new
Non-Linear Scale Space (NLSS) approach to DVS. To the best
of our knowledge, NLSS has only been developed in the image
denoising field for preserving natural edges [17], [3] or used
as a consequence of optical properties, e.g. defocus [5]. The
new NLSS considers anisotropic Gaussian filtering depending
on camera pose DoFs. It provides larger convergence domains
(Fig. 1d) than DVS with isotropic Gaussian filtering [8].

The main contributions of this work are summarized as:
• New NLSS model related to camera pose DoF, which

shows generality over isotropic Gaussian smoothing
• A DVS control law based on the new NLSS capable of

very large convergence domain (Fig. 1d)
• A method to build the non-linear scale space of the

desired image offline, even with unknown depth
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Fig. 1: (a) Axially-symmetric object showing its main label.
(b-d) Direct cost functions (abscissa: object angle in degrees)
for (b,c) baseline and (d) new costs; dashed lines are conver-
gence borders of width (degrees): (a) 25, (b) 54, (c) 107.

The contributions are evaluated for the automatic storage of
goods on supermarket shelves, focusing on the difficult case
of axially-symmetric objects: the robot grasps an object in
unknown orientation around its axis of symmetry and must
align the object to the desired orientation showing its main
label (Fig. 1a). To our knowledge, this is the first time DVS
is applied to object manipulation. Such a setup requires at
least 3 camera DoFs that NLSS can formally deal with (see
Sec. III-B). Experimental results with various types of objects
in two setups show that NLSS can double the width of the
convergence domain of [8].

In the rest of the paper, Section II recalls the state-of-the-art
Photometric Gaussian Mixtures-based VS relying on isotropic
Gaussians. Section III introduces the new non-linear scale
space related to camera pose. It is then considered for DVS
(Sec. IV). After that, the new NLSS alignment cost is evaluated
with respect to state-of-the-art costs on a dozen of objects in
Section V. Finally, DVS experiments with a robot arm assess
the contributions (Sec. VI) before conclusion (Sec. VII).

II. PHOTOMETRIC GAUSSIAN MIXTURES-BASED DVS

A. PGM model and control law

We first review the Photometric Gaussian Mixtures-based
DVS (PGM VS) [8], which relies on isotropic Gaussians.



Instead of considering image I with N ×M pixels as input
to the control law, PGM VS takes a Photometric Gaussian
Mixture of the input image, G. Note that G mixes Photometric
Gaussians (PG) of every pixel I(u), i.e. I : u ∈ U 7−→ I(u) ∈
[[0, 255]], with U = [[0, N − 1]] × [[0,M − 1]]. A single PG is
characterized by its center u and its spread λ ∈ R∗+, i.e.
mean and standard deviation (R∗+ = R+\ {0}). Hence a PG
is defined as g : ug ∈ Ug 7−→ g(ug, I,u, λ):

g(ug, I,u, λ) = I(u) exp
(
−||ug − u||2/(2λ2)

)
. (1)

Here g models the strength of attraction at pixel location u in
image I [8]. If the definition domain of the PG is the same
as the one of the image, then Ug = U .

Then, the PGM G is defined with a single λ as:

G(ug, I, λ) =
∑
u∈U

g(ug, I,u, λ). (2)

As U is a discrete set, the exponential in the expression (1) of
g is evaluated at discrete locations u ∈ U , thus it is sampled.
Hence, in short, if λ reaches 0, then G(ug) shrinks to I(u)
and PGM VS to PVS [7] (not recalled here for conciseness).

The control law of PGM VS is designed to minimize the
Sum of Squared Differences (SSD) cost between current G,
i.e. the PGM of I with λ, and G∗, i.e. the PGM of the
desired image I∗ with λ∗ ∈ R∗+. PGM VS considers λ as an
additional DoF [8] to those of camera pose p = [t>, θ,w>]>,
representing the rigid transformation from the world frame
Fw to the camera frame Fc. In p, t = [tX , tY , tZ ]> ∈ R3 is
the 3D translation, and w = [wX , wY , wZ ]> ∈ R3 : ||w|| = 1
with angle θ ∈ R represent the 3D rotation as axis-angle.

