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In this article we study the lifespan and asymptotics (in the large rotation and stratification regime) for the Primitive system for highly ill-prepared initial data in critical spaces. Compared to our previous works, we simplified the proof and made it adaptable to the Rotating fluids system with highly ill-prepared initial data decomposed as a sum of 2D horizontal part and a very large 3D part. We also provide explicit convergence rates.

Introduction 1.Geophysical fluids

Geophysical fluids dynamics are influenced by two concurrent "forces": the Coriolis force (induced by the rotation of the Earth around its axis), and the vertical stratification of the density (induced by gravity) in a way that can be measured through the Rossby and Froude numbers, namely Ro and F r. The smaller they are, the more influent are these two forces. In this article we will consider, in the whole space, first the Primitive System (sometimes also called Primitive Equations) and seconds the Rotating fluids system, only considering the rotationnal effects.

Let us first introduce the Primitive system: we are interested by the regime where both phenomena are of the same scale (that is we choose Ro = ε and F r = εF with F > 0) and we will call ε the Rossby number and F the Froude number. The system is written as follows:

     ∂ t U ε + v ε • ∇U ε -LU ε + 1 ε AU ε = 1 ε (-∇Φ ε , 0), div v ε = 0, U ε|t=0 = U 0,ε . (P E ε )
The unknowns are on one hand

U ε = (v ε , θ ε ) = (v 1 ε , v 2 ε , v 3 ε , θ ε )
, where v ε denotes the velocity of the fluid and θ ε the scalar potential temperature (linked to the density, temperature and salinity), and on the other hand Φ ε , which is called the geopotential and gathers the pressure term and the centrifugal force. The diffusion operator L is defined by

LU ε def = (ν∆v ε , ν ∆θ ε ),
where ν, ν > 0 denote the kinematic viscosity and thermal diffusivity (both will be considered as viscosities). The last term ε -1 A gathers the rotation and stratification effects and the matrix A is defined by

A def =     0 -1 0 0 1 0 0 0 0 0 0 F -1 0 0 -F -1 0     .
The rotating fluids system is what we obtain if we only consider the velocity and neglect the last line and column of A, it is written as follows:

     ∂ t v ε + v ε • ∇v ε -ν∆v ε + e3∧vε ε = -∇p ε , div v ε = 0, v ε|t=0 = v 0 . (RF ε )
Both system are variations of the Navier-Stokes system, but each of them features a special structure brought by their respective limit systems as ε goes to zero: the QG/oscillating structure for (P E ε ), and the 2D-3D structure for (RF ε ). More details are given in the following parts. We will use the same notations as in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF]: for s ∈ R and T > 0 we define the space:

Ės T = C T ( Ḣs (R 3 )) ∩ L 2 T ( Ḣs+1 (R 3 )),
endowed with the following norm (For (P E ε ) ν 0 = min(ν, ν ), and for (RF ε ) ν 0 = ν):

f 2 Ės T def = f 2 L ∞ T Ḣs + ν 0 T 0 f (τ ) 2 Ḣs+1 dτ,
where H s (R 3 ) and Ḣs (R 3 ) respectively denote the inhomogeneous and homogeneous Sobolev spaces of index s ∈ R.

When T = ∞ we simply denote Ės and the corresponding norm is taken over R + in time.

1.2 Primitive system: strong solutions, limit system and QG/osc decomposition As emphasized in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], thanks to the skew-symmetry of A, the classical energy method used to study the Navier-Stokes system (based on L 2 or H s / Ḣs inner products) do not "see" the penalized terms and are easily adapted to System (P E ε ). In the present work we will only focus on the strong solutions provided by the Fujita-Kato theorem: for any fixed ε > 0, if U 0,ε ∈ Ḣ 1 2 there exists a unique local-in-time strong solution, U ε , defined on [0, T * ε [ and such that for any

T < T * ε , U ε ∈ Ė 1 2
T . Note that the solution is global (that is T * ε = +∞) when the initial norm U 0,ε Ḣ 1 2 is bounded by cν 0 for some small c > 0. Let us also recall the following blow up criterion: if the lifespan T * ε is finite then:

T * ε 0 ∇U ε (τ ) 2 Ḣ 1 2 (R 3 ) dτ = ∞. (1.1)
Moreover, if in addition U 0,ε ∈ Ḣs (for some fixed s ∈] -3 2 , 3 2 [) then we can propagate the regularity as done for the Navier-Stokes system: U ε ∈ E s T for any T < T * ε . All these results are true wether F = 1 (non-dispersive regime, we refer to [START_REF] Chemin | A propos d'un problème de pénalisation de type antisymétrique[END_REF][START_REF] Charve | Global well-posedness and asymptotics for a penalized Boussinesq-type system without dispersion[END_REF]) or F = 1 (dispersive regime).

In the present work, for a fixed F = 1, our interest is to study the convergence (and obtain convergence rates) when ε goes to zero (that is for fast rotating and highly stratified systems) in the case of ill-posed large initial data (see below for more details).

We refer to [START_REF] Chemin | A propos d'un problème de pénalisation de type antisymétrique[END_REF][START_REF] Charve | Convergence of weak solutions for the primitive system of the quasi-geostrophic equations[END_REF][START_REF] Charve | Global well-posedness and asymptotics for a geophysical fluid system[END_REF][START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] for studies of the limit system as the small parameter ε goes to zero and we will only recall here that this limit system is a transport-diffusion system coupled with a Biot-Savart inversion law and is called the 3D Quasi-geostrophic system:

∂ t Ω QG + v QG .∇ Ω QG -Γ Ω QG = 0, U QG = ( v QG , θ QG ) = (-∂ 2 , ∂ 1 , 0, -F ∂ 3 )∆ -1 F Ω QG , (QG) 
where we set

∆ F = ∂ 2 1 + ∂ 2 2 + F 2 ∂ 2 3
, and the operator Γ is defined by:

Γ def = ∆∆ -1 F (ν∂ 2 1 + ν∂ 2 2 + ν F 2 ∂ 2 3 ),
The quantity

Ω QG = ∂ 1 v 2 QG -∂ 2 v 1 QG -F ∂ 3
θ QG is called the potential vorticity and led by this limit system we introduce the following decomposition. Let U = (v, θ) be a 4-dimensional vectorfield, we first define its potential vorticity Ω(U ):

Ω(U ) def = ∂ 1 v 2 -∂ 2 v 1 -F ∂ 3 θ,
then its orthogonal decomposition into its quasi-geostrophic and oscillating (or oscillatory) parts (in the same spirit as the Leray or Helmholtz decompositions):

U QG = Q(U ) def =     -∂ 2 ∂ 1 0 -F ∂ 3     ∆ -1
F Ω(U ), and U osc = P(U

) def = U -U QG . (1.2)
Definition 1 We will say that a vectorfield with four components U is quasi-geostrophic when U = QU , and oscillating (or oscillatory) when U = PU .

