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Abstract

In this paper we develop an alert correlation framework specifically tailored

for Industrial Control Systems (ICSs). Alert correlation is a set of techniques

used to process alerts raised by various intrusion detection systems in order to

a eliminate redundant alerts, reduce the number of false alerts, and reconstruct

attack scenarios. In ICSs the presence of a physical process and the associated

specific threats has led to the heterogeneity of alerts due to the development of

multi-domain detection techniques. Such that, some detection approaches rely

solely on observations at the level of the cyber domain while other approaches

will monitor the physical process. The two approaches are complementary but

the information carried by the two types of alerts are different. In this work,

we combine the alerts from physical domain intrusion detection with more clas-

sical cyber-domain intrusion detection alerts. We develop an alert correlation

approach using an alert enrichment that allows mapping physical domain alerts

into the cyber domain. We also propose a specific alert selection for correlation

that adapts to the state of the physical process by dynamically adjusting the
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size of the selected alert window. We publicly released all the datasets generated

and used in our results.

Keywords: Alert Correlation, Intrusion Detection, Alert Enrichment,

Industrial Control Systems, Runtime Verification

1. Introduction

In this paper, we propose an alert correlation approach to link alerts from

multiple intrusion detection systems in the context of industrial control systems

(ICS).

Cybersecurity of Industrial Control Systems (ICS) had become an important5

topic in academic research after the Stuxnet incident. One of the key aspects

which distinguish an ICS from classical IT systems is the presence of a physical

process. This has lead to the apparition of a new class of novel threats which tar-

get the physical process and many ICS-oriented intrusion detection approaches

have been explored in the research community [1, 2, 3, 4]. Since control de-10

vices have limited resources and operate under real time constraints [5], most

approaches focus on network-based intrusion detection systems (NIDS) over

host-based intrusion detection systems (HIDS).

In this paper we are interested in the alert correlation between IDSs inter-

preting information in two different domains : cyber-domain (i.e. network ac-15

tivity) and physical-domain (i.e. process variables monitoring). Process-aware

IDSs take into account the physical process that the ICS controls. They decide

if the value applied to a process variable may put the physical process in a crit-

ical state. Cyber-domain IDSs analyze the network activity at a higher level.

They monitor data such as IP addresses, TCP/UDP ports, network flows or the20

syntax of the network protocols.

However, understanding alerts in the context of ICS remains a challenge

for several reasons. On the one hand, process-aware IDSs cannot identify the

source of the attacks, hence the need for cyber-domain IDSs. On the other

hand, cyber-domain IDSs do not provide information about the effect of the25
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attacks on the physical process. Since attacks targeting the physical process

can be detected in the physical and in the cyber domains, we need to correlate

alerts from both domains to better understand the attack scenarios.

Alert correlation [6, 7, 8] is a set of techniques used to eliminate redundant

alerts, reduce the number of false alerts, and reconstruct attack scenarios. So30

far, there have been few attempts at developing alert correlation in ICSs. In

this work, we tackle two specificities of ICSs that challenge traditional correla-

tion approaches : (i) the need to correlate alerts spanning both the cyber and

the physical domain, (ii) the alert selection policy for online correlation in the

presence of a time sensitive physical process.35

1.1. Heterogeneity of multi-domain alerts.

Classical alert correlation [8] includes a normalization and a pre-processing

stages which unify the attributes’ values between alerts from different IDSs.

However, in most of the works it is assumed that these stages were already

performed or their extent is limited to filling missing values such as the time, the40

source or the type of attacks [8]. In an ICS, these pre-processing stages are more

complex due to the heterogeneity of the alerts received by the correlator from

both the physical and the cyber domains. In order to pre-process alerts in ICS,

the correlation system needs to include information about the devices laying

at the boundary of the physical and cyber domains, namely the controllers.45

Given the diversity of the network interfaces and ICS protocols supported by

the controllers, an attacker can use different vectors at the network level to

achieve the same effect over the physical process. In a conceptual view one

can say that the available network protocols are mapped to the same effect on

the physical process. Using an analogy with the procedural abstraction [9] we50

consider the attack effect on the physical process as an abstraction of the network

level attack vector and, reciprocally, the network level attacks are concretions

(or realisations) of the physical level attacks. By relying on the notion of the

abstraction operator [10], alerts from the physical domain can be rewritten

in terms of cyber attributes and correlated with cyber domain alerts. This55
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approach is the cornerstone of our alert normalization procedure and will be

discussed in detail in section 4.

1.2. Alert selection policy.

For each new alert, the correlator needs to decide which previously received

alerts will be tested for correlation. This choice is called an alert selection60

policy. A naive policy will memorize and test all received alerts. However, due

to resource limits, most alert correlation approaches set a sliding time window

with a fixed size. Each new alert is tested with all or a subset of the previous

alerts in the current window. For instance, the authors in [8] heuristically set

a window size of 2s. In ICS where the evolution of the physical process is hard65

to predict, deciding on a single optimal window size is problematic. We thus

develop alert selection policies that adapt to the state of the physical process.

1.3. Contributions and paper structure

In summary, we make the following contributions :

• We propose an approach to link manifestations from both the cyber and70

the physical domains in an ICS by taking into account the configuration of

controllers and the specifications of ICS protocols.

• We introduce an alert selection policy which captures long-term manifes-

tations of attacks by adjusting the alert window to the runtime context of the

physical process.75

• We evaluate our approach using an experimental testbed in a hardware-

in-the-loop setting under both attacks and legitimate operator manipulations.

The paper is organized as follows. Section 2 provides the necessary back-

ground information about industrial control systems and introduces our threat

model. Section 4 presents our correlation approach. Section 5 describes our80

evaluation setup and implementation. Section 6 provides a discussion and anal-

ysis of the results. Section 3 reviews related work on alert correlation in ICS.

Finally, Section 7 concludes the paper.
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2. Background

ICSs are cyber-physical systems that control a physical process in order85

to achieve some industrial objectives [11]. They can be divided in different

levels. At the field level, sensors perform measurements of physical quantities

(temperature, pressure, level, etc.) while actuators such as pumps or valves act

on the physical process. At the control level, programmable logic controllers

(PLCs) regulate the physical process through an execution cycle. This cycle90

consists in reading new values from the sensors, transitioning to new states,

executing some control logics, and sending commands to actuators. At the

supervisory level, control servers collect data and send commands to the PLCs.

Human-machine interfaces (HMIs) provide the means for operators to monitor

and act on the physical process. Specific workstations allow engineers to change95

the PLC’s control logics. Finally, historians store data on the evolution of the

physical process to enable trend analysis and reporting.

2.1. Sequential Control Systems

In this paper, we focus on sequential control systems where the control logics

follow a sequence of discrete steps linked by transitions with boolean guards in100

terms of sensor states and internal variables. Each step is associated with ac-

tions such as the manipulation of an actuator (a valve or a motor for instance).