To express the PGM SSD cost, elements of G are stacked
as vector G ∈ R|Ug|×1 and those of G∗ as G∗ ∈ R|Ug|×1:

CPGM (p, λ) =
1

2
||G(p, λ)−G∗||2. (3)

The control law minimizing CPGM is then expressed as:[
v>, λ̇

]>
= −µJG

+(G(p, λ)−G∗), (4)

where v ≈ ṗ, µ ∈ R∗+ is a gain to tune the convergence
pace, JG ∈ R|Ug|×D+1 juxtaposes LG ∈ R|Ug|×D, i.e. the
interaction matrix related to a PGM sample (natural integer
D = 6 is all 6 DoF are controlled, least otherwise), and
Jλ ∈ R|Ug|×1, i.e. the Jacobian of the PGM sample with
respect to λ. [8] details their expressions but one may note that
LG is function of geometric interaction matrices involving the
pinhole camera model. It transforms the 3D point expressed
in the camera frame X = [X,Y, Z]> ∈ R3 into 2D image
space. Let x ∈ R2 be the projection of X into the intermediate
normalized image plane:

x =
[
x, y

]>
=
[
X/Z, Y/Z

]>
, (5)

and x̃ ∈ P2 its homogeneous representation. Then, the 2D
point ũ ∈ P2 represented as the homogeneous coordinates of
pixel location u is obtained by:

ũ = Kx̃, (6)

where K is a camera matrix containing intrinsic parameters
αu ∈ R+, αv ∈ R+, u0 = (u0, v0) ∈ R2

+:

K =

αu 0 u0

0 αv v0

0 0 1

 . (7)

The evolution of λ (λ∗ is constant) while the camera is
moving is one of the PGM VS’s key to both wide convergence
domain (with large λ) and precision (with small λ). [8] reports
a sequence of PGM VS: Step 1 with λ∗ large (exact value
depends on experiments) and λ = 2λ∗ at initialization; Step
2 with constant λ = λ∗ = 1.

B. Analysis on PGM VS

The contributions of PGM VS actually comes with two
issues. The first one is theoretical, related to isotropic Gaussian
smoothing. Indeed, as the expression of PGM (2) shows,
the image is smoothed uniformly. This makes distant objects
smoothed as much as near objects, despite their scale differ-
ences in the image. Hence, the information brought by distant
objects, which is usually relevant to constrain rotations [20],
can simply disappear. Another nested issue regards the ex-
pression of PG (1). Its Gaussian spread λ is expressed in the
image domain. Hence, λ depends on image resolution [8] with
currently no way to relate it to camera motion.

The second issue is practical. PGM VS smooths each
acquired image for the spread value of current iteration.
Although it may provide both large convergence domain and
precision, its algorithmic complexity needs dedicated hardware
and implementation to run about online (10 Hz with images
of 100 × 100 pixels on the Graphics Processing Unit [8]).

NLSS (Sec. III) is designed to address the theoretical aspect
while NLSS VS (Sec. IV) targets the practical issue.

III. NON-LINEAR SCALE-SPACE RELATED TO POSE

This section introduces a new type of NLSS based on
anisotropic filtering with Gaussian kernels depending on the
camera pose DoF, the camera projection model and the pixel
position in the image plane. NLSS considers the relative
pose δp ∈ R6 (defined similarly to p, Sec. II-A) between
two camera frames Fc∗ and Fc. Rodrigues’ formulae express
cMc∗ ∈ SE(3) from δp, transforming coordinates from frame
Fc∗ to Fc. Thus, by writing the homogeneous representation
of 3D point X as X̃ ∈ P3 and expressing it in frames Fc and
Fc∗ , we have cX̃ = cMc∗

c∗X̃.
In the rest of this section, we express monodimensional

Gaussians in the image plane along the curve defined by
projections u of X, function of each element of δp.

