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Photometric Visual Gyroscope for Full-View Spherical Camera

This article presents a visual gyroscope based on the spherical representation of dual-fisheye cameras. By using the fully available view of the scene thanks to a dual-fisheye camera and projecting the photometric information on a sphere, a highly precise orientation estimation along with a great convergence domain can be achieved. This method is validated with the help of images taken from the PanoraMIS dataset to evaluate quantitatively the performances.

Introduction

A Visual Gyroscope (VG) estimates the 3D orientation of a camera from a captured image with respect to landmarks in structured environments [START_REF] Li | Quasi-globally optimal and near/true real-time vanishing point estimation in manhattan world[END_REF] or to a reference image [START_REF] Hadj-Abdelkader | Closed form solution for rotation estimation using photometric spherical moments[END_REF]. This classical estimation problem is the heart of many computer vision applications, for example upright correction of spherical panoramas [START_REF] Li | Quasi-globally optimal and near/true real-time vanishing point estimation in manhattan world[END_REF], stabilization of 360 degrees (deg) videos [START_REF] Kopf | 360°video stabilization[END_REF] and robot motion estimation [START_REF] Caron | Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials[END_REF].

VG algorithms consider two kinds of information, direct or indirect. An Indirect VG (IVG) leverages image features, either handcrafted as patches around image points [START_REF] Hadj-Abdelkader | Closed form solution for rotation estimation using photometric spherical moments[END_REF][START_REF] Kopf | 360°video stabilization[END_REF] or learnt to estimate the optical flow [START_REF] Kim | Self-supervised optical flow derotation network for rotation estimation of a spherical camera[END_REF]. Instead, a Direct VG (DVG) almost considers directly pixel brightness of the whole image as input of a 3D rotation optimization method [START_REF] Makadia | Rotation recovery from spherical images without correspondences[END_REF]. DVGs almost consider directly pixel brightness because the latter usually undergo a transform to another space before estimating the 3D rotation, e.g. a spherical Fourier transform to solve for the rotation with phase correlation [START_REF] Makadia | Rotation recovery from spherical images without correspondences[END_REF] or a Mixture of Photometric Potentials * G. Caron is also with Université de Picardie Jules Verne, MIS, France. This work is carried out as part of the Interreg VA FCE ADAPT project "Assistive Devices for empowering disAbled People through robotic Technologies" (adapt-project.com). The Interreg FCE Programme is a European Territorial Cooperation programme that aims to fund high quality cooperation projects in the Channel border region between France and England. The Programme is funded by the European Regional Development Fund. (MPP) transform to optimize for the rotation minimizing the Sum-of-Squared-Differences between two MPPs [START_REF] Caron | Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials[END_REF]. Despite the absence of features, DVGs could recently reach very large estimation domains such as up to 360 deg in static environment [START_REF] Caron | Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials[END_REF]. But the rotation estimation error is still of the order of 1 deg (for real-time or close to real-time setups) whereas Neural Networks could recently reach 0.3 deg [START_REF] Kim | Self-supervised optical flow derotation network for rotation estimation of a spherical camera[END_REF], though within a much tighter estimation domain of [-5; 5] deg around each axis. This error level is still problematic as it gets to be accumulated over time within 360 deg video stabilization [START_REF] Kopf | 360°video stabilization[END_REF] or visual odometry [START_REF] Pathak | Distortion-resistant spherical visual odometry for UAV-based bridge inspection[END_REF].

We believe the rather low accuracy of state-of-the-art real-time DVGs is due to the transformation of the pixelic information. Hence, this article proposes a new DVG to improve the rotation estimation accuracy by directly considering pixel brightness of captured images lifted on a sphere, named PVG (Photometric Visual Gyroscope). PVG implements a new hybrid multi-resolution/sub-sampling scheme in two levels allowing to decrease significantly the best known estimation errors [START_REF] Kim | Self-supervised optical flow derotation network for rotation estimation of a spherical camera[END_REF] together with a much larger convergence domain, as assessed by the evaluation made on many images available in the PanoraMIS dataset [START_REF] Benseddik | Panoramis: An ultra-wide field of view image dataset for vision-based robot-motion estimation[END_REF].