Control logics in sequential control systems are best represented using sequential

function charts (SFC), a graphical language defined in the IEC 61131-3 stan-

dard [12]. In a typical SFC-based program, the fundamental sub-processes or105

stages in the execution of the process control are represented by linear sequences

of steps and transitions. We call such sequences activities. These activities can

be further combined in parallel or branching configurations to construct more

complex logics. At any moment during the execution of a sequential control

system, the set of steps reached by the control logics constitutes the runtime110

context of the physical process.
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2.2. Communication protocols in ICS

Communications between the various components in an ICS are performed

through a variety of open and constructor-specific protocols. We illustrate our

approach in this paper using the Modbus/TCP protocol. This application layer115

protocol operates in a client/server setting. It is typically used for inter-PLC

and supervisor/HMI to PLC communications. Two Modbus fields are of interest

for our application as they determine the effect of a message on the process

variables: the function code and the data fields. The function code specifies the

nature of the request such as the reading or the writing of process variables. The120

data field depends on the function code; in case of a write request, it specifies

the start address of the write operation in the PLC’s memory (i.e the address

of the first variable to write), the quantity of the elements to write relative to

the start address, and the new written values.

2.3. Threat Model125

In most real-world attack incidents [13, 14, 15, 16], the attack originates

from the supervisory level since it is easier to be contaminated either through

infected USB flash drives [13], spear-phishing attacks [14, 15], accessing mali-

cious websites [14] or downloading compromised software [14]. The attack then

propagates to the lower levels of the ICS. The direct modification of the traf-130

fic from sensors or towards actuators at the field level requires physical access

to the ICS components. Such physical attacks fall under sabotage rather than

computer attacks, and are generally solved using organisational measures and

physical security. We, thus, focus on ICS attacks with both cyber and physi-

cal manifestations. The goal of the attacker is to put the physical process in135

a critical state through a series of commands sent to the PLCs using one or

more ICS protocols as in the case of the CrashOverride malware [16]. The at-

tacks are carried through supervisors and through ICS workstations that can

access the PLCs. We assume that the attacker has knowledge about the network

protocols supported by each PLC and about the memory mapping of process140

variables among the PLCs, possibly from a preliminary identification step [16].
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With respect to MITRE ATT&CK for ICS Matrix [17] we consider threats that

will “Impair the Process Control” by forcing some outputs using “Standard

Application Layer Protocol” by “Manipulation of Control” with a large spec-

trum of “Impacts” including “Loss of Availability/Control/Protection/Safety”145

occurring in “Damage of Property”.

2.4. Illustrative example

We present a sub-process (Figure 1) that will be used in the following sections

as a running example to illustrate our approach. This sub-process represents

a single processing stage in a multi-stage chemical plant. Product incoming150

from the physical process is first put in tank TK2 through valve VTP1. Using

the cart CH1, a quantity of product P5 is also added to the content of tank

TK2. Then, the products are mixed using motor M2 for a fixed amount of time.

Finally, tank TK2 is emptied using valve VT2.

These control operations are performed by a PLC and correspond, in terms155

of control logics, to a single activity (a linear sequence of step-transitions). In

the supervisory domain, a supervisor HMI along with an OPC server allow the

operators to perform manual interventions on the process. In our example, the

supervisor HMI can communicate with the PLC using either Modbus or SOAP

web-services through the PLC’s internal web server. The OPC server only uses160

Modbus. The engineering workstation is solely used to reprogram the PLC and

is never used for any process interventions.

Two types of IDS are deployed : (i) a process-aware IDS which surveys the

state of the sensors/actuators through cyclical observation of the signals and

reports any process specification violation such as the opening of a valve in165

the wrong step, and (ii) a protocol-specific payload-based IDS which reports

any unknown attempt to manipulate an actuator on the PLC. For instance,

unknown attempts might be due to a Modbus write command sent from an

unauthorized host (engineering workstation), or by using a previously unseen

protocol (for instance, a SOAP request).170
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Figure 1: Example of a subprocess

A possible process-aware attack on this sub-process is an attempt to over-

flow the tank TK2 through the malicious manipulation of valve VTP1. In a

typical run, this valve is only manipulated at the beginning of the activity until

tank TK2 is filled. To overflow TK2, an attacker can keep valve VTP1 open

throughout the activity. If the attacker sends the command to open valve VTP1175

from an unauthorized host such as the engineering workstation, then both the

process-aware IDS and the payload-based IDS will raise alerts. Our goal is to

group such alerts so that they can be displayed together to a security operator.

The alert from the payload-based IDS would allow the operator to incriminate

the engineering workstation and further investigate the source of the attack180

(by examining the workstation’s logs for instance). However, the payload-based

IDS alert can also be a false positive (a message not observed during learning).

Similarly, the opening of valve VTP1 might be a legitimate action or an action

with low incidence on the physical process. Using the alert raised by the phys-

ical process IDS, the operator can recognize that it is indeed an attack, and185

that given the current context of the physical process, opening valve VTP1 is

critical. Thus, the association of information from both the payload-based IDS
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and the physical process IDS allows the operator to gain precious time in the

characterization of the alerts.

3. Related Work190

Our work focuses on correlating alerts issued by heterogeneous IDSs mon-

itoring an ICS. Thus, we do not contribute to the detection phase, and we do

not evaluate the relative detection performances of the IDS. However, our cor-

relation approach uses data from various IDSs, relying on existing detection

algorithms. We develop a specific testbed to evaluate our correlation approach,195

which allows us to monitor both the network traffic and the physical process.

This section first presents the related work on alert correlation, which are the

closest works. Then we introduce the intrusion detection approaches that can

benefit from our correlation approach. Finally, we briefly mention the works that

proposed testbeds and datasets to evaluate intrusion detection and correlation200

approaches in the ICS domain.

3.1. Alert correlation

Overall, the main objectives of alert correlation approaches consist in :

• reducing the number of alerts by removing false positives and redundan-

cies,205

• grouping low-level alerts by reconstructing attack scenarios that afford

operators a higher-level view,

• giving scores of criticality to alert groups.

In this article, we are interested in the first objective.

There is a significant amount of literature on alert correlations in traditional210

IT systems, and several works proposed different classification models of cor-

relation approaches [18, 8, 19]. We can identify the following four-step general

architecture:
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1. preprocessing, i.e., alert normalization and enrichment;

2. verification;215

3. aggregation;

4. impact and priority analysis.

Raw alerts raised by the IDS often require some preprocessing to be an-

alyzed and compared in the following correlation steps. For instance, alerts

emitted by different IDS often use different formats and conventions. Thus, a220

normalization step is required to unify the syntax (i.e., the structure of the at-

tributes) [20, 21] and semantics (i.e., the meaning of the attributes) [20, 22, 21]

of the alerts. For instance, the works in [21, 20] rely on the IDMEF format 1

which defines a unified format that enables syntactic normalization.

In general, alert correlation approaches implicitly consider the normalization225

step [6]. However, this step is crucial for the correlation process [23]. In ICS,

normalization is even more challenging because alerts from the cyber and the

physical domains are characterized by radically different attributes. Addition-

ally, these alerts from different domains can carry complementary information,

as in the case of a process-oriented attack originating from the cyber domain.230

This heterogeneity limits the applicability of existing normalization approaches,

which cater either for syntactic variations in the representation of information

on the same attribute or the representation of the same information in different

attributes.

The previous remarks on the heterogeneity and complementarity of the in-235

formation carried by alerts coming from different domains of an ICS suggest

that our main objective is to enrich the information gathered from one do-

main with information from the other domain. In traditional alert correlation

approaches [7, 24, 25], alert enrichment objective is to add some missing con-

textual information. Enrichment approaches often rely on knowledge bases [26]240

1http://tools.ietf.org/html/rfc4765
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which might include information such as the system’s topology [24] and as-

sets [7]. In the same vein, the approach in [25] uses honeypot databases for

contextual information on malware propagation activity or the profile of web

servers in order to enrich IDS alerts.