A. Single DoF anisotropic kernels

For each pixel I(u), X projects as u for δp = 0. Then, we
define un = [un, vn]> ∈ R2, the coordinates of filtered image
In, and ũn ∈ P2 their homogeneous representation.



1) Anisotropic kernel related to tX : To express the monodi-
mensional Gaussian curve of the anisotropic kernel, we write
un function of X and δp = [tX ,01×5]>, tX 6= 0:

ũn = K
[(
c∗X + tX

)
/c
∗
Z, c∗Y /c

∗
Z, 1

]>
, (8)

leading to:

un = u +
[
αutX/

c∗Z, 0
]>

= u + ∆u(tX). (9)

un hence belongs to the line of equation vn = v.
The anisotropic kernel related to tX is then expressed as:

fn(un,u, tX) =
1√

2πλn(tX)
exp

(
− (un − u)2

2λn(tX)2

)
, (10)

∀un : vn = v, with:

λn(tX) = ||∆u(t̂X)||, (11)

such that t̂X is the magnitude of camera horizontal translation
parameterizing the scale (∼spread in Sec. II).

The above defined kernel is anisotropic since it depends on
the Z coordinate of the 3D point projected as u (Fig. 2).
Considering the same Z for every pixel leads back to the
isotropic Gaussian kernel, but for the scale parameter t̂X .

2) Anisotropic kernel related to tZ: Generally speaking,
tZ leads to a Gaussian kernel of 2 dimensions. Indeed, from
δp = [01×2, tZ ,01×3]>, tZ 6= 0, we get:

ũn = K


c∗X

c∗Z+tZ
c∗Y

c∗Z+tZ
1

 =

αux
c∗Z

c∗Z+tZ
+ u0

αvy
c∗Z

c∗Z+tZ
+ v0

1

 , (12)

rewritten for un and vn as:

un = u− tZ
(c∗Z + tZ)

[
(u− u0)
(v − v0)

]
= u + ∆u(tZ). (13)

Hence, un belongs to the half-line from u0 toward ∆u(tZ).
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Fig. 2: Anisotropic kernel function of tX on two x (black
circles) for t̂X = 0.2 m: (a-d) Z = 1.0 m; (e-f) Z = 0.5 m.

Then, let us express the kernel function fn(un,u, tZ), such
that it represents a Gaussian centered at u, of spread:

λn(tZ) = ||∆u(t̂Z)||, (14)

similar to the anisotropic kernel of tX (Sec. III-A1), but only
defined for points un verifying (13):

fn(un,u, tZ) =
exp

(
− 1

2 (un − u)>Σ−1
n (un − u)

)
√

2πλn(tZ)
, (15)

after posing:
Σn = ∆u(t̂Z)∆u(t̂Z)>. (16)

The anisotropic kernel of (15) is even more anisotropic than
the one of tX of (10), as its spread depends on u, in addition
to Z, as Figures 3a and 3b show.

3) Anisotropic kernel related to θY : First, express the curve
in the image along which the monodimensional Gaussian
related to θY (shorten “θw with w = [0, 1, 0]>”) is defined.
Considering δp = [01×4, θY , 0]>, θY 6= 0, we get:

ũn = K

[ [(
c∗X cos θY + c∗Z sin θY

)
, c∗Y

]
−c∗X sin θY +c∗Z cos θY

, 1

]>
. (17)

Multiplying the right vector of (17) by c∗Z/c
∗
Z leads to:

ũn = K

[ [
(x cos θY + sin θY ) , y

]
−x sin θY +cos θY

, 1

]>
. (18)