The rest of the paper presents the PVG algorithm (Sec. 2) and the evaluation of its linearity and accuracy results compared to the state-of-the-art (Sec. 3) before conclusion.

Spherical Photometric Visual Gyroscope

This section presents first the method to project dualfisheye images on a sphere (Cartesian representation). Then, the PVG's optimization algorithm is detailed.

Spherical representation of dual-fisheye images

Dual-fisheye cameras can easily be modeled using a unified central projection model involving two main steps that are (i) the projection on a unit sphere and (ii) a perspective projection on the image plane [START_REF] Geyer | A unifying theory for central panoramic systems and practical implications[END_REF]. The process used to calibrate and combine the two dual-fisheye cameras have already been described in [START_REF] Benseddik | Panoramis: An ultra-wide field of view image dataset for vision-based robot-motion estimation[END_REF]. Once the calibration of the two cameras have been done, the two parts of the dual-fisheye images are then projected on a single sphere.

In order to do this, an isocahedron (20 equilateral triangles and 12 vertices) is firstly considered, before being subdivided n times. The unit norm points

c X Si = [X Si , Y Si , Z Si ] ⊤ ∈ R 3 , i ∈ [1, P ]
resulting from this subdivision are uniformly spaced on the whole sphere surface [START_REF] Li | A full-view spherical image format[END_REF] (partially presented in Fig. 2).

Alignment method based on pixelic information

Consider I S ( c X S ) ∈ [[0, 255]], the spherical image brightness 1 in the spherical image I S at the orientation r ∈ R 3 (i omitted for compactness). The input of the PVG is the stacking of all spherical brightness as vector I S (r) ∈ [[0, 255]] P ×1 :

I S (r) = [. . . , I S ( c X S ), . . .] ⊤ . (1) 
Vector r represents the camera 3D rotation with axis w = [w X , w Y , w Z ] ⊤ ∈ R 3 : ||w|| = 1 and angle θ ∈ R.

The brightness vector I * S is built from the desired image I * S , as I S (r) is built with (1) from I S . PVG is designed to minimize the Sum of Squared Differences (SSD):

C (p) = 1 2 ||I S (r) -I * S || 2 , (2) 
within a Levenberg-Marquardt optimization method computing iteratively the rotation increment δr ∈ R 3 from the spherical image Jacobian L I S ∈ R P ×3 :

δr (it) = -(H + µ diag (H)) -1 L I S ⊤ (I S (r) -I * S ), (3) 
with H = L I S ⊤ L I S , at each iteration it until convergence. In (3), µ ∈ R * + is the damping parameter. L I S links the variations of spherical image brightness to the 3 camera pose DoF, thanks to the Optical Flow Constraint Equation (OFCE), valid in Lambertian scenes [START_REF] Horn | Determining optical flow[END_REF]. L I S is the stacking of interaction matrices L I S ( c X S ) evaluated for all c X S , each composing spherical image gradients 1 Any other quantization could be considered.
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Sampled sphere Figure 2. Spherical representation of the dual-fisheye camera: partial view of the subdivided isocahedron, a pixel projected on the sphere (blue), its neighbors along the x direction (red), backprojection of the neighbors to the image plane (pink).