However, these classical enrichment approaches suffer from the same bane245

as classical normalization approaches. Such enrichment solutions are possible

due to their confinement to a single domain where attributes are mainly homo-

geneous. For instance, while the approach in [25] aims at enriching local alerts

raised by IDS with global threat information available in honeypot databases,

all information belongs to the cyber domain and is represented using similar250

attributes (IP addresses, detection time, classification of attacks). In contrast,

information carried by physical domain alerts is represented in terms of widely

different attributes (actuator/sensor events and states) in comparison to infor-

mation within cyber domain alerts.

Alert verification consists in verifying and discarding alerts that are not255

pertinent for the system configuration [27]. For instance, alerts might refer

to attacks exploiting vulnerabilities not present in the system. Following the

classification in [27], verification approaches can be classified as either active

or passive. Active alert verification [27] dynamically looks for information to

determine the pertinence of an alert. On the other hand, passive alert verifi-260

cation [24] relies on a priori information gathered about the system, which is

possibly stored in formal knowledge bases such as M4D4 [26]. So far, verification

approaches geared towards ICS remain rare. As a preliminary step, the devel-

opment of knowledge bases for ICS that might support passive alert verification

has been studied in the literature [28, 29].265

Aggregation consists in reducing the number of alerts by grouping alerts

together into meta-alerts. For instance, alerts referring to the same attack can

be grouped into meta-alerts. The approaches which look for similarity between

alerts [30, 6] often rely on a direct comparison between common attributes

using different metrics. The aggregation of alerts can serve as a preliminary270

stage to identifying attack scenarios through the association of meta-alerts with
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elementary attack steps. This association can be based on a specification of the

expected attacks using, for instance, correlation rules [31], attack graphs [32]

or trees [33]. Attack reconstruction can also be performed by reasoning on

pre-conditions and post-conditions of elementary attack steps [34]. The above275

approaches assume that a subset of common attributes characterizes alerts to

define their similarity metrics. As argued previously, this means that a direct

application of these approaches in the context of ICS, where alerts coming from

different domains do not share attributes, is complex without a proper pre-

treatment step.280

Finally, the impact and priority analysis rank alert depending on criteria

such as the potential impact of attacks or the confidence in the IDS’s verdicts.

For instance, Briesemeister et al. [35] evaluate the priority of alerts in ICS

depending on the nature of the targeted components and the ICS zone where

the attacks are detected.285

In ICS, work on alert correlation remains scarce. Many works focus on the

last steps of correlation, i.e., identifying attack scenarios and prioritizing alerts.

For example, Briesemeister et al. proposed an approach to detect, correlate and

visualize multistep attacks [35]. Lanoe et al. [36] also proposed a rule-based

approach for attack-scenario reconstruction. Bayesian classification can also be290

used to identify predefined scenario attacks in the smart-grid domain [37].

Those approaches complement our work since they focus on reconstructing

multistep attacks. In contrast, we focus more on the first stage of the correlation

process, i.e., correlating single-step manifestations of attacks spanning the cyber

and physical domains. Normalizing and aggregating heterogeneous alerts is a295

crucial step before trying to identify more complex attack scenarios. Moreover,

our approach aggregates information from both the process and cyber domains,

which is crucial to better classify and prioritize those alerts in further correlation

steps.

Other approaches are limited in the types of alerts they can correlate [38, 39]300

or the information taken into account during the correlation process [40]. Feng

et al. combine different anomaly-based approaches to detect intrusions cite-
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Feng2017. However, they only combine physical-domain approaches. In [39],

an alert correlation for ICSs is proposed, but limited only to Windows logs and

network pattern-based alerts. In [40], the authors develop a statistical anomaly305

alert classification approach based on a hidden Markov model (HMM). Alerts

from different anomaly-based IDSs are reduced to a tuple of Boolean values,

where each position in the tuple is associated with an IDS. The HMM estimates

whether a tuple corresponds to an attack, a fault, or a normal behavior. In

contrast, our fusion approach takes full advantage of the information available310

in each alert’s attribute using a pre-processing phase.

3.2. Intrusion detection

Our correlation approach uses data from various intrusion detection systems

(IDS), relying on existing detection algorithms. We can identify two major de-

tection methods: anomaly-based and misuse-based. Anomaly-based approaches315

suppose that an intrusion can be detected by observing deviations from the

normal behavior of the monitored system. Misuse-based approaches rely on a

knowledge base of abnormal behavior, usually represented by attack signatures.

In general, misuse-base IDS use pattern matching algorithms to recognize sus-

picious actions.320

Compared to misuse-based intrusion detection, anomaly-based approaches

have been the focus of research efforts on intrusion detection in ICS. Indeed,

there is a widespread belief that ICS exhibit relatively stable behaviors due

to their fixed topologies and regular communication patterns [5]. This stable

behavior limits the numbers of false positives due to legitimate anomalies, i.e.,325

legitimate behaviors that were not present in the reference model. Moreover,

anomaly-based approaches can detect novel attacks. Misuse-based intrusion

detection efforts in the ICS domain have consisted mainly of building signature

databases such as those provided by Digital Bond 2.

The literature contains several examples of ICS-oriented IDS taxonomies [41,330

2https://github.com/digitalbond/Quickdraw-Snort
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42, 43, 40, 44]. By synthesizing these different taxonomies, we propose to clas-

sify ICS-specific IDS approaches based on the degree of knowledge that the IDS

has of the system’s interaction with the physical process. Thus, we distinguish

between cyber-domain intrusion detection approaches that only focus on the cy-

ber aspect of the ICS and physical-domain approaches that focus on the physical335

process.

3.2.1. Physical-domain approaches

Process-aware IDSs [45, 46, 47, 48, 49, 50] cover the physical domain of the

ICS. Given a model of the correct behavior of the physical process, a process-

aware IDS monitors the communications between sensors/actuators and Pro-340

grammable Logic Controllers (PLCs) while reporting anomalous deviations in

the evolution of process variables. They decide if the value applied to a process

variable may put the physical process in a critical state. For instance, an at-

tacker might issue commands to overflow a tank by opening a valve when the

tank is already full.345

Hadziosmanovic et al. associate a model for each variable depending on

its type in order to predict its next value [45]: an autoregressive model with

maximal and minimal bounds for continuous variables and a set of observed

values for discrete variables and constants. The IDS then raises an alert when

variables manifest abnormal behavior. Other works extract forbidden states [49]350

or legitimate behaviors [50] from manual specifications of the physical process.

Such specifications are often expressed in terms of interval values on measure

vectors. The IDS raises an alert when the current state reaches or approaches

a forbidden state.

In general, such approaches express constraints as simple conjunctions of as-355

signments to PLC registers with no notion of temporal order. Thus, the model

does not allow expressing rules over events, i.e., changes in the state of the ac-

tuators or sensors, or over temporal behaviors involving states and events. For

instance, one cannot express a rule that raises an alert if a valve is opened more

than 10 seconds after shutting down a motor. Expressing such rules requires360
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more expressive models based on trajectories instead of states. Moreover, those

approaches assume that the set of critical states can be manually determined in

advance. While such an assumption can be valid for small systems, manually

determining critical states for large systems can be daunting, with the risk of

missing some critical states. As a result, some approaches explored more ex-365

pressive formalisms, such as temporal logics [48, 47] or state-aware models [51].

For example, Koucham et al. infer temporal safety properties over the states of

sensors and actuators from legitimate traces [47]. Then, their IDS detects any

violation of such process specifications.