The above vector defines a curve in the image plane (Fig. 3d),
function of θY , ∀x, being the perspective projection of a circle
perpendicular to the image plane, i.e. a hyperbola. To get a
simpler expression, we express the same curve with respect to
x′ = 0. To do so, we write y′ from x̃ (right vector of (18)),
seen as an orientation vector colinear to the line of sight of x,
and x̃′ ∈ P2, an orientation vector of (x′ = 0, y′):

x̃ = [x, y, 1]> and x̃′ ∝ [0, y,
√
x2 + 1]>, (19)

since x̃ and x̃′ are the same, up to a pure rotation around
camera axis Yc. We then express:

y′ = y/
√
x2 + 1. (20)

Substituting x and y with x′ and y′ in (18) and (17) we get:

un =

[
αu tan θY + u0

(v − v0) /
(
cos θY

√
x2 + 1

)
+ v0

]
, (21)

with x = (u− u0) /αu.
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Fig. 3: Kernels of: tZ on (circles) (a) x = [0.1; 0], (b) x =
[0.6;−0.4], for t̂Z = 0.2 m, Z = 0.5 m; θY on (c) x =
[0; 0.01], (d) x = −[0.4; 0.6] for θ̂Y = π/14, i.e. 13 degrees.



We then express the anisotropic kernel fn(un,u, θY ) of
hyperbolic support, for un of (21). Posing:

dθY = [un, 1][u0, 1]> / (||[un, 1]|| ||[u0, 1]||) , (22)

we get:

fn(un,u, θY ) =
1√

2πλn(θY )
exp

(
−arccos (dθY )

2

2λn(θY )2

)
,

(23)
where:

λn(θY ) = |θ̂Y |. (24)

Figures 3c and 3d show examples of kernels of θY .
4) Anisotropic kernels related to tY , θX and θZ: These

kernels are not detailed for conciseness but the anisotropic
kernel related to tY , resp. θX , is very similar to the one related
to tX (Sec. III-A1), resp. θY (Sec. III-A3), up to a transpose.

The anisotropic kernel related to θZ is expressed following
the same method than the other DoFs. Its shape is circular.

B. Combining anisotropic kernels

The most obvious combination of monodimensional kernels
considers those related to tX and tY (resp. Sec. III-A1
and III-A4) giving the bidimensional kernel Fn():

Fn(un,u, tX , tY ) = fn(un,u, tX)fn(un,u, tY ). (25)

Assuming a fronto-parallel planar scene (Z constant for all
u) and tX = tY = tXY , Fn of (25) becomes the conventional
expression of the isotropic 2D Gaussian (homeoscedastic):

Fn(un,u, tX , tY ) =
exp

(
− (un−u)2

2λn(tX )2

)
√

2πλn(tX)

exp

(
− (vn−v)2

2λn(tY )2

)
√

2πλn(tY )

=
1

2πλn(tXY )2
exp

(
− (un − u)2 + (vn − v)2

2λn(tXY )2

)
.

(26)
Fn of (26) is a particular case of (25) equivalent to the

Gaussian kernel used in every work of image alignment
exploiting, explicitly or not, the linear scale space [19], [10],
[8], [1]. Ignoring the factor in front of the exponential, (26)
is the same exponential as for a Photometric Gaussian (1)
of PGM VS. Figures 4a to 4d show several examples of 2D
kernels of (26), for various u and Z. By extension, mixtures
of above mentioned 2D kernels are isotropic iff Z is constant
(Fig. 4e and 4f) but anisotropic in general (Fig. 4g and 4h).

IV. NLSS VISUAL SERVOING

This Section describes the new VS control law exploiting
the NLSS filtered desired image (Sec. IV-A) and the compu-
tation of the desired image for NLSS-VS (Sec. IV-B).

A. Control law

The new NLSS VS control law is similar to (4) but only
filters the desired image I∗ anisotropically to obtain I∗n. By
stacking pixels of the current and desired images as vectors
I(p) and In

∗, the new NLSS SSD cost is defined as:

CNLSS(p) = 1
2 ||I(p)− In

∗||2. (27)
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Fig. 4: (a-d) isotropic kernels for t̂X = t̂Y = 0.2 m on two
x: (a,c) x = 0.0, y = 0.0; (b,d) x = 0.6, y = −0.4. (e-f)
mixtures of isotropic kernels (a, b), resp. (c, d). (g-h) mixtures
of anisotropic kernels (b, c), resp. (a, d).