∇I Sc X S ∈ [[-255, 255]] 3 to the geometric interaction ma- trix Lc X S = [ c X S ] × (skew-symmetric matrix of c X S [3]): L I S ( c X S ) = -∇I ⊤ Sc X S Lc X S . (4) 

Spherical image gradient computation

In order to approximate as closely as possible the gradient directly on the sphere, the three derivatives of ∇I Sc X S (i.e. ∂I S ∂X S , ∂I S ∂Y S and ∂I S ∂Z S ) are computed using finite differences. The sampling used for this finite difference gradient computation is defined from the image plane to sphere projection pr -1 ξ () (see [START_REF] Caron | Photometric visual servoing for omnidirectional cameras[END_REF] for the detailed projection function and intrinsic parameters) of the size of one pixel at the principal point of coordinates u 0 and v 0 , as follow:

∆ X S = ∆ Y S = ∆ Z S = pr -1 ξ   u 0 + 1 v 0 1   -   0 0 1   (5) 
Then, for each spherical pixel, three neighborhoods are defined, one for each axis. Each of these N -neighbors (with N = 6 typically) are calculated accordingly to the following equation that presents the case of the neighbors computation along the sphere abscissa axis:

X SN =    (XS+k∆X S , Y S , Z S ) T ∥(X S +k∆ X S , Y S , Z S ) T ∥ -N 2 ≤ k ≤ N 2 , k ̸ = 0    (6) 
The same procedure is then applied similarly for the neighbors along the two others directions Y SN and Z SN . With this neighbors computation, a fine cartesian spherical gradient evaluation of the images can be done, completing the PVG optimization expression presented previously.

Hybrid visual alignment method

As PVG uses pixels lifted to the equivalent sphere, the image resolution should match the isocahedron subdivision level. For n subdivisions levels, P = 1 2 (20 • 4 n ) + 2 points form the sphere. Input images usually don't match the number of spherical points by a large factor (see Tab. 1). However, by considering the full image resolution, better accuracy can be achieved, thanks to an oversampling of image gradients, whereas the convergence domain is smaller (as assessed by experiments, Sec. 3). Inversely, re-sampling the image accordingly to the (lower) number of spherical pixels (see Tab. 1, 2nd row) leads to a larger convergence domain, though for a poorer accuracy.

To combine both the adequate spherical sampling and the high accuracy granted by the super sampling, PVG implements a hybrid method: first, PVG runs with re-sampled imaged, then it uses the original images (i.e. oversampled).

Performance of the measure

The method has been implemented leveraging the dualfisheye camera model and tools of the libPeR base C++ library 2 to study PVG's performance. In order to do so, the publicly available dataset PanoraMIS 3 has been used [START_REF] Benseddik | Panoramis: An ultra-wide field of view image dataset for vision-based robot-motion estimation[END_REF]. presented experiments use the third sequence (Sequence 3) that contains images of multiple 360 deg pure rotation around a single axis with a rotation increment of 2.5 deg between successive images. This acquisition is repeated five times at different locations (named CP i for i ∈ [0, 4]), thus giving a set of 720 images (144 images per full rotation). PVG's results are also compared with the prior visual gyroscope leveraging the MPP of spherical images (Sec. 1). In all the experiments n = 5 subdivision levels for the sphere, and the damping parameter (3) is set as µ = 0.01.

Accuracy

The first experiment evaluates PVG's accuracy (closeness of agreement between a test result and the accepted reference value). For this, the orientation between each successive pair of images I k and I k+1 is estimated. All successive rotation ground truths are 2.5 deg plotted as the black line in Figure 3 that shows a high accuracy with an average estimation error of 0.0981 deg (std: 0.0442 deg), when considering the full image. Tab. 2 shows the contribution in accuracy of PVG over the MPP-based gyroscope [START_REF] Caron | Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials[END_REF].

However, when considering images with the same number of pixels as the number of points sampling the sphere, 2 https://github.com/PerceptionRobotique/libPeR_base 3 https://mis.u-picardie.fr/ ˜panoramis the accuracy decreases to reach an average error of 0.79 deg. This result confirms the interest in considering full resolution images to achieve the best accuracy.

Linearity and convergence domain

To avoid being in a particular case when studying the convergence domain of the method, the experiments are using the whole set of images, giving a more accurate experimental evaluation of the convergence width. As the dataset contains full rotations around a single axis at five different locations, the experiment is split in five sub-studies, one for each considered location of the camera. For each location, the image at mid-rotation (180 deg) is set the reference image and, then, PVG aligns its spherical representation to each image in the [-180, 180] deg range.