More recently, some works proposed to infer control invariants, i.e., re-370

lations between sensor readings and the concomitantly triggered PLC com-

mands [52, 53]. Similarly, Aoudi et al. proposed an anomaly-based technique

that is capable of detecting stealthy attacks by monitoring time series of sensor

measurements for structural changes in their behavior [54]. Those approaches

rely on a sufficiently expressive formalism to cover the sequential dynamics of an375

ICS. They automatically build the detection models through an inference phase

to alleviate the operators from the burden of manually specifying the models.

In contrast to the approaches that rely solely on cyber domain observations

to detect attacks targeting the physical process [3], process-oriented approaches

directly monitor the evolution of process variables. They are better suited to380

detect attacks targeting the physical process, such as Stuxnet [13] or CrashOver-

ride [55]. However, they cannot identify the cyber artifacts related to the attack

(e.g., the IP address of the station the attacker used to reconfigure the physical

process).

3.2.2. Cyber-domain approaches385

Cyber-domain IDSs analyze the network activity at a higher level. They

monitor data such as IP addresses, TCP/UDP ports, network flows or the syntax

of the network protocols.

Network monitoring approaches used in ICSs usually detect suspicious net-

work activities by analyzing network flows [1, 56]. The IDS first learns a safelist390
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of flows from legitimate network traffic, and then alerts any flow absent from

the safelist during detection. However, dynamic port allocation can lead to false

positives [1]. Moreover, an attack can correspond to a legitimate flow, leading to

false negatives if the attacker exploits devices and protocols that operators also

use for legitimate configuration of the physical process. Finally, an unknown395

flow does not provide enough information for a security operator to understand

its impact on the ICS physical process.

Telemetry-oriented approaches [57, 58] focus on building a base profile of

network exchanges using statistical measures or classification models. Such

approaches target a limited threat model, similarly to the flow-based approaches.400

They focus on attacks that lead to a significant observable deviation in the flow

statistics, such as denial of service [57, 58] or reconnaissance attacks [58]. Thus,

a telemetric approach would fail against more subtle and advanced attacks, such

as process-oriented attacks that only use a few commands to put the physical

process in a critical state.405

Payload-based IDS [2, 4, 59, 60, 3, 61] are protocol-specific anomaly-based

IDS that detect abnormal ICS protocol messages or sequences of messages.

Some of these approaches [2, 4] focus on the field values of each message.

For example, Düssel et al. create a reference model of each protocol message

using an n-gram approach [4]. Yuksel et al. build a more precise base profile410

by recording the distribution of the set of values taken by pre-selected message

fields (see Section 2 for a discussion of Modbus fields) [2]. Then, any message

whose field value differs significantly from the base profile is flagged as anoma-

lous during the detection phase. Contrary to flow-based and telemetry-based

approaches, those payload-based approaches can detect attacks using legitimate415

flows, e.g., a configuration command issued by a legitimate workstation. How-

ever, they can only detect significant deviations in the distribution of message

values (e.g., the occurrence of infrequent messages). They cannot detect attacks

relying on frequent messages. In such attacks, it is not the value of the message

that identifies the attack, but the fact that this message arrives in a particular420

context. Detecting those attacks implies to reason about the state of the system
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or the sequence of messages.

Some approaches also take into account dependencies between messages.

Cheung et al. focus on the Modbus protocol and explore an anomaly-based

approach that constrains the values taken by some fields (e.g., function code425

or protocol identifier) in a Modbus message [56]. Similarly, Lin et al. de-

velop an analyzer for the DNP3 protocol [62] which checks dependencies: (i)

within a single DNP3 message such as field lengths, and (ii) between differ-

ent DNP3 messages such as the occurrence of a response after each request.

While the dependencies on the protocol grammar in these works are limited to430

simple request-response constraints, some approaches go farther by inferring an

automaton model of the message exchanges[59, 60, 3, 61]. For example, the

detection method in [3] builds models of the network exchanges between a su-

pervisor and a controller to detect unknown command sequences, which might

reveal attacks on the physical process. However, to keep the models tractable,435

these approaches apply abstractions to the network messages, such as ignoring

sensor values. This simplification leads to inaccurate models that fail to capture

the state of the physical process and may generate false positives and missed

attacks.

A global issue of protocol-based approaches is the lack of information pro-440

vided by the alerts concerning the behavior at the physical process level. Since

no context is given about the state of the physical process when the variable is

accessed, the process operator faces difficulties in identifying whether the alert

corresponds to a false or true positive. However, these approaches are essential

to identify cyber-domain artifacts. Such artifacts could then be used to better445

analyze and respond to attacks. For example, the IP address or domain name

that issues the malicious commands can be correlated with a previous malware

infection and used to block any further attacks.

3.2.3. Cross-domain approaches

Some works [63, 40] cover multiple aspects of the above taxonomy. Such a450

broad coverage is motivated by the need to detect sophisticated attacks, identify
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accidental deviations, and reduce false positives. While the above approaches

explore the joint use of different intrusion detection approaches, the treatment of

alerts remains simplistic, leading to increased awareness of the need for alert cor-

relation. For example, the solution proposed by Zhou et al. includes knowledge455

of the physical process in terms of critical states [40]. However, the reduction

performed on the alerts discards information that would otherwise help the op-

erator understand the suspicious manifestations (e.g., impacted actuators or IP

addresses). Thus, an important and still unresolved issue facing approaches cov-

ering multiple aspects is the need to associate suspicious manifestations coming460

from both the cyber and the physical domains despite their disparity in terms of

attributes (actuator/sensor states and events in the physical domain, protocol-

based attributes in the cyber domain).

Our correlation approach receives inputs from separate IDSs, each one spe-

cific to a domain, and the resulting meta-alerts summarize the information465

from both domains. Our experimental evaluation used the following IDSs found

among the literature concerning intrusion detection: network flow IDS [1, 56],

payload-based IDS [2, 4], and process-aware IDS [47].

3.3. Testbeds and datasets

Conti et al. provide a comprehensive survey on the testbeds, and related470

datasets, developed to test IDS performances on ICS environments. [64]. How-

ever, we could not have directly exploited those datasets for our work because

we would have needed access to the control logic and the initial state of the logic

in the captures to perform the activity tracking required by the process-aware

IDS [47].475

4. Approach

We first present the workflow of our correlation approach and then discuss

each correlation stage using an illustrative example.
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Figure 2: Workflow of the correlation approach

4.1. System overview

Figure 2 shows the workflow of our proposed online correlation approach.480

At a high level, we distinguish between two blocks : a detection block and

a correlation block. The detection block contains a cyber-domain IDS and

a process-aware IDS. At runtime, these IDSs detect suspicious manifestations

and send alerts to the correlation block, which is the focus of this paper.

The heart of the correlation block consists of a loop in three stages.485

In the alert selection stage ( 1 ), the received alerts are inserted into activity-

specific alert windows. Alert windows limit the number of alerts considered for

correlation, which is particularly useful in online correlation. In our approach,

these alert windows are instantiated and terminated depending on the evolution

of the activities at runtime. The activity recognizer is responsible for notifying490

the correlator about the runtime context of the physical process (i.e, the ac-

tive steps within the activities). It tracks the current active steps using the

knowledge of the SFCs implemented in the PLCs and the evolution of the ac-

tuator and the sensor states. The activity recognizer is provided with the SFCs

executed by the PLCs and does not need to connect to the PLCs in order to495

obtain them. Similarily, it can directly monitor the evolution of the actuator

and the sensor signals without interacting with the PLCs. Thus, through the

activity recognizer, the correlator can be notified about the runtime context of

the physical process independently of the PLCs.
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In the pre-processing stage ( 2 ), the correlator transforms the alerts coming500

from different IDSs in first-order logic formulae so that they can be compared

for correlation. In particular, alerts from the physical domain are mapped to

the cyber domain given knowledge such as ICS protocol specifications and the

memory layout of process variables.