Thus, as I∗n is constant over time, the same interaction matrix
LI as for PVS [7] is used in the NLSS VS control law:

v = −µLI
+ (I(p)− In

∗) . (28)

In (28), LI
+ is the pseudo-inverse of the photometric in-

teraction matrix LI and µ is a gain (see (4)). LI involves
image gradients, camera intrinsic parameters and scene depth
at each pixel (see [7] for the details). When the scene depth is
unknown, setting the same constant depth for every pixel has
shown the robustness of (4) to such approximation [8], [7].
Thus, the same behavior is expected for (28).

B. Generating the desired image for the control law

In our context, a static camera looks at a symmetric object
rotated by a robot arm around its axis of symmetry. This
is dual to the camera rotating around the object at constant
depth. Hence, three camera degrees of freedom are sufficient:
one rotation around the object axis of symmetry and two
translations in the plane orthogonal to that axis. We consider
the object axis Zo fits the axis of symmetry. Assuming Zo is
perpendicular to the plane formed by camera axes Xc and Zc,
the three camera DoFs are: tX , tZ , θY . These DoFs are those
to consider when generating the NLSS desired image I∗n. Thus,
the NLSS combines kernels (dropping un and u for compact-
ness) fn(tX), fn(θY ) and fn(tZ) (resp. (10), (23), (15)) as
Fn(tX , θY , tZ) in a same fashion as Fn(tX , tY ) does (25).

Ideally, the desired image I∗n in (28) would be the result
of the NLSS filtering with kernel Fn(tX , θY , tZ) of a sin-
gle acquired image of the object at desired orientation oθ∗Z
(here expressed in the object frame Fo for brevity). As the
2D anisotropic kernel Fn(tX , θY , tZ) involves translations, it
depends on scene depth, thus object shape. We propose a
procedure to compute I∗n, even when the depth is not available.
Thus, only a passive monocular camera is required and 3D
models or depth measurements are not necessary.

To compute I∗n, equivalently to the explicit filtering of I∗

with kernels of the NLSS (Sec. III), we acquire a set of images



with several object orientations around oθ∗Z and compute once
the Gaussian weighted sum of this set of images. The interval
of orientations and the Gaussian weights depend on the NLSS
scale parameter oθ̂Z , equivalent to three scale parameters in
the camera frame. So, for a given oθ̂Z , we define the range of
orientations Ω around the object desired orientation oθ∗Z as:

Ω = [oθ∗Z −Nλoθ̂Z , oθ
∗
Z +Nλ

oθ̂Z ], (29)

where Nλ is nothing but a well-known integer factor leading
Ω to cover 68.3%, 95.5% or 99.7% of the Gaussian curve
integral for Nλ equal, respectively, to 1, 2 or 3.

Then, each pixel value I∗n(u) of the desired image is
computed as the bounded integral of pixel values acquired
at the same location u but spanning the whole range Ω, i.e.:

I∗n(u) =

∫
Ω

I(u, oθZ)
√

2π|oθ̂Z |
exp

(
− (oθZ − oθ∗Z)

2

2|oθ̂Z |2

)
d oθZ .

(30)
Although a continuous acquisition procedure exposing the

camera while rotating the object at a speed varying accordingly
to the inverse of the Gaussian of (30) could be imagined, it
would be very complex to implement. To make the computa-
tion of I∗n(u) easy, Ω is sampled with step δθ ∈ R∗+, and a
discrete set of images is acquired for each element of Ω. These
images are summed, each weighted with the Gaussian in (30).
The cardinality of Ω gives a normalizing factor to ensure pixel
values of the desired image I∗n remain in the [0, 255] interval.