We refer to [START_REF] Chemin | A propos d'un problème de pénalisation de type antisymétrique[END_REF][START_REF] Charve | Convergence of weak solutions for the primitive system of the quasi-geostrophic equations[END_REF][START_REF] Charve | Global well-posedness and asymptotics for a geophysical fluid system[END_REF][START_REF] Charve | Asymptotics and lower bound for the lifespan of solutions to the Primitive Equations[END_REF][START_REF] Charve | Global well-posedness and asymptotics for a penalized Boussinesq-type system without dispersion[END_REF][START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF]) for more properties of the associated orthogonal projectors Q and P. In particular System (QG) can be rewritten into:

     ∂ t U QG + Q( v QG .∇ U QG ) -Γ U QG = 0, U QG = Q( U QG ), U QG|t=0 = U 0,QG .
(QG)

Not only can we adapt the Leray and Fujita-Kato theorems to System (QG), but this system also enjoys more "2D"-features as described in Theorem 14 from [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF] (see also [START_REF] Charve | Global well-posedness and asymptotics for a geophysical fluid system[END_REF][START_REF] Charve | Global well-posedness for the primitive equations with less regular initial data[END_REF][START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF]): if we make additional low-frequency assumptions, namely U 0,QG ∈ H 1 2 +δ , we obtain global existence in Ė0 ∩ Ė 1 2 +δ (see below for this notation) without any smallness condition on the initial data. In the present article we only assume that U 0,QG ∈ Ḣ 1 2 ∩ Ḣ 1 2 +δ , and in this case we only rely on the classical Fujita-Kato theorem that we state here in a form including the regularity propagation property (and without assumptions on ν, ν > 0): Theorem 1 For any U 0,QG ∈ Ḣ 1 2 (R 3 ), there exists a maximal lifespan T * QG > 0 and a unique solution

U QG ∈ Ė 1 2
t for all t < T * QG . Moreover

• There exists c 0 > 0 such that if U 0,QG Ḣ 1 2 ≤ c 0 min(ν, ν ) then T * QG = +∞ and for any t ≥ 0, U QG (t) 2 Ḣ 1 2 + min(ν, ν ) t 0 U QG (τ ) 2 Ḣ 3 2 dτ ≤ U 0,QG 2 Ḣ 1 2 .
• We have the following blow-up criterion:

T * QG 0 U QG (τ ) 2 Ḣ 3 2 dτ < +∞ =⇒ T * QG = +∞.
• Finally, if for some s ∈] - 

U QG (t) 2 Ḣs + min(ν, ν ) t 0 U QG (τ ) 2 Ḣs+1 dτ ≤ U 0,QG 2 Ḣs e C min(ν,ν ) t 0 U QG (τ ) 2 Ḣ 3 2 dτ .
Going back to System (P E ε ), we introduce Ω ε = Ω(U ε ), and the usual procedure is then to study separately U ε,QG = Q(U ε ) and U ε,osc = P(U ε ). We also decompose the initial data into its oscillating and quasi-geostrophic parts: U 0,ε = U 0,ε,osc + U 0,ε,QG . We will assume that the QGpart converges to some quasi-geostrophic vectorfield U 0,QG , and that the oscillating part is very large (in terms of the Rossby number ε) we say that such an initial data is ill-prepared. We refer to [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] for a small survey concerning recent results about this system and to [START_REF] Chemin | A propos d'un problème de pénalisation de type antisymétrique[END_REF][START_REF] Babin | Strongly stratified limit of 3D primitive equations in an infinite layer[END_REF][START_REF] Charve | Convergence of weak solutions for the primitive system of the quasi-geostrophic equations[END_REF][START_REF] Charve | Asymptotics and lower bound for the lifespan of solutions to the Primitive Equations[END_REF][START_REF] Charve | Global well-posedness and asymptotics for a penalized Boussinesq-type system without dispersion[END_REF][START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF] for more details.

In the present article, we ask from now on that F = 1 and mainly focus on the case ν = ν (we will sometimes make remarks about the results in the case ν = ν ) to extend our results for less regular initial data. More precisely, in the continuity of [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], we are interested in showing that for very large ill-posed, and less regular, initial data, we are still able to show that the solutions of (P E ε ) converge to the solution of (QG), and provide a convergence rate according to the following sketchy statement: Theorem 2 (Rough statement of the results) For large ill-posed initial data in

Ḣ 1 2 ∩ Ḣ 1 2 +δ
(initial oscillating part of size ε -γ ) the lifespan T * ε can be made as close to T * QG as desired provided that the Rossby number ε is small enough. Moreover, we show that |D| β (U ε -U QG ) L 2 L ∞ is of size ε β for some small β, β > 0. We can reach β = 0 with additional low frequency assumptions on the initial data.

We also simplified the proofs so that we can adapt them to prove similar results for the case of the Rotating fluids system.

Primitive system: auxiliary systems and statement of the results

As in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], we will not be able to estimate directly U ε -U QG and will need to introduce auxiliary systems that will also help us stating our results. With the usual notation, for f :

R 3 → R 4 , f • ∇f = 3 i=1 f i ∂ i f , let
us first rewrite (QG) as follows:

∂ t U QG -Γ∆U ε + 1 ε PA U QG = -P( U QG .∇ U QG ) + G, U QG|t=0 = U 0,QG . (QG)
where G is the following divergence-free and potential vorticity-free vectorfield defined as

G = G b + G l def = PP( U QG .∇ U QG ) -F (ν -ν )∆∆ -2 F     -F ∂ 2 ∂ 2 3 F ∂ 1 ∂ 2 3 0 (∂ 2 1 + ∂ 2 2 )∂ 3     Ω QG . (1.3)
In [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], we then considered the solution W ε of the following linear system :

∂ t W ε -Γ∆W ε + 1 ε PAW ε = -G, W ε|t=0 = U 0,ε,osc .
(1.4)

In the present paper the fact that we only assume U 0,QG ∈ Ḣ 1 2 ∩ Ḣ 1 2 +δ makes a major difference as the term G is now much less handy to manipulate (not L 1 in time anymore, more details below), which suggests to split W ε as follows

W ε = W h ε + W inh ε with: ∂ t W h ε -Γ∆W h ε + 1 ε PAW h ε = 0, W h ε |t=0 = U 0,ε,osc , and 
∂ t W inh ε -Γ∆W inh ε + 1 ε PAW inh ε = -G, W inh ε |t=0 = 0, (1.5)
each one with a different behaviour and requiring different Strichartz estimates as outlined in Proposition 2 below. From now on, we switch to the case ν = ν , inducing the following simplifications: the non-local operator Γ turns into ν∆ and G = G b (we refer to [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] for more details). Next, we define

δ ε = U ε -U QG -W h ε -W inh ε ,
and focus on the system it satisfies, that we write here:

     ∂ t δ ε -ν∆δ ε + 1 ε PAδ ε = 10 i=1 F i , δ ε|t=0 = U 0,ε,QG -U 0,QG , (1.6) 
with:

               F 1 def = -P(δ ε • ∇δ ε ), F 2 def = -P δ ε • ∇( U QG + W inh ε ) , F 3 def = -P ( U QG + W inh ε ) • ∇δ ε , F 4 def = -P(δ ε • ∇W h ε ), F 5 def = -P(W h ε • ∇δ ε ), F 6 def = -P( U QG • ∇W inh ε ), F 7 def = -P ( U QG + W inh ε ) • ∇W h ε , F 8 def = -P W h ε • ∇( U QG + W inh ε ) F 9 def = -P W inh ε • ∇( U QG + W inh ε ) , F 10 def = -P(W h ε • ∇W h ε ).
(1.7) Let us state our first result: Theorem 3 (No smallness assumption) Assume F = 1 and ν = ν and let T * QG and T * ε be the lifespan of U QG and U ε as introduced previously.