Finally, the fusion stage ( 3 ) tests whether alerts are correlated and keeps505

track of the correlations. Since alerts and their transformations are expressed

as first-order logic formulae, the correlator tests the compatibility of their at-

tributes by querying a satisfiability modulo theory (SMT) solver. Correlated

alerts are grouped into meta-alerts which can be presented to the security oper-

ator through a SIEM (Security Information and Event Management) software510

for instance. The meta-alerts contain references to the correlated alerts. Feed-

back about successful correlations is reported back to the alert selection policy.

This feedback can be used to select the next alerts to test for correlation (edge

from 3 to 1 ).

4.2. Alert selection515

The alert selection phase relies on an alert window and some predefined alert

selection policies to decide which alerts will be provided to the subsequent stages.

As the same attack may trigger alerts from different IDS at different times, an

important issue is the choice of the time windows length during which alerts are

selected for correlation. Since we perform correlation online, this window length520

cannot be bounded a priori. For instance, a network flow IDS will raise an alert

instantaneously when an unknown flow is detected, while a process-aware IDS

may wait for another event to decide the violation of security property. Due to

the limitations of the memory resources and the ever-increasing number of old

alerts to test against every new alert, our correlator cannot keep all the received525

alerts indefinitely. Classical online correlation approaches often rely on a time

sliding window whose size is heuristically selected in response to this issue. The

choice of a single optimal alert window size is difficult since an activity’s (i.e.,

a subprocess) duration can vary over time. If the alert window’s size is not
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adjusted to the activity, the correlator can miss activity-long manifestations of530

an attack.

In our example sub-process (Figure 1), maintaining the valve VTP1 open

causes violations to be raised by the physical process IDS throughout the activ-

ity, since VTP1 should only be manipulated at the beginning of this activity, i.e

when filling the tank. A sliding time window-based correlator would need to ad-535

just the window’s size to match the activity’s duration in order to collect all the

alerts relative to the attack. However, the transitions in an activity can depend

on other parts of the physical process (the influx of product P5 from another

subprocess) as well as on specific time conditions (such as running motor M2

for a certain amount of time). Moreover, an operator can also manipulate VT2540

to interrupt the flow of output product and thus impact the activity’s duration.

Consequently, the time spent in each activity is hard to predict.

To solve this issue, instead of setting a fixed alert window size, we adjust

the size of the window at runtime by monitoring the activation of steps in an

activity (recall from Section 2 that sequential control systems can be represented545

as combinations of activities). Depending on the number of steps taken into

account in the alert window, we introduce three alert selection policies:

• All alerts. In this simple policy, all the alerts from the activation of the first

step of the activity until the end of the activity are selected for correlation.

• Alerts in adjacent steps. This policy takes into account the intermediate steps550

within an activity. The correlator allocates a slot in the window for each step

in the activity. During runtime, the correlator inserts new alerts in the current

slot corresponding to the current active step in the activity. Only alerts that

occur within the last 2 slots are selected for correlation. The policy rests on

the assumption that alerts that occur in adjacent slots are more likely to be555

correlated than alerts belonging to distant slots.

• Adaptive alert selection. Instead of fixing a parameter for the number of rele-

vant neighboring slots, this policy uses the result of the previous correlations

to decide on the number of past neighboring slots to add. At first, the new
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alert is tested against the alerts in the current slot. Then, correlations are560

iteratively tested against earlier slots. If a correlation cannot be found within

a slot in an iteration, no alerts in earlier slots are tested. This policy al-

lows finding activity-long attacks by linking alerts from adjacent slots until

no further correlation is possible.

4.3. Alert pre-processing565

The alert pre-processing phase maps alerts from the physical process IDS

into cyber alerts. To illustrate the need for such a mapping, consider the attack

on the example subprocess in Figure 1. The process monitor ([47]) reports an

alert Apm concerning the forbidden opening (↑) of valve VTP1. The alert Apm

is expressed using the following list of attribute key-value pairs:

Apm : [(component,VTP1), (event, ↑)], (1)

where component and event are the attributes through which the monitor re-

ports the attack manifestation. If the attacker opens valve VTP1 by sending

a Modbus command from an engineering workstation with address Hew to the

PLC with address Hplc, then the Modbus actuator access monitor could raise

an alert Aam:

Aam : [(source IP, Hew), (destination IP, Hplc), (unit id, 0),

(protocol id, 0), (function code, 5), (address, 41), (data, 1)]
(2)

In this alert, the function code has the value 5 which refers to the mod-

ification of a single coil (1-bit variable). The value of the address attribute

corresponds to the mapping of actuator VTP1 in the PLC’s memory. For the

purpose of our example, VTP1 is mapped to address 41 and can be accessed

either through Modbus or SOAP/HTTP. Both information are given by the570

PLC’s configuration in terms of supported interfaces and memory mapping of

process variables which are specified during development time by an engineer.

We note that there are no common attributes between Apm and Aam. Each

alert comes from a monitor operating in a different domain, and they conse-

quently report alerts in terms of widely different attributes. It is impossible to
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directly compare the alerts without a pre-processing stage. The next observa-

tion is that Aam is only one possible manifestation of the attack in the cyber

domain. To achieve his objective, the attacker can select between different re-

quests that command the opening of VTP1. These requests can be detected

by the actuator access monitors but will result in alerts that vary in terms of

attributes and values. For example, consider the following two possible alerts :

A
′

am : [(source IP, Hew), (destination IP, Hplc), (unit id, 0),

(protocol id, 0), (function code, 15), (start address, 40),

(quantity, 3), (values, 010)]

A
′′

am : [(source IP, Hew), (destination IP, Hplc), (unit id, 0),

(protocol id, 0), (function code, 15), (start address, 41),

(quantity, 2), (values, 10)]

(3)

In this case, the attacker uses function code 15 which allows the modification of

multiple coils at a time. The start address, quantity and values give respectively

the offset, the quantity of coils to be modified, and the values to write. In each575

of A
′

am and A
′′

am, address 41 (corresponding to VTP1 ) is assigned the value

1. It is clear that, by further varying the start address, quantity and values

attributes, the attacker can generate a greater variety of Modbus commands

which lead to the opening of valve VTP1. The attacker could also have used

another protocol such as a SOAP/HTTP request, which further increases the580

possibilities. Thus, a straightforward transformation of alerts in attribute-value

pairs of a generic format like IDWG [65] is intractable due to the amount of

possibilities.

In general, we observe that, due to the possibilities through which an opera-

tor or an attacker can interact with a PLC to affect any given process variable,585

the physical domain and the network domain are linked through an abstrac-

tion relation. In the following we use the abstraction concept in the sense of

Knowledge Reformulation and Abstraction (KRA) [10]. For instance, an actu-

ator event such as the opening of valve VTP1 abstracts away from the partic-
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ular PLC interface (Modbus or SOAP/HTTP) or protocol variation (Modbus590

function code 5 or 15) that was used to modify the PLC’s memory variable

corresponding to VTP1.