V. COST FUNCTIONS EXPERIMENTAL COMPARISON

In order to compare cost functions of NLSS VS (27) with
respect to the state-of-the-art PGM VS (3) and the classical
PVS [7], we consider 13 objects of various sizes (bottles and
food boxes, Fig. 5a, 5b). Each object is axial-symmetric and its
frame is set so that axis Zo fits the axis of symmetry. Hence,
we can simply note oθZ as the object angle around its axis of
symmetry. It should be noted that due to this symmetry, only
the object appearance, not its geometry, allows us to detect
orientation changes around Zo.

6850 images (http://mis.u-picardie.fr/~g-caron/pub/data/ConveJRL.zip,
4 GB) of 720×960 pixels were acquired by a webcam, while
each object slowly rotated for 360 degrees around Zo on the
center of a turn table. The constant rotation speed was set
so that the angle between neighboring acquired images is
δθ = 0.8 degrees (Sec. IV-B) on average. Then, to compare
the NLSS cost (27) (N-cost) with baseline PGM (4) (G-cost)
and photometric (P-cost: SSD between I and I∗) costs, one
image I∗ per object is selected as the one facing the most
the main label to the camera (Fig. 5a, 5b). After that, I∗n is
computed from images before and after I∗, in the acquired
image sequence, among the range of angles spanning Ω
(Sec. IV-B). As Ω, hence I∗n, depends on the scale parameter
oθ̂Z of the NLSS related to the rotation around object
axis of symmetry, several values of oθ̂Z are considered for
comparison but a single Nλ = 3 (examples of I∗n filtered with
oθ̂Z = 6 degrees, Fig. 5c, 5d).

The convergence domain width is experimentally evaluated.
For an object, every acquired image while the object was
rotating is used to evaluate the cost functions from -180 to
+180 degrees (see Fig. 1b, 1c and 1d for the ayataka object).
Then, the cost function is numerically differentiated to find left
oθ

(l)
Z and right oθ(r)

Z borders of the convergence domain of the
global minimum. As these borders might not be symmetric, the
convergence domain width is computed as twice the minimum
absolute value among oθ

(l)
Z and oθ

(r)
Z .

Table I shows the width of convergence domain of all
three costs for various values of spread (Sec. II) and scale
(Sec. III), for every object. The N-cost always outperforms the
P-cost, sometimes with very large ratios, e.g. ×10 for noodles.
Surprisingly, the G-cost does not outperform the P-cost for one
object. For three objects, N-cost is on par with G-cost. Out of
them, N-cost shows a larger domain than G-cost in 6 cases.
Conversely, G-cost shows a larger domain than N-cost in 4
cases. Actually, local minima appear in the N-cost very close
to the global optimum with large oθ̂Z . A slight modification of
the N-cost, filtering isotropically the current image with a little
spread (see the 8 columns on the right of Tab. I), overcomes
the issue and makes the N-cost largely outperforming the G-
cost for 11 over 13 objects.

VI. VISUAL SERVOING EXPERIMENTS

We use a Universal Robot 10 (UR10) with a Robotiq
3-finger gripper (Fig. 1a). They are connected via a wired
network to a laptop (Intel Core i7, Ubuntu 16.04) that runs
VS control laws. Images with 512 × 640 pixels are acquired
by a Flir 30 FPS camera (Computar lens, focal length 8 mm).
Each object area in the image is manually selected to avoid
perturbations and ensure a fair comparison of VS methods.

The camera intrinsic parameters (7) were computed from
device datasheets. The relative transformation between the
end-effector to the object frame was set to the identity matrix
as the gripper could grasp objects from their cap or top cover
(its Z-axis is aligned with each object axis of symmetry).
The camera to robot calibration was done from a single pose
computation of a 4 dots marker held by the gripper using the
ViSP library [13] and the kinematics obtained from UR10.