For any T < T *

QG , C 0 ≥ 1, δ ∈]0, 1 6 ] and any α 0 > 0, there exist ε T , m T > 0 and D T ≥ 1 (depending on F, ν, C 0 , δ, α 0 and T ) such that for all ε ∈]0, ε T ] and all divergence-free initial data U 0,ε = U 0,ε,QG + U 0,ε,osc ∈ Ḣ 1 2 ∩ Ḣ 1 2 +δ satisfying the following assumptions:

• (H 1 ) There exists a quasi-geostrophic vectorfield U 0,QG ∈ Ḣ 1 2 ∩ Ḣ 1 2 +δ such that U 0,ε,QG -U 0,QG Ḣ 1 2 ∩ Ḣ 1 2 +δ ≤ C 0 ε α0 , U 0,QG Ḣ 1 2 ∩ Ḣ 1 2 +δ ≤ C 0 . • (H 2 ) U 0,ε,osc Ḣ 1 2 +δ ≤ m(ε)ε -δ 2 , with 0 < m(ε) ≤ m T ,
we have T * ε > T and with W h ε , W inh ε and δ ε defined as previously,

δ ε Ė 1 2 T ≤ D T max(ε α0 , ε δ 2 , m(ε)).

For any

T < T * QG , C 0 ≥ 1, δ ∈]0, 1 6 ], γ ∈]0, δ 2 [ and any α 0 > 0, if η 0 = 1 2 (1 -2γ δ ) (or equivalently γ = (1 -2η 0 ) δ 2 )
, there exist ε T > 0 and D T ≥ 1 (depending on F, ν, C 0 , δ, α 0 , γ, and T ) such that for all ε ∈]0, ε T ] and all divergence-free initial data U 0,ε = U 0,ε,QG + U 0,ε,osc ∈ Ḣ 1 2 ∩ Ḣ 1 2 +δ satisfying (H 1 ) and:

• (H 3 ) U 0,ε,osc Ḣ 1 2 +δ ≤ C 0 ε -γ , then the following results are true: (a) T * ε > T and for all s ∈ [ 1 2 , 1 2 + 2η 0 δ[, we have δ ε Ės T ≤ D T ε min α0, δ 2 -γ+ 1 2 ( 1 2 -s) = D T ε min α0, 1 2 ( 1 2 +2η0δ-s) . (1.8) 
(b) Moreover if, in addition, there exists c ∈]0, 1[ (assumed to be close to 1) such that

• (H 4 ) U 0,ε,osc Ḣ 1 2 +cδ ∩ Ḣ 1 2
+δ ≤ C 0 ε -γ , then we can get rid of the oscillations: for all η ∈]0, 2η 0 [, for all η ∈]0, min(η, c)[, if ε ∈]0, ε T ] (ε T and D T now also depend on c, η, η ) then:

|D| η δ (U ε -U QG ) L 2 T L ∞ ≤ D T ε min α0,(η0-η 2 )δ .
(c) Finally, with more low-frequency regularity on the initial oscillating part, that is

• (H 5 ) U 0,ε,osc , U 0,ε,QG , U 0,QG ∈ Ḣ 1 2 -δ ∩ Ḣ 1 2 +δ , U 0,ε,osc satisfies (H 4 )
, and (H 1 ) is modified as follows:

U 0,ε,QG -U 0,QG Ḣ 1 2 -δ ∩ Ḣ 1 2 +δ ≤ C 0 ε α0 , U 0,QG Ḣ 1 2 -δ ∩ Ḣ 1 2
+δ ≤ C 0 , then for any T < T * QG and any k ∈]0, 1[ (as close to 1 as we wish), if ε ≤ ε T then (1.8) can be extended, for all s ∈ [ 1 2 -ηδ, 1 2 [ (with 0 < η < 2η 0 ) into:

δ ε Ės T ≤ D T ε min α0, 1 2-s kη0δ, 1 2 ( 1 2 +2η0δ-s) ,
and finally, we have for all ε ≤ ε T :

U ε -U QG L 2 T L ∞ ≤ D T ε 1 2 (min(α0, 2 3 kη0δ)+min(α0,kη0δ)) ,
Two immediate extensions can be proved:

Theorem 4 (Smallness assumption) If (H 1 ) is supplemented with U 0,QG Ḣ 1 2 ≤ c 0 ν, the previous theorem can be expressed as in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], that is the estimates becomes uniform in time, the constants D T become universal constants B 0 , "T * ε > T " becomes "T * ε = +∞" and there is no mention to some T < T * QG anymore. Finally, when ν = ν the result can also be generalized:

Theorem 5 (Extension of Theorem 21 from [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF], ν = ν ) Replacing Assumption (1) by (H 1 ) but keeping (2) for the oscillating part, allows to extend the result when ν = ν for both small and large U 0,QG Ḣ 1 2 . Remark 1

1. Proving the last result requires an adaptation of the Strichartz estimates from [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF] similar to what we did in [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] and in the present paper in order to improve the condition r > 4 into r > 2. The low frequency assumption (2) has to be kept because of truncation arguments.

2. We tried to simplify the statement of the result from Points 2.b and 2.c compared to [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF].

Remark 2 As we explained, Theorems 3 and 4 are in fact valid for any δ < 1 4 (and the last bound becomes D T ε min(α0,kη0δ) ). We can prove it with the arguments from [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] featuring non-local 3D-fractional derivation operators that are adapted neither to anisotropic estimates, nor to 2D-3D products involved in the rotating fluids case. This is why we present here a simplified version of the proof, only holding when δ ≤ 1 6 , but adapted to prove the corresponding results for the rotating fluids system, which is the object of the following part. The bound for δ in Theorem 5 is much smaller, as in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF].

Rotating fluids: auxiliary systems and statement of the results

As outlined in [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF][START_REF] Chemin | Fluids with anisotropic viscosity, Special issue for R. Temam's 60th birthday[END_REF][START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF], if v 0 belongs to L 2 (R 3 ) or Ḣ 1 2 (R 3 ) the Leray and Fujita-Kato theorems can be easily adapted but these energy methods fitted to the generic Navier-Stokes system do not take advantage of the special 2D structure induced by strong rotation (when the Rossby number ε is small).