To highlight the interest of the hybrid alignment (Sec. 2.4), the experiment is split in two parts, in order to study the convergence domains when either, first, considering re-sampled images or, second, full images. Fig. 4 presents the aggregation of the five sub-experiments to provide a global study of the convergence domain width. On the other hand, Fig. 5 presents the results of linearity when full resolution images are considered As a summary, if Fig. 4 highlights a loss in accuracy (with an error level of 0.79 deg) compared to using the full images (especially when considering small angles that are not detected), it is nothing but the counterpart of a ±45 deg convergence domain, much larger than the ±12.5 deg convergence domain when using full images (Fig. 5).

This convergence domain can be summarized with the representation of the cost function [START_REF] Caron | Photometric visual servoing for omnidirectional cameras[END_REF]. Fig. 6a shows it together with the domain where the gradient descent-like method of 3 is results in an accurate orientation estimation. These results show the main interest in considering the hybrid PVG to benefit a greater convergence domain and a high accuracy. Though the 90 deg convergence domain width of the hybrid PVG is 4 times narrower than the domain of the MPP-based gyroscope, the hybrid PVG increases 37 times the estimated rotation accuracy.

to translation

the characteristics of PVG known in the of pure rotation, a final experiment studies the robustness to translation. Fig. 6b presents the results of hybrid PVG to align the reference image of the first location CP 0 with images at any location within the demonstrated convergence domain. PVG's accuracy decreases as the distance to CP 0 increases, with a mean error of 2.57 deg overall. This error increase, compared to considering images of pure rotations only, shows the sensitivity of PVG to translation, however still more accurate than the MPP-based gyroscope in the presence of pure rotation (Tab. 2).

Conclusion

This article presented a Photometric Visual Gyroscope based on dual-fisheye images. By projecting the captured images and their photometric information on a sphere, the method presents a high level of accuracy of up to 0.0981 deg in a ±45 deg convergence domain. To achieve these results, this article presented a method to account for the image resolution, before its projection on the sphere, enhancing its convergence domain. Future works target the validation of the method by extending the gyroscope to the servoing of a robot arm embedding a dual-fisheye camera. 

Figure 1 .

 1 Figure 1. (a) Dual-fisheye image taken from the PanoraMIS dataset and used as full-view spherical data for the PVG. (b) Dualfisheye camera used for the data acquisition.

Figure 3 .

 3 Figure 3. Accuracy test carried over the whole images data-set, with a ground truth of 2.5 deg between successive images.

(a) Resulting mean convergence and linearityFigure 4 .

 4 Figure 4. Convergence and linearity study in case of images resampled before estimating their orientations once aggregated to provide a global conclusion.

Figure 5 .

 5 Figure 5. Linearity test carried with full resolution images.

  Figure 6. (a) Cost function evaluation between a reference image and images in the [-90, 90] deg range: convergence domain with (1) re-sampled images and with (2) full resolution images. (b) Mean and std orientation estimation error, function of 5 locations.

Table 1 .

 1 Re-sampling table of images to match the number of spherical pixels depending on the icosahedron subdivision level.

	Level	of	Nb. of fea-	Scale factor	Resulting	New Nb. of
	subdiv. n		tures P	s	size	pixels
	Full image	-	1	1280 × 720 921600
	5		10242	9.48	135 × 76	10260

Table 2 .

 2 

	Used method	PVG	MPP
	Accuracy (deg)	0.0981	3.15
	Convergence domain (deg)	±45	±180
	Computing time (ms)	883.49 57160.00

PVG (hybrid) versus MPP-based gyroscope

[START_REF] Caron | Spherical Visual Gyroscope for Autonomous Robots using the Mixture of Photometric Potentials[END_REF]

, both applied to the pure rotation images of the PanoraMIS dataset.