PVS, PGM VS and the new NLSS VS were applied on
the objects of Section V. Initial poses oθ

(0)
Z were set by

incrementally increasing the angular error with respect to the
desired orientation oθ∗Z with a step of 10 degrees, reduced
to 5 to help ranking methods. Gains of the three control
laws were manually set to allow the maximum speed without

(a) ayataka (b) noodles (c) (d)

Fig. 5: (a-b) Axial-symmetric objects (2 among 13). Ayataka
is a tea bottle. (c-d) Corresponding desired NLSS images I∗n.

http://mis.u-picardie.fr/~g-caron/pub/data/ConveJRL.zip


TABLE I: Convergence domain width [degrees] comparison between P-cost, G-cost and N-cost, for various spreads (sp) λ and
λ∗ (pixel unit), and scales (sc) oθ̂Z (degrees). Bold† shows the largest domain per object. If no tie, Bold§ shows the second
largest domain with another method. A negative sign indicates that the method changes the global optimum.

P G-cost N-cost N-cost with filtered I
sc/sp∗ 1 1 1 1 2 2 2 2 5 5 5 5 10 10 10 10 0.2 1.7 3.2 4.7 6.2 7.7 9.2 10.7 0.2 1.7 3.2 4.7 6.2 7.7 9.2 10.7
sp 1 1.2 1.3 2 2 2.3 2.6 4 5 5.8 6.5 10 10 11.5 13 20 1 1 1 1 1 1 1 1

kitsune 17 19 19 7 -1 44 22 7 -1 62§ 10 0 -0 58 0 -6 -1 17 62§ 58 55 55 3 3 3 19 62 62 65 55 70† 2 2
ayataka 25 56 9 -2 -2 43 9 -2 -2 43 -2 -2 -2 8 -2 -2 -2 25 61 61 61 106 106 107† 107† 55 66 69 104 104 106§ 106§ 106§
chips 17 17 -7 -3 -1 19 -6 -3 -1 22 -0 -3 -0 127§ -1 -1 -0 17 17 20 60 89 100 120 6 17 19 20 87 90 130 133† 133†
corn 34 34 7 -1 -0 100 6 -1 -0 99 -1 -0 -0 3 -0 -0 -0 34 100 100 100 100 130§ 130§ 1 34 100 100 100 100 169† 169† 168
noodles 6 10 10 10 9 10 10 13 -3 32 0 0 -3 0 0 -3 -3 6 12 61§ 61§ 61§ 61§ 1 0 10 12 87† 69 69 71 71 71
cheese 6 13 13 13 22 13 13 16 3 77† 3 3 -0 3 0 0 -0 6 13 18 36 16 13 10 10 6 13 27 73§ 65 13 13 2
curry 5 14 14 14 2 14 14 11 -3 123† 0 -0 -2 0 -5 -3 -3 5 14 37 74 72 74 74 3 14 14 63 84 84 84 84 98§
plastic 7 11 11 9 5 11 12 12 2 45 2 2 4 2 4 4 4 7 11 16 47§ 47§ 14 14 14 11 11 16 56† 56† 56† 14 14
gum 10 10 10 0 -2 13 -0 -2 -0 86§ -2 -2 -2 -2 -0 -2 -2 10 32 48 52 0 0 0 -0 10 32 84 84 86 87† 87† 2
jagabee 7 7 7 7 -10 9 10 -10 -0 34§ -0 -0 -0 0 -0 -0 -0 7 10 34§ 34§ 34§ -0 1 1 7 23 42 44 47 49† 47 47
koala 33 34 33 31 -1 37 33 34 -1 48§ 37 -1 -1 45 -1 -1 -3 33 35 44 44 44 48§ 21 21 34 37 44 44 48 48 62 65†
oolong 88 114 48 -4 -2 114 48 -6 -2 118 -13 -2 -2 120 -11 -2 -0 88 114 114 122 122 123† 123† 0 114 114 118 120 122 122 123† 123†
suntory 7 7 7 5 -2 7 5 5 -2 7 3 3 3 3 3 3 0 7 19† 2 3 -0 -0 -0 -0 7 19† 2 3 -0 -0 -0 -0