Moreover, when we consider a more physically relevant initial data of the form v 0 (x) = v 0 (x h , x 3 ) = ū0 (x h ) + w 0 (x) (where x h = (x 1 , x 2 ) denotes the horizontal variable, and both parts have three components and are divergence-free), the previous results have to be adapted and Chemin, Desjardins, Gallagher and Grenier (we refer to [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF][START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF]) first introduce, as a candidate for the limit of the solutions of System (RF ε ) when ε goes to zero, (ū, p) = (ū, p)(x h ) solving the following 2D-Navier-Stokes system (but with three components) :

     ∂ t ū + ū • ∇ū -ν∆ū = -∇p, div ū = 0, ū|t=0 = ū0 . (2D -N S)
This system can be rewritten as follows (with ū = (ū h , ū3 ) and the convention that operators acting only on the horizontal variable are written ∇ h , div h and ∆ h )

         ∂ t ūh + ūh • ∇ h ūh -ν∆ h ūh = -∇ h p, ∂ t ū3 + ūh • ∇ h ū3 -ν∆ h ū3 = 0, div h ūh = 0, ū|t=0 = ū0 . (2D -N S)
The fact that there are three components does not change the result compared to the classical 2D-Navier-Stokes system, and we refer to [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF][START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF], for the following result:

Theorem 6 Let ū0 ∈ L 2 (R 2 ) 3 such that div h ū0,h = ∂ 1 ū1 0 + ∂ 2 ū2 0 = 0.
There exists a unique global solution ū ∈ Ė0 (R 2 ) 3 . Moreover this solution belongs to C(R + , L 2 (R 2 )) and satisfies the equality:

1 2 ū(t) 2 L 2 + ν t 0 ∇ū(τ ) 2 L 2 dτ = 1 2 ū0 2 L 2 .
Then Chemin, Desjardins, Gallagher and Grenier study the following modified Navier-Stokes-type system (formally resulting from considering w ε = v ε -ū and putting the rotation term involving ū in the pressure gradient):

     ∂ t w ε + w ε • ∇w ε + w ε • ∇ū + ū • ∇w ε -ν∆w ε + e3∧wε ε = -∇q ε , div w ε = 0, w ε|t=0 = w 0 . (P RF ε )
Note that as emphasized for System (P E ε ), the rotation term disappears when performing any inner product in L 2 or a Sobolev space, and the real difference comes here from the additional transport terms which involve products of 2D and 3D functions that require the following Sobolev product laws:

Proposition 1 There exists a constant C > 0 such that for any s, t < 1 with s + t > 0 and any u ∈ Ḣs (R 2 ), v ∈ Ḣt (R 3 ), then uv ∈ Ḣs+t-1 (R 3 ) and we have:

uv Ḣs+t-1 (R 3 ) ≤ C u Ḣs (R 2 ) v Ḣt (R 3 ) .
Then they obtain the Leray and Fujita-Kato theorems for a fixed ε: Theorem 7 ( [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF][START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF]) Let ū0 ∈ L 2 (R 2 ) 3 and let ū be the associated global solution of System (2D -N S). If w 0 ∈ L 2 (R 3 ) with div w 0 = 0 there exists a global weak Leray solution w ε ∈ Ė0 to System (P RF ε ) satisfying for all t ≥ 0:

w ε (t) 2 L 2 + ν t 0 ∇w ε (τ ) 2 L 2 dτ ≤ w 0 2 L 2 e C ν 2 ū0 2 L 2 .
Moreover, this solution converges to 0 (that is v ε converges to ū) in the sense that for any q ∈]2, 6[ and any T ≥ 0, we have

lim ε→0 T 0 w ε (τ ) 2 L q (R 3 ) dτ = 0.
The product laws also make it possible to adapt the Fujita-Kato theorem to this modified 3D-Navier-Stokes system:

Theorem 8 Under the same notations:

• If w 0 ∈ Ḣ 1 2 (R 3
) with div w 0 = 0, there exists a unique local strong (Fujita-Kato) solution w ε defined on some [0, T * ε [ and for any t < T * ε ,

w ε ∈ Ė 1 2
t . • Moreover we also have the same blow-up criteria as for Navier-Stokes as well as regularity propagation when in addition w 0 ∈ Ḣs for some s ∈] -

3 2 , 3 2 [. • Finally there exists c 0 > 0 and C = C(ν, ū L 2 ) such that if w 0 Ḣ 1 2 ≤ c 0 ν then T * ε = +∞ and w ε Ė 1 2 ≤ C w 0 Ḣ 1 2 .
This allows to construct v ε = w ε + ū that solves (RF ε ) with the classical Navier-Stokes tools but more can be done when taking advantage of the special features brought by strong rotation and more precisely by the dispersive properties featured by the following system (P still denotes the classical Leray projector on divergence-free vectorfields):

∂ t W ε -ν∆W ε + 1 ε P(e 3 ∧ W ε ) = 0, W ε|t=0 = w 0 . (LRF ε )
The authors prove Strichartz estimates (see Proposition 9) and obtain the following global existence result: 3 (both of them divergence-free). There exists ε 0 > 0 such that for all ε ∈]0, ε 0 ], there is a unique global solution v ε to System (RF ε ) which satisfies (where ū and W ε are the respective unique solutions of (2D -N S) and (LRF ε )):

Theorem 9 ([16, 18]) Let v 0 = ū0 + w 0 with ū0 ∈ (L 2 (R 2 )) 3 and w 0 ∈ ( Ḣ 1 2 (R 3 ))
• w ε = v ε -ū solves (P RF ε ) in the space C 0 b (R + , Ḣ 1 2 ) ∩ Ė 1 2 , • v ε -ū -W ε Ė 1 2 -→ ε→0 0.
Remark 3 1. The result does not require any smallness from the initial data (but of course, ε 0 is taylored depending on the size of the initial data.) 2. In [START_REF] Chemin | Fluids with anisotropic viscosity, Special issue for R. Temam's 60th birthday[END_REF] the authors extend their result in the case of anisotropic viscosity (and possible zero vertical viscosity).

In the second part of this article, we wish to extend this result in the spirit of what we did with System (P E ε ), considering initial data that depend on ε and are ill-posed in the sense that their norm blow-up when ε goes to zero. Asking small extra-regularity allows us to prove in this case global existence of solutions and exhibit an explicit convergence rate as a power of the Rossby number. This is the aim of the following result:

Theorem 10 1. For any C 0 ≥ 1, δ ∈]0, 1 4 ], c, k ∈]0, 1[ (as close as we wish to 1) and

γ ∈]0, δ 2 [, if η 0 = 1 2 (1 -2γ δ ) (put differently γ = (1 -2η 0 ) δ 2 )
, there exists ε 0 > 0 and D 0 ≥ 1 (depending on ν, C 0 , δ, c, k, γ) such that for all ε ∈]0, ε 0 ] and all initial data

v 0 = ū0 + w 0,ε with ū0 ∈ (L 2 (R 2 )) 3 and w 0,ε ∈ ( Ḣ 1 2 (R 3 ) ∩ Ḣ 1 2 +δ (R 3 
)) 3 (both of them divergence-free) satisfying:

• (H 2 ) w 0,ε Ḣ 1 2 +cδ ∩ Ḣ 1 2 +δ ≤ C 0 ε -γ , then T * ε = +∞ and for all s ∈ [ 1 2 , 1 2 + 2η 0 δ[ we have: δ ε Ės ≤ D 0 ε k( 1 2 +2η0δ-s) .
(1.9)

2. Moreover we can get rid of the oscillations: for all η ∈]0, 2η 0 [, η ∈]0, min(η, c)[, we have for all ε ∈]0, ε 0 ] (ε 0 , D 0 now also depend on η, η )

|D| η δ w ε L 2 L ∞ = |D| η δ (v ε -ū) L 2 L ∞ ≤ D 0 ε kδ(η0-1 2 η ) .
3. Finally, if we ask more low-frequency regularity on the initial 3D-part, that is

w 0,ε ∈ Ḣ 1 2 -δ ∩ Ḣ 1 2 +δ and still satisfies (H 2 ), then when s ∈ [ 1 2 -ηδ, 1 2 [ (with 0 < η < 2η 0 min 1, 1 k -1 ) (1.9) becomes for all ε ∈]0, ε 0 ]: δ ε Ės ≤ D 0 ε k 2(2-s) ( 1 2 +2η0δ-s) ,
and we have:

w ε L 2 L ∞ = v ε -ū L 2 L ∞ ≤ D 0 ε 5 6 kη0δ .
Remark 4 1. Note that Point 2. is slightly better than Point 2.b from Theorem 3.