The KRA model is a general abstract knowledge representation model not

specially designed for computer science (although partly inspired from procedu-

ral abstraction and concretion model presented in [9]). Also, the KRA model595

primarily aims for a bottom-up use i.e., abstracting concrete observations to

generic patterns. Roughly, this is achieved by hiding some attributes of the

observation or making the description less detailed. Using such an abstraction

process, we can abstract network actuator alerts described by formulas (2) and

(3) to the process-level alert described by formula (1). If O is an abstraction op-600

erator, then we can write Aam = OE(A′am) = OE(A′′am) and Apm = OH(Aam),

i.e., network alerts abstracts to Modbus alerts by attribute equivalence operator

OE and Modbus alerts abstracts to process alerts by attribute hiding operator

OH . However, abstracting all alerts at the process level is not suitable for cor-

relation purposes since we lose essential information concerning the source of605

attacks and application protocol used.

For our alert correlation needs, pre-processing has to map process-level alerts

to network level alerts. This alert enrichment process corresponds to a de-

abstraction or to a concretion process [9].

In the following, we extend the KRA model with concretion operators that610

will enrich the alerts. A concretion operator O−1
Π will concrete an abstract alert

Aabs to an alert that subsumes all the concrete alerts Acon that can abstract to

Aabs given the relation Π. For instance O−1
E (Aam) = A′am ∨ A′′am i.e. Modbus

alert Aam concrete to network alert A′am or A′′am.

4.4. Alert enrichment and concretion615

The enrichment process is depicted in Figure 3. The process takes as input a

physical process domain alert, expressed in terms of process domain attributes,

and outputs an enriched cyber domain alert expressed in terms of cyber domain

attributes. The heart of the enrichment consists of the successive application of
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three concretion operators: two attributes equivalence concretion operators ( 1620

, 2 ) and one attributes hiding concretion operator ( 3 ).

Figure 3: Overview of the alert enrichment process

Each concretion operator uses information from the ICS to perform its map-

ping. We now discuss each step in detail and we introduce the three concretion

operators. In order to illustrate the enrichment process, we use the process-

domain alert example described by formula (1).625

4.4.1. Step 1: Actuator mapping

The first step in the alert enrichment process is to map each actuator to

(i) the set of network addresses of the PLCs which control it, (ii) the protocols

which can be used to access the actuator on each PLC identified in (i), and

(iii) the address or identifier which is associated with the actuator for each

protocol and PLC identified in (ii). Let Π1 be an application that associates

each actuator with information (i), (ii) and (iii) above, i.e. :

{network address, protocol, variable address} Π1−−→ {component}. (4)

Then, the attributes equivalence concretion operator E−1
Π will map a

process-domain alert to the sum of all cyber-domain alerts that abstracts to the

process-domain alert by network attributes hiding.
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In the case of example 2.4, the actuator V TP1 can be accessed via two

different network interfaces with network addresses H1PLC and H2PLC using

Modbus/TCP, respectively SOAP/HTTP protocols. Thus, we can enrich the

process-domain alert from formula (1) as follow:

E−1
Π1

(Apm) : [(event, ↑) ∧ (((destip,H1PLC) ∧ (protocol,Mbus) ∧ (addr,M41))

∨((destip,H2PLC) ∧ (protocol, SOAP ) ∧ (var, bit41)))]

The mapping Π1 can be obtained from implementation specifications, PLC pro-630

grams, network traffic capture, and system cartography.

4.4.2. Step 2: Application protocol equivalence

The second step of the enrichment process is to associate events on actuators

with ICS protocol commands. For instance, to cause a rising edge (↑) of a

discrete actuator VTP1 using Modbus, an attacker can use either function code635

5 (writing a single coil) or 15 (writing multiple coils). This mapping is performed

through an attribute equivalence concretion operator E−1
Π2

.

To define Π2, we propose to characterize the actuator access commands using

three features: (i) the operation type, (ii) the variable type, and (iii) the variable

access mode. We discuss the details for the Modbus protocol but the procedure640

easily adapts to any other industrial protocols.

• Operation type: Specific or Generic. This corresponds to a type of opera-

tion to be performed on the actuator such as a read or a write operation.

Modbus allocates a specific field, called function code, to characterize the

operation (for instance, function code 5 for discrete outputs or 15 for645

multiples writes). However generic types may be encountered in other

protocols like Ethernet/IP.

• Variable type: Explicit or Implicit. The Modbus variable type is implied

by the operation (function code) but in other cases variable’s access loca-

tion is used (Ethernet/IP), or described by explicit fields like in the case650

of Manufacturing Message Specification (MMS).
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• Variable access mode: Address-based or Identifier-based. To refer to vari-

ables, Modbus uses addresses, while complex combinations of class, object

and attribute identifiers or symbolic identifiers are possible like in MMS.

In the case of address-based access, a variable address may be Enumerated655

(i.e. explicit address list) or identified by a Starting address and a Count

or an End address.

Note that the enrichment model is generic and expressive enough in order to

handle cases which are not covered by the above classification.

In our example, while Modbus used specific operations with implicit variable660

types and an enumerated or start-and-count addressing, the application proto-

cols fields combination that maps via Π2 to the Modbus event “set bit number

c” satisfies3:

((func, 5) ∧ (addr, c) ∧ (data, 1)) ∨

((func, 15) ∧ (startaddr ≤ c ≤ startaddr + count) ∧ (data[c− startaddr], 1))

4.4.3. Step 3: Cyber-domain protocol field completion

Eventually, we have to handle cyber-domain attributes which are irrelevant665

in the physical-domain like protocol specific fields (transaction id and proto-

col id for Modbus/TCP) and generic cyber-domain attributes like source net-

work address. The concretion operator H−1
Att is the concretion counter-pair of

and attribute hiding abstraction operation. The mapping Att is simply the list

of the protocol fields.670

4.5. Alert fusion

The alert fusion phase decides, for each new alert Anew and a set of previous

alerts Aold from the alert selection stage, the subset of Aold which are correlated

with Anew. The decision is performed for each pair of (pre-processed) alerts

3To simplify, we do not discuss in this paper the cases of 16 bits access operations which

can also be used to write process variables (i.e, function codes 6, 16, 22, 23). However, the

same approach still applies as in the case of function codes 5 and 15.
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(Anew, Aprev), Aprev ∈ Aold. On the basis of these pairwise correlations, the675

correlator constructs meta-alerts (clusters of alerts). Two alerts Ai and Aj

belong to the same meta-alert if either Ai, Aj are correlated, or if there exists

an alert Ak such that Ai, Ak and Ak, Aj are respectively correlated. Upon the

reception of a new alert, the correlator notifies the security operator about the

updated set of meta-alerts and the alerts belonging to each meta-alert. A meta-680

alert can be updated as long as one of its constituent alerts is present in an

alert window, i.e as long as it is selectable by an alert selection policy. The

security operator is informed about the lifetime of each meta-alert. Note that

meta-alerts can contain alerts from different alert windows.