oscillations at the optimum. NLSS VS runs with the tradeoff
value oθ̂Z = 6 degrees suggested by Table I. On its side, PGM
VS runs with two steps but λ = λ∗ constant as Table I shows
different values can change the global optimum. It also saves
time at runtime, even if images had to be resized to 105× 86
pixels to meet the same 10 Hz control loop rate as [8]. Then,
PGM VS runs with λ = 1. If it fails to converge, then λ is
successively set to 2, then 5, then 10.

NLSS VS clearly outperforms PVS, always extending the
convergence domain, up to 22 times. For instance, NLSS VS
converges for -40 degrees ≤ oθ

(0)
Z − oθ∗Z ≤ 180 degrees with

cheese whereas PVS diverges if |oθ(0)
Z − oθ∗Z | > 5 degrees.

PGM VS outperforms PVS as well but not always. For
instance, PVS converges between -35 and 30 degrees with
corn but PGM VS only converges between -10 and 5 degrees
(-35 and 35 degrees for NLSS VS). Hence, on this criterion,
NLSS VS performs better than PGM VS too.

When PGM VS performs better than PVS, NLSS VS can
also largely outperform PGM VS, for example with jagabee:
NLSS VS could converge for −30 ≤ oθ

(0)
Z − oθ∗Z ≤ 180 de-

grees, whereas for PGM VS −50 ≤ oθ
(0)
Z −oθ

∗
Z ≤ 20 degrees.

However, there are objects, such as suntory, for which
NLSS VS’ converge domain is only 20 % of PGM VS’ (25
versus 120 degrees). Actually, on the 13 considered objects,
the average convergence domain width is almost the same for
NLSS VS (132.7 degrees) than for PGM VS (131.9 degrees),
while PVS’ being 34.2 degrees. But as VS results with corn,
jagabee and suntory let think, the deviation of the convergence
domain width is larger for PGM VS (75.5 degrees) than for
NLSS VS (69.6 degrees), making PGM VS’ performances
harder to predict than NLSS VS ones.

To finalize the comparison, we compute the balance of the
convergence domain around oθ∗Z by averaging the absolute
difference of absolute values of the domain limits (the lower,
the better balanced): PGM VS reaches 84.7 degrees, whereas
NLSS VS stands at 50.4 degrees, i.e. 1.7 times better balanced.

The experiments are gathered in the accompanying video.

Figure 6 shows VS results for the noodles box. NLSS VS
converges smoothly from the farthest initial angle 30 times
the one of PGM VS, 18 times the one of PVS. The error at
convergence (Fig. 6d) cannot be zero as I∗n is filtered but I
not (recall the N-cost at the optimum, Fig. 1d). Despite that
fact, precision at convergence is 1.2 degrees (0.2 degrees for
PVS and 2.3 degrees for PGM VS, both for much smaller
maximum initial error than for NLSS VS, see Fig. 6).

Execution times are exactly the same for PVS and NLSS
VS: 5 ms per image on average. PGM VS takes 83 ms per
image when λ = 10 and 36 ms when λ = 1, despite a careful
implementation on precomputations and processing images
with 36 times less pixels than PVS and NLSS VS.

VII. CONCLUSION

This paper introduced for the first time the non-linear scale
space related to all camera DoF. It enlarges significantly the
convergence domain of direct visual servoing for a much
lower computational complexity than previous reference works
on photometric Gaussian mixtures (similar to a linear scale
space). Future works will adapt online the non-linear scale
space parameters to improve the convergence pace.

(a) PVS: -5 (b) PGM VS: -3

(c) NLSS VS: -90 (d) NLSS VS: -1.2
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Fig. 6: Noodles box servoing on main label. (a-c) Cropped
initial errors (images or PGMs) at the maximum angular error
(degrees) allowing to converge. (d) NLSS VS final error.
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