2. Our result also generalizes the works from [START_REF] Hieber | The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework[END_REF][START_REF] Iwabuchi | Ryo Global solutions for the Navier-Stokes equations in the rotational framework[END_REF][START_REF] Iwabuchi | Ryo Dispersive effect of the Coriolis force and the local wellposedness for the Navier-Stokes equations in the rotational framework[END_REF][START_REF] Koh | Dispersive estimates for the Navier-Stokes equations in the rotational framework[END_REF] as they consider initial data with only 3D part (here the limit is zero, the solution of System (2D -N S) with ū0 = 0) and [START_REF] Lee | Dispersive estimates for the stably stratified Boussinesq equations[END_REF][START_REF] Iwabuchi | Global solutions for the incompressible rotating stably stratified fluids[END_REF] which only consider small initial QG-part in the critical space.

3. Let us mention [START_REF] Dutrifoy | Examples of dispersive effects in non-viscous rotating fluids[END_REF] devoted to the Euler-Coriolis system, with initial data also decomposed as a sum of a 2D and a 3D functions.

This article will be structured as follows: we begin with energy estimates for W inh ε and W h ε . Then we focus on the proof of Theorems 3 and 10. We postponed to the appendix the proofs of the new Strichartz estimates: first the one needed to deal with W inh ε and then the anisotropic Strichartz estimates for W ε . An important feature of the present article is that the proof we present here is much simpler than in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] as we do not resort to non-local fractional derivatives operators, but this simpler method is valid for a narrower range for δ (when δ ≤ 1 6 whereas we can reach δ < 1 4 with the arguments from the cited article). For the sake of conciseness we will only focus on what is new and will often refer to [START_REF] Charve | Global well-posedness and asymptotics for a geophysical fluid system[END_REF][START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] about the quasi-geostrophic structure, and to [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF][START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF] for the rotating fluids. We also give minimal details about the Littlewood-Paley decomposition and will mostly refer to [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] for an in-depth study.

2 Proof of Theorem 3 

b when ν = ν ). If W inh ε et W h
ε are the solutions of the linear systems from (1.5), then W h ε is globally defined, and

W inh ε is defined on [0, T * QG [. Proposition 2 Assume that U 0,QG ∈ Ḣ 1 2 ∩ Ḣ 1 2 +δ (with δ > 0).
1. There exists a constant C > 0 such that the external force term satisfies for all t < T * QG :

     For all r > 1, G b L r t Ḣ-3 2 + 2 r ≤ C ν 1 r U 0,QG 2 Ḣ 1 2 e C ν Ct , For all r > 1 1-δ 2 , G b L r t Ḣ-3 2 + 2 r +2δ ≤ C ν 1 r U 0,QG 2 Ḣ 1 2 +δ e C ν Ct , (2.10) 
where

C t = t 0 U QG (τ ) 2 Ḣ 3 2 dτ .
2. There exists a constant C > 0 such that for all t < T * QG and s ∈ [

1 2 , 1 2 + 2δ], W inh ε (t) 2 Ḣs + ν t 0 W inh ε (τ ) 2 Ḣs+1 dτ ≤ C ν 2 U 0,QG 4 Ḣ 1 2 ∩ Ḣ 1 2 +δ e 2C ν Ct . (2.11) Remark 5 1. It is immediate to prove that for all t ≥ 0 and s ∈ [ 1 2 , 1 2 + δ], W h ε (t) 2 Ḣs + 2ν t 0 W h ε (τ ) 2 Ḣs+1 dτ ≤ U 0,ε,osc 2 
Ḣs .

(2.12)

Except at the end of the bootstrap argument, we will not use these energy estimates for W h ε as only the norm of U 0,ε,osc in Ḣ 1 2 +cδ ∩ Ḣ 1 2 +δ is controlled, but with a negative power of ε.

2. On the contrary, we will abundantly use them for W inh ε which is a little more regular than U QG and everywhere both of these quantities are involded, we will estimate W inh ε similarly to U QG .

If we only control the

Ḣ 1 2 +δ -norm of U 0,ε,osc , the best we could hope for in terms of uniform in ε energy estimates for W h ε would be provided by the Strichartz estimates (see the appendix): for all t ≥ 0 and σ ∈] 3 4

( 1 2 + δ), 1 2 + δ], W h ε 2 L ∞ t L 6 3-2σ + ν ∇W h ε 2 L 2 t L 6 3-2σ ≤ Cν 1 2 +δ-σ ε 3 σ ( 1 2 +δ-σ) U 0,ε,osc 2 Ḣ 1 2 +δ . 4. In the case of small initial data ( U 0,QG Ḣ 1 2 ≤ c 0 ν) we simply use the bound C t ≤ 1 ν U 0,QG Ḣ 1 2 ≤ C0 ν .
Proof: From the energy estimates given by Theorem 1 (as well as the propagation of the Ḣ 1 2 +δregularity) we obtain by complex interpolation that for all t < T * QG and p ∈ [2, ∞],

         U QG L p t Ḣ 1 2 + 2 p ≤ C ν 1 p U 0,QG Ḣ 1 2 e C ν Ct , and 
U QG L p t Ḣ 1 2 + 2 p +δ ≤ C ν 1 p U 0,QG Ḣ 1 2 +δ e C ν Ct .
(2.13)

Thanks to the Bernstein Lemma, the paraproduct and remainder laws (we refer to [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] for the Bony decomposition): for any s 1 , s 2 ∈ [ 1 2 , 1 2 + δ], and any p, q ∈ [2, ∞]:

G b Ḣs 1 +s 2 + 2 p + 2 q -5 2 ≤ C T U QG ∇ U QG Ḣs 1 +s 2 + 2 p + 2 q -5 2 + T ∇ U QG U QG Ḣs 1 +s 2 + 2 p + 2 q -5 2 + i,j=1,...,3 div R( U i QG , U j QG ) Ḃs 1 +s 2 + 2 p + 2 q -1 1,2 . (2.14)
If p satisfies 2 p < 3 2 -s 1 we can bound the first term as follows:

T U QG ∇ U QG Ḣs 1 +s 2 + 2 p + 2 q -5 2 ≤ C U QG Ḃs 1 + 2 p -3 2 ∞,∞ ∇ U QG Ḣs 2 + 2 q -1 ≤ C U QG Ḣs 1 + 2 p U QG Ḣs 2 + 2 q . (2.15)
When 2 q < 5 2 -s 2 (which is true as soon as δ < 1), the second term satisfies:

T ∇ U QG U QG Ḣs 1 +s 2 + 2 p + 2 q -5 2 ≤ C ∇ U QG Ḃs 2 + 2 q -5 2 ∞,∞ U QG Ḣs 1 + 2 p ≤ C U QG Ḣs 1 + 2 p U QG Ḣs 2 + 2 q . (2.16)
And as s 1 + s 2 + 2 p + 2 q > 0 we easily get that i,j=1,...,3

|R( U i QG , U j QG ) Ḃs 1 +s 2 + 2 p + 2 q 1,2 ≤ C U QG Ḣs 1 + 2 p U QG Ḣs 2 + 2 q .
To sum up, we just obtained that under the previous notations, if we set r such that 1 r = 1 p + 1 q , then r satisfies 2 r < 5 2 -s 1 (contrary to p, q has no constraint) and we have:

G b L r t Ḣs 1 +s 2 + 2 p + 2 q -5 2 ≤ C U QG L p t Ḣs 1 + 2 p U QG L q t Ḣs 2 + 2 q ≤ C ν 1 p + 1 q U 0,QG Ḣs 1 U 0,QG Ḣs 2 e C ν Ct . (2.17)
Conversely, if r satisfies 2 r < 5 2 -s 1 can we find p (with 2 p < 3 2 -s 1 ) and q ∈ [2, ∞] such that 1 r = 1 p + 1 q ? Introducing α ∈]0, 5 2 -s 1 ] such that 2 r = 5 2 -s 1 -α we would like to simply take p so that 2 p = 3 2 -s 1 -α which is possible if and only if α ∈]0, 3 2 -s 1 ], so that two cases have to be considered:

• If α ∈]0, 3 2 -s 1 [, setting q = 2 and p so that 2 p = 3 2 -s 1 -α ensures that 2 p < 3 2 -s 1 , • If α ∈ [ 3 2 -s 1 , 5 2 -s 1 [
, then we simply take q = r and p = ∞ and the condition on p is once more satisfied. Writing (2.17) when s 1 = s 2 = 1 2 or 1 2 + δ gives the first part of the proposition.

To prove the second point, let us simply perform the innerproduct in Ḣs (for some s) of (1.5) with W inh ε : for all t < U QG , 1 2

d dt W inh ε (t) 2 Ḣs + ν W inh ε (t) 2 Ḣs+1 ≤ G b Ḣs-1 W inh ε Ḣs+1 ≤ ν 2 W inh ε (τ ) 2 Ḣs+1 + C ν G b 2 Ḣs-1 . (2.18)
Notice that due to point 1 (with r = 2), s can freely live in [ 1 2 , 1 2 + 2δ] and the result easily follows as

U 0,QG Ḣ 1 2 ∩ Ḣ 1 2 +δ = max U 0,QG Ḣ 1 2 , U 0,QG Ḣ 1 2 +δ .

Estimates on δ ε

We will only focus on Theorem 3 (without smallness assumptions), the proof of Theorem 4 being easier as C t is bounded by C0 ν . As we outlined in Section 1.3, when U 0,QG is not assumed to be small in Ḣ 1 2 , U QG is defined on [0, T * QG [, as well as W inh ε . Moreover, thanks to the additional regularity assumptions, for all

t < T * QG , U QG and W inh ε belong to Ė 1 2 t ∩ Ė 1 2 +δ t
. Note that U ε also belongs to the previous space but for t < T * ε . Let us fix some T < T * QG , assume that ε satisfies Conditions (2.36) and (2.38) (that is ε ≤ ε T for some small ε T ) and assume by contradiction that

T * ε ≤ T, (2.19) 
then it is finite and in particular by the blow-up criterion (1.1) is true. Now as in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] let us define (with C introduced in (2.31))

T ε def = sup{t ∈ [0, T * ε [, ∀t ≤ t, δ ε (t ) Ḣ 1 2 ≤ ν 4C }, (2.20) If ε > 0 is so small that δ ε (0) Ḣ 1 2 ≤ C 0 ε α0 ≤ ν 8C then T ε > 0. Now assume by contradiction that: T ε < T * ε . (2.21) Then for all t ≤ T ε < T * ε ≤ T < T * QG , performing (for s ∈ [ 1 2 , 1 2 + ηδ]
) the Ḣs -inner product of System (1.6) by δ ε we have (the external force terms are defined in (1.7)):

1 2 d dt δ ε (t) 2 Ḣs + ν ∇δ ε (t) 2 Ḣs ≤ 10 j=1 (F j |δ ε ) Ḣs .
Now we bound each term from the r.h.s. The first three ones are treated exactly like in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF] and there exists a constant C > 0 such that:

         |(F 1 |δ ε ) Ḣs | ≤ C δ ε Ḣ 1 2 δ ε 2 Ḣs+1 , |(F 2 |δ ε ) Ḣs | ≤ ν 18 δ ε 2 Ḣs+1 + C ν U QG 2 Ḣ 3 2 + W inh ε 2 Ḣ 3 2 δ ε 2 Ḣs , |(F 3 |δ ε ) Ḣs | ≤ ν 18 δ ε 2 Ḣs+1 + C ν 3 U QG 2 Ḣ 1 2 U QG 2 Ḣ 3 2 + W inh ε 2 Ḣ 1 2 W inh ε 2 Ḣ 3 2 δ ε 2 
Ḣs .

(2.22) The other terms will be bounded differently: when s ∈ [0, 1], we have 2s = (1 -θ)s + θ(s + 1) with θ = s, and 1 = (1 -θ )s + θ (s + 1) with θ = 1 -s,

|(F 4 |δ ε ) Ḣs | ≤ C F 4 L 2 δ ε Ḣ2s ≤ C δ ε L 6 ∇W h ε L 3 δ ε Ḣ2s ≤ C ∇W h ε L 3 δ ε Ḣ1 δ ε Ḣ2s ≤ C ∇W h ε L 3 δ ε Ḣs δ ε Ḣs+1 ≤ ν 18 δ ε 2 Ḣs+1 + C ν ∇W h ε 2 L 3 δ ε 2 Ḣs . (2.23)
Similarly (using the Sobolev injections and the fact that 3 2 = (1 -θ )s + θ (s + 1) with θ = 3 2 -s and the Young inequality with ( 43 , 4)),

|(F 5 |δ ε ) Ḣs | ≤ C F 5 L 2 δ ε Ḣ2s ≤ C W h ε L 6 ∇δ ε Ḣ 1 2 δ ε Ḣ2s ≤ C W h ε L 6 δ ε 1 2 Ḣs δ ε 3 2 Ḣs+1 ≤ ν 18 δ ε 2 Ḣs+1 + C ν 3 W h ε 4 L 6 δ ε 2 Ḣs . (2.24)
Next, with the same tools,