To decide whether Anew and Aprev are correlated, we test, using a Satisfia-

bility Modulo Theories (SMT) solver, whether there is an assignment to all or

a subset of their common attributes which makes Anew ∧ Aprev true. However,

this constraint can be quite strong. For instance, if two Modbus payload-based

IDS alerts A1 and A2 report the same source, same destination, and are both

commands to override coils albeit with different function codes (5 and 15), we

would still like to fuse them since they might be symptomatic of an attacker

who uses different function codes for consecutive commands. Thus, a weaker

yet still interesting constraint might be:

A1.source IP = A2.source IP ∧A1.dest. IP = A2.dest. IP

∧A1.function code ∈WFC ∧A2.function code ∈WFC

where WFC is the set of Modbus write function codes.685

In general, weaker constraints are obtained by either: (i) partitioning the set

of values of a common attribute and checking whether the attribute’s values in

the pair of tested alerts belong to the same partition, (ii) ignoring a common at-

tribute. Examples of the first type of weak constraint include checking whether

source/destination addresses belong to the same network zone (control, supervi-690

sory, etc.) or whether the function codes refer to the same type of operations on

process variables (write, read, etc.). Information about the network’s topology

can be obtained either through the plant’s asset inventory databases or using
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passive asset discovery techniques [66], while the operation classes specific to

each protocol can be gathered from the protocol specifications if available, or695

through reverse engineering [67].

By default, the correlation is tested using the strongest constraint (equality

between all common attributes). If the correlation fails, we test with increasingly

weaker constraints by applying (i) then (ii) on the attributes shared by the

alerts that are compared. Note that the number of tested weak constraints is700

bounded since the set of common attributes is finite and the number of ways

a constraint on each attribute can be weakened is finite (using either (i) or (ii)

above). To avoid too weak correlations, the user can adjust two parameters:

(a) the maximum number of tested weak constraints, (b) a list of attributes

which cannot be ignored. Weak correlations are tested using a breadth-first705

search strategy starting from the strongest possible constraint and stopping

the search when no more constraint satisfying both (a) and (b) can be further

produced. The type of correlation (strong, weak through partitioning, weak

through hiding) is specified in the alert correlations received by the security

operator.710

5. Evaluation

To evaluate our approach, we need a sufficiently complex ICS. However, due

to privacy concerns, real data from operational plants is hard to obtain. As a

substitute, we develop a testbed with a complex physical process and a realistic

ICS architecture. This allows us to make our datasets, the system’s description715

and our implementation publicly available. Compared to most experimental

setups with publicly available datasets that can be found in the literature, our

testbed is either comparable4 or significantly more complex5.

29



Figure 4: Physical process used in our evaluation

5.1. Testbed Description

Our evaluation testbed consists of a hardware-in-the-loop setting including720

a simulation of the physical process shown in Figure 4. The process consists in a

chemical reaction to synthesize a product P10 from reactants in the silos S1 and

S2. These reactants are manufactured from initial products P1, P2, P3, and P4

in several stages. The chemical reaction and the production of reactants span

15 activities organized in sequential and parallel configurations. The physical725

process involves 71 sensors and actuators and has two modes: manual and

automatic. The manual mode allows the operators to carry interventions on

the process. Upon receiving a command for manual mode, the PLCs puts the

physical process in a stable condition by manipulating actuators. This physical

process is simulated using OpenModelica. Its parameters (tank dimensions,730

heating temperatures, mixture timing, etc.) are set so that the physical process

4https://itrust.sutd.edu.sg/dataset
5https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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undergoes several cycles during our simulations.

An ICS architecture with both control and supervisory levels, as shown in

Figure 5, steers the physical process. The architecture involves real components

found in operational ICS (i.e, PLCs, control servers, HMI, etc.). The control735

is distributed using three PLCs (Schneider M340, Schneider M580, and Wago

IPC-C6 with additional RTU 750-873). The control logics are implemented in

SFC. The Schneider M340 and Wago IPC-C6 PLCs support Modbus, while

the Schneider M580 PLC supports both Modbus and SOAP/HTTP. At the

supervisory level, an OPC-UA server polls data and relays commands to the740

PLCs. A supervisor HMI provides a global view of the state of the physical

process to the operators. Engineering workstations allow engineers to change

the control logics of the PLCs. Operators are not allowed to perform manual

operations from the engineering workstations.

Figure 5 also depicts the IDS placement within the ICS. The network flow745

IDS [1] covers the whole ICS traffic through a mirror port at the level of the

switch. The payload-based IDS [2] (PB1, PB2, and PB3) monitor the ICS trafic

(Modbus/TCP and SOAP/HTTP) reaching each PLC. Finally, the physical pro-

cess IDS [47] (PP1, PP2, and PP3) operate on the link between each PLC and

its local HMI. For practical purposes, we monitor the actuators/sensors signals750

on each PLC using the supervisory HMI traffic. However, the physical process

IDS can also directly monitor the communications between the sensors/actua-

tors and the PLC using an adequate tap.

5.2. Attacks and operator interventions

To evaluate our approach, we need to generate attack traffic. However,755

attacks depend strongly on the monitored system and, contrary to traditional IT

domains, no dataset with significant attacks targeting ICS is available. We, thus,

identify possible attacks on sequential control systems, taking into account real

attack cases [68, 16]. In particular, we are interested in process-oriented attacks

that depend on the state of the physical process. Examples of such attacks760

include sequence attacks where a malicious ordering of individually legitimate
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commands is used to put the physical process in a critical state.

We start by identifying critical states which the physical process must not

reach. This includes, for instance, overflowing tanks or injecting a bad product

mix. Then, we identify the sequence of actuator manipulations sufficient to put765

the physical process in each critical state. For example, we identify which valve

need to be opened to overflow a given tank. We then associate these actuator

manipulations with steps within the control logics executed by the PLCs. For

instance, opening a valve is performed in a step where the tank is full.

To allow for a diverse set of attacks, we specify three dimensions along which770

the attacks can vary : (i) the source of the attack, (ii) the duration of the attack,

and (iii) the protocols used to carry the attack.

The source of the attack can either be a host which is allowed to send com-

mands to PLCs (such as an HMI or an OPC server), or a host which is not used

for process operations (such as an engineering workstation). The duration of the775

attack varies depending on the number of steps in which actuator manipulations

are performed.

Finally, the attacker can alternates between several protocols (SOAP/HTTP

or Modbus) and use different operations within each protocol (Modbus with

function codes 5 or 15 for instance). To simulate manual legitimate operator780

interventions, we also associate command sequences to control steps. By con-

trast to the attacks, these command sequences do not put the physical process

in a critical state and are carried from authorized hosts.

5.3. Implementation

The IDS is implemented in C++/Python following their descriptions in the785

original papers [1, 47, 2]. We use Argus to recognize network flows, and rely

on Zeek to extract Modbus/TCP data from network traffic. The correlator

is implemented in Python. To test for satisfiability when applying the map-

ping rules to alerts, the correlator queries CVC4, an SMT solver, through the

PySMT library. The communication between PySMT and the SMT solver790

uses the SMTLib standard. Thus, any SMT solver supporting the standard
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and implementing the required theories can be used. To carry interventions,

we use either : (i) the Modbus client module in Metasploit which is queried

through its RPC interface, (ii) the OPC-UA server by means of the OPC-UA

Pythonopcua client, or (iii) SOAP/HTTP requests by means of Zeep SOAP795

client. All our correlation performance analysis is performed on an Intel Dual

Core i7 2.6 Ghz machine with 16 GB of RAM running Linux kernel 4.4.0. All

the developed code is open source (GPL licence) and available at http://lig-g-

ics.imag.fr/mediawiki/index.php/SourceCode

Figure 5: Simplified ICS architecture.