|(F 6 |δ ε ) Ḣs | ≤ C F 6 L 2 δ ε Ḣ2s ≤ C U QG 1 2 Ḣ 1 2 U QG 1 2 Ḣ 3 2 ∇W inh ε L 3 δ ε 1-s Ḣs δ ε s Ḣs+1 ≤ C U QG 1 2 Ḣ 1 2 U QG s-1 2 Ḣ 3 2 ∇W inh ε L 3 U QG 1-s Ḣ 3 2 δ ε 1-s Ḣs δ ε s Ḣs+1 , (2.25)
and using the Young inequality with the indices (2, 2 1-s , 2 s ) we obtain that:

|(F 6 |δ ε ) Ḣs | ≤ ν 18 δ ε 2 Ḣs+1 + C ν s 1-s U QG 2 Ḣ 3 2 δ ε 2 Ḣs + C U QG Ḣ 1 2 U QG 2s-1 Ḣ 3 2 ∇W inh ε 2 L 3 . (2.26)
Similarly, we obtain:

|(F 7 |δ ε ) Ḣs | ≤ ν 18 δ ε 2 Ḣs+1 + C ν s 1-s U QG 2 Ḣ 3 2 + W inh ε 2 Ḣ 3 2 δ ε 2 Ḣs + C U QG Ḣ 1 2 U QG 2s-1 Ḣ 3 2 + W inh ε Ḣ 1 2 W inh ε 2s-1 Ḣ 3 2 ∇W h ε 2 L 3 . (2.27)
Considering the following term (part of F 8 ):

|(W h ε • ∇ U QG |δ ε ) Ḣs | ≤ W h ε L 6 U QG Ḣ 3 2 δ ε 1-s Ḣs δ ε s Ḣs+1 ≤ W h ε L 6 U QG s Ḣ 3 2 U QG 1-s Ḣ 3 2 δ ε 1-s Ḣs δ ε s Ḣs+1 , (2.28)
and thanks once more to the Young inequality with the indices (2, 2 1-s , 2 s ), we can estimate F 8 and F 9 as follows

|(F 8 |δ ε ) Ḣs | + |(F 9 |δ ε ) Ḣs | ≤ ν 18 δ ε 2 Ḣs+1 + C ν s 1-s U QG 2 Ḣ 3 2 + W inh ε 2 Ḣ 3 2 δ ε 2 Ḣs + C U QG 2s Ḣ 3 2 + W inh ε 2s Ḣ 3 2 W inh ε 2 L 6 + W h ε 2 L 6 . (2.29)
The last term is also bounded with similar arguments: 

|(F 10 |δ ε ) Ḣs | ≤ ∇W h ε L 3 W h ε L 6 δ ε 1-s Ḣs δ ε s Ḣs+1 ≤ ν 18 δ ε 2 Ḣs+1 + C ν s 1-s W h ε 2 1-s L 6 δ ε 2 Ḣs + C ∇W h ε 2 L 3 . (2.
d dt δ ε (t) 2 Ḣs + ν 2 ∇δ ε (t) 2 Ḣs ≤ C δ ε Ḣ 1 2 δ ε 2 Ḣs+1 + C ν M 1 (t) δ ε 2 Ḣs + CM 2 (t), (2.31) 
where

M 1 (t) def = U QG 2 Ḣ 3 2 1 + 1 ν 2s-1 1-s + 1 ν 2 U QG 2 Ḣ 1 2 + W inh ε 2 Ḣ 3 2 1 + 1 ν 2s-1 1-s + 1 ν 2 W inh ε 2 Ḣ 1 2 + ∇W h ε 2 L 3 + 1 ν 2 W h ε 4 L 6 + 1 ν 2s-1 1-s W h ε 2 1-s L 6 , (2.32) and M 2 (t) def = U QG Ḣ 1 2 U QG 2s-1 Ḣ 3 2 + W inh ε Ḣ 1 2 W inh ε 2s-1 Ḣ 3 2 ∇W h ε 2 L 3 + ∇W inh ε 2 L 3 + U QG 2s Ḣ 3 2 + W inh ε 2s Ḣ 3 2 W inh ε 2 L 6 + W h ε 2 L 6 + ∇W h ε 2 L 3 . (2.33)
So that for any t ≤ T ε < T * ε ≤ T < T * QG , thanks to the Gronwall lemma, the Hölder estimate, the estimates from Theorem 1, Point 2 from Proposition 2 and (H 1 ), there exists a constant B 0 depending on C 0 , ν, C, s such that:

δ ε (t) 2 Ḣs + ν 2 t 0 ∇δ ε (τ ) 2 Ḣs dτ ≤ C δ ε (0) 2 Ḣs + t 0 M 2 (τ )dτ e C ν t 0 M1(τ )dτ ≤ C ν,s U 0,ε,QG -U 0,QG 2 Ḣs + ∇W h ε 2 L 2 3 2 -s t L 3 + ∇W inh ε 2 L 2 3 2 -s t L 3 × W inh ε L ∞ t Ḣ 1 2 W inh ε 2s-1 L 2 t Ḣ 3 2 + U QG L ∞ t Ḣ 1 2 U QG 2s-1 L 2 t Ḣ 3 2 + W inh ε 2s L 2 t Ḣ 3 2 + U QG 2s L 2 t Ḣ 3 2 W h ε 2 L 2 1-s t L 6 + W inh ε 2 L 2 1-s t L 6 + ∇W h ε 2 L 2 t L 3 × exp C ν,s (1 + U QG L ∞ t Ḣ 1 2 ) U QG 2 L 2 t Ḣ 3 2 + (1 + W inh ε L ∞ t Ḣ 1 2 ) W inh ε 2 L 2 t Ḣ 3 2 + ∇W h ε 2 L 2 t L 3 + W h ε 4 L 4 t L 6 + W h ε 2 1-s L 2 1-s t L 6 ≤ B 0 ε 2α0 +   ∇W h ε 2 L 2 3 2 -s T L 3 + ∇W inh ε 2 L 2 3 2 -s T L 3 + W h ε 2 L 2 1-s T L 6 + W inh ε 2 L 2 1-s T L 6   e 3C ν C T + ∇W h ε 2 L 2 t L 3 × exp B 0 e 3C ν C T + ∇W h ε 2 L 2 T L 3 + W h ε 4 L 4 T L 6 + W h ε 2 1-s L 2 1-s T L 6 , (2.34)
where we recall that we introduced

C t = t 0 U 0,QG (τ ) 2 Ḣ 3 2 dτ ≤ C T < ∞ in Proposition 2.
We can bound the various terms from the previous estimates involving W h ε (and W inh ε ) thanks to the Strichartz estimates provided by Proposition 7.