5.4. Datasets800

We base our evaluation on 5 network captures spanning a total of 62 hours.

To train the IDS base profiles, we use a 14 hour-capture free of any malicious

actions and containing 27 legitimate operator interventions. This dataset re-

flects realistic conditions where certain legitimate behaviors are absent due

to the limited training window. The number of activities’ executions in the805

training data ranges from 28 to 155 cycles. We also generate 4 network cap-

tures which contain attacks as described in Section 5.2. These network cap-

tures span a total of 48 hours during which 26 attacks and 98 legitimate op-
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erator interventions are carried. The datasets are available at http://lig-g-

ics.imag.fr/mediawiki/index.php/Datasets.810

6. Analysis

In this section, we present and analyze the results of our approach on the

traces described in Section 5.4. We first describe the metrics we use for the

evaluation and then we compare the results against a classical temporal window

correlation approach.815

Metrics. Our correlator links two alerts which are considered to be manifes-

tations of an operator or attacker’s intervention (i.e, sequence of commands).

Correlation errors happen either when two alerts which are not from the same

intervention are linked (incorrect correlation), or when two alerts which are from

the same intervention are not linked (missing correlation). To evaluate our cor-

relation approach with respect to these possible errors, we use the following two

metrics :

False correlation rate =
# incorrect correlations

# produced correlations

Missing correlation rate =
# missing correlations

# expected correlations
.

The false correlation rate (FCR) reflects the proportion of incorrect corre-

lations in the correlations produced by the correlator. The missing correlation

rate (MCR) represents the proportion of missing correlations in the number of

correlations expected to be produced by the correlator given the alerts. The

expected correlations can be computed since we have access to detailed infor-820

mation (time, protocols, target actuators, etc.) about the attacks and operator

interventions carried in the evaluation traces. When specifying these correla-

tions, we expect the correlator to group all side-effects of attacks. Such side

effects include commands sent by the attacker to put the PLCs in manual/au-

tomatic mode and any process violations that might be indirectly caused by the825

attacks. For both metrics, lower values reflect better correlation performance.
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In addition, we also evaluate the reduction in the number of alerts which are

sent to the operator after the correlation. This reduction is measured through

the following metric :

Reduction = 1− #meta-alerts + #uncorrelated alerts

#total alerts
.

While higher values of the reduction metric mean less alerts to handle for the se-830

curity operators, the reduction should still allow to distinguish between different

operator/attacker interventions, i.e by keeping a low FCR value.

Note that our performance metrics are classical for the evaluation of alert

fusion performance as presented in [8], for instance.

Results. To evaluate our approach, we compute the FCR, MCR and reduction835

metrics on the traces described in Section 5.4. We compare our results with a

fixed-size sliding window correlator. This correlator keeps a fixed size window

of old alerts and links each new alert with all alerts in the window. We compute

the metrics for different sizes of the temporal window. Table 1 summarizes the

results for both the activity-based and the temporal approaches. In this table,840

Pall, Padj and Pada refer to our activity-based approach using respectively the

all alerts in the activity, alerts in adjacent steps, and adaptive alert selection

policies discussed in Section 4.2. For the temporal correlator, T10s, T1m and

T5m refer respectively to window sizes of 10 s, 1 min and 5 min. In comparison,

an activity’s average duration is around 5 min and can range anywhere between845

1 and 18 min. We set the maximum temporal window size to 5 min to limit

false correlations on alerts belonging to multiple activities.

Overall, the results show that the activity-based approaches, in particular

the ones using policy Pall, achieve the best FCR and MCR scores with the

highest reduction in alerts across all traces.850

With regards to the FCR, since the temporal correlator links all alerts which

fall within the window without taking into account the compatibility of the

attributes, our approach performs better as expected.

For instance, the temporal correlator does not distinguish between alerts

35



relative to attacks on different PLCs. We also note that, in comparison with855

the temporal correlator, the activity-based policies achieve better or comparable

reduction results while still maintaining a low FCR. In fact, all false correlations

using the activity-based approaches involve rare cases of unknown OPC-UA flow

alerts that correspond to keep-alive messages.

With respect to the MCR, we observe that the activity-based approach with860

policy P-1 performs the best. In contrast, the temporal approaches perform

badly especially for small time windows. Even though fewer correlations are

missed by the temporal approach as the temporal window size gets bigger (T-

1m and T-5m), deciding on a specific time window size remains problematic.

For instance, a window size of 5 minutes captures all the expected correlations865

in Trace 3 but misses 37% of the expected correlations in Trace 1. Instead, the

results show that better performance can be achieved by following an activity-

based approach. The worse relative performance of the activity-based policies

Padj and Pada compared to Pall indicates that activity-long attack manifesta-

tions are not exclusively limited to adjacent slots and do not appear at each slot870

of the activity.

To illustrate this point, let us consider an attack which consists in overflowing

tank TK3 by manipulating valve VP3. The attacker uses both Modbus and

SOAP commands to put the PLC in manual mode and manipulate the valve.

This attack causes 6 physical process (PP) IDS alerts spread throughout the875

activity and 3 cyber-domain alerts from the SOAP and Modbus payload-based

(PB) IDS. In response to this attack, the activity-based approach with policy

Pall generates a meta-alert containing all of the aforementioned alerts. Figure

6 shows the correlation graph corresponding to the meta-alert. Nodes in the

graph refer to alerts, while edges refer to the correlations. Edge labels specify880

the strength of the correlations (strong or weak), which attributes are weakened

in case of a weak correlation, and the absolute reception time difference between

the correlated alerts in seconds. We observe that the absolute time difference

between alerts vary widely from 0 s to 546 s. Thus, depending on the selected

time window size, a subset of the alerts is successfully correlated by the temporal885
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approach. Note that all edges connected to node A19 have large time values.

In fact, A19 is recorded many steps after the initial cluster of alerts, thus the

alert selection policies Padj and Pada will also fail to capture it.
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Figure 6: Correlation graph of a long-term attack using the activity-based approach with

policy P-1

7. Conclusion

In this paper, we have developed an ICS-oriented correlation approach to890

link heterogeneous alerts from IDSs spanning both the cyber and the physical

domains. The main contributions rest on two aspects: the mapping of physi-

cal domain alerts to the cyber domain through abstraction operations, and the

definition of alert selection policies that take into account the runtime context

of the physical process. The evaluation of our approach on a complex physical895

process subject to process-oriented attacks has shown good correlation met-

rics compared to temporal-based correlators. A natural extension of this work

consists in reconstructing complex attack scenarios spanning multiple activities.
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Such reconstruction could rely on a joint security-safety analysis [69] to produce

the attack scenarios, and on the activity-specific meta-alerts generated by our900

approach to track the elementary attack steps.
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Table 1: Evaluation results

FCR (%)

Activity Temporal

Trace Pall Padj Pada 10s 1m 5m

N1 0 0 0 0 0 0

N2 0 0 0 12 9 11

N3 0 0 0 9 8 5

N4 2 2 2 1 15 21

MCR (%)

Activity Temporal

Trace Pall Padj Pada 10s 1m 5m

N1 0 21 21 75 36 37

N2 4 15 15 53 10 8

N3 0 15 34 62 34 0

N4 1 14 19 62 34 6

Reduction (%)

Activity Temporal

Trace Pall Padj Pada 10s 1m 5m

N1 32 22 88 36 61 61

N2 8 8 8 7 7 8

N3 84 81 79 65 70 78

N4 83 82 81 69 77 80
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