End of the bootstrap argument

Let us first focus on the proof of the second point from Theorem 3. For all s ∈ [ 1 2 , 1 2 + ηδ], under Assumption (H 3 ), simplifying (2.34) with Proposition 7 leads for all t ≤ T ε to:

δ ε (t) 2 Ḣs + ν 2 t 0 ∇δ ε (τ ) 2 Ḣs dτ ≤ B 0 ε 2α0 + ε 2η0δ + (ε 1 2 +2η0δ-s + ε 1 2 +δ-s )e 5C ν C T e B0 e 3C ν C T +ε 2η 0 δ +ε 1 1-s ( 1 2 +2η 0 δ-s) . (2.35)
We recall that η < 2η 0 < 1 so we have 0 < (2η 0 -η)δ ≤ 1 2 + 2η 0 δ -s ≤ 2η 0 δ, and when ε > 0 is so small that:

ε 2η0δ ≤ 1 2 and ε 1 1-s ( 1 2 +2η0δ-s) ≤ ε 2(2η0-η)δ ≤ 1 2 , (2.36) 
then the previous estimates turns into:

δ ε (t) 2 Ḣs + ν 2 t 0 ∇δ ε (τ ) 2 Ḣs dτ ≤ D T ε 2α0 + ε 2η0δ + ε 1 2 +2η0δ-s + ε 1 2 +δ-s ≤ D T ε min(2α0, 1 2 +2η0δ-s) ≤ D T ε min(2α0,(2η0-η)δ) , (2.37)
where we set for some t,

D t def = B 0 e 5C ν Ct e B0(1+e 3C ν C t )
. Finally if ε > 0 also satisfies:

D T ε min(2α0,(2η0-η)δ) ≤ ν 8C 2 , (2.38) 
then for all t ≤ T ε , taking s = 1 2 , we have

δ ε (t) Ḣ 1 2 ≤ ν 8C ,
which contradicts the definition of T ε , so that (2.21) is false and T ε = T * ε . Thanks to (2.37), Theorem 1 and Proposition 2, with s = 1 2 for all t < T * ε ≤ T < T * QG we have:

t 0 ∇U ε (τ ) 2 Ḣ 1 2 dτ ≤ t 0 ∇δ ε (τ ) 2 Ḣ 1 2 dτ + t 0 ∇W inh ε (τ ) 2 Ḣ 1 2 dτ + t 0 ∇W h ε (τ ) 2 Ḣ 1 2 dτ ≤ 1 ν D T ε 2 min(α0,η0δ) + C 2 0 e C ν C T + CC 4 0 ν 2 e 2C ν C T + T 0 W h ε (τ ) 2 Ḣ 3 2 dτ < ∞, (2.39)
which contradicts (1.1) so that (2.19) is also false and T * ε > T which concludes the proof of Point 2-a. To prove Point 1, resuming the previous bootstrap argument, for s = 1 2 simplifying (2.34) now under assumption (H 2 ) leads for all t ≤ T ε to (when ε is set so small that m(ε) ≤ 1):

δ ε (t) 2 Ḣ 1 2 + ν 2 t 0 ∇δ ε (τ ) 2 Ḣ 1 2 dτ ≤ B 0 ε 2α0 + m(ε) 2 + (m(ε) 2 + ε δ )e 3C ν C T e B0 e 3C ν C T +m(ε) 2 ≤ D T ε 2α0 + m(ε) 2 + ε δ (2.40)
and the same method leads to the result.

Proof of Point 2.b

This point is close to the corresponding result from [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], but there are two differences: first, we chose in the present article to state a little differently the result and will give some details (even if the proof is close to the one in [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF]), seconds the new term W inh ε has to be estimated in addition to W h ε .

For any k ∈]0, 1[ (close to 1), any η ∈ [0, 2η 0 [ and any η ∈ [0, η[, from (2.37) with s ∈ { 1 2 , 1 2 + ηδ} we get:

|D| η δ δ ε L 2 T L ∞ ≤ |D| η δ δ ε L 2 T Ḃ 3 2 2,1 ≤ |D| η δ δ ε 1-η η L 2 T Ḣ 3 2 -η δ |D| η δ δ ε η η L 2 T Ḣ 3 2 +(η-η )δ ≤ δ ε 1-η η L 2 T Ḣ 3 2 δ ε η η L 2 T Ḣ 3 2 +ηδ ≤ D T ε (1-η η ) min(α0,η0δ)+ η η min(α0,(η0-η 2 )δ) ≤ D T ε min(α0,(η0-η 2 )δ) (2.41)
Thanks to Proposition 7 with (d, p, r, q) = (η δ, 2, ∞, 1) implies that for θ ∈ [0, 1],

|D| η δ W h ε L 2 L ∞ ≤ C F,θ ν 1-θ 4 ε θ 4 U 0,ε,osc Ḃ 1 2 +η δ+ θ 2 2,1
.

(2.42)

Thanks to Lemma 1 with (α, β) = (a θ 2 , b θ 2 ) (with a, b > 0) we can write:

U 0,ε,osc Ḃ 1 2 +η δ+ θ 2 2,1 ≤ C a,b,θ U 0,ε,osc b a+b Ḣ 1 2 +η δ+ θ 2 (1-a) U 0,ε,osc a a+b Ḣ 1 2 +η δ+ θ 2 (1+b) .
We then choose a, b > 0 so that

θ 2 (1 -a) = (c -η )δ, θ 2 (1 + b) = (1 -η )δ.
Take some b > 0 (to be fixed later), and choose θ = 2 1+b (1 -η )δ then the existence of some a ∈]0, 1[ satisfying the other condition is equivalent to the fact that b > 0 is so small that (c -η )(1 + b) < 1 -η and in that case:

a = 1 -(1 + b) c -η 1 -η . The condition θ ≤ 1 is equivalent to δ ≤ 1 2 1+b
1-η , which is true when δ ≤ 1 6 . On the other hand the condition on the "p-index" from Proposition 10 is satisfied if and only if δ ≤ 1+b 1-η which is implied by the previous condition. Then (2.42) turns into

|D| η δ W h ε L 2 L ∞ ≤ C F,C0,ν,δ,b,η,η ε δ 2(1+b) (1-η )-γ .
The exponent of ε also writes δ

2(1+b) (2η 0 -η -b(1 -2η 0 )), which goes to δ(η 0 -η 2 ) > δ(η 0 -η 2 ) when b goes to zero, so choosing b > 0 so small that δ 2(1 + b) (2η 0 -η -b(1 -2η 0 )) = δ(η 0 - η 2 ),
that is b = η-η 1-η , we finally get:

|D| η δ W h ε L 2 L ∞ ≤ B 0 ε δ(η0-1 2 η) .
(2.43)

Similarly, we get that 

|D| η δ W inh ε L 2 T L ∞ ≤ D T ε δ(η0-

Proof of Point 2.c

First let us emphasize that in Section 2.2, two terms have to be estimated differently when s ∈ [ 1 2 -ηδ, 1 2 ], namely F 6 and F 7 , because now the exponent satisfies 2s -1 < 0 which makes useless (2.26) and (2.27). Thus we estimate these terms as follows:

|(F 6 |δ ε ) Ḣs | ≤ C F 6 L 2 δ ε Ḣ2s ≤ C U QG L 6 3-2s ∇W inh ε L 3 s δ ε 1-s Ḣs δ ε s Ḣs+1 ≤ C U QG Ḣs ∇W inh ε 1 2-s L 3 s ∇W inh ε 1-s 2-s L 3 s δ ε 1-s Ḣs δ ε s Ḣs+1 . (2.45)
By the Young inequality with the indices (2, 2 1-s , 2 s ), we get

|(F 6 |δ ε ) Ḣs | ≤ ν 18 δ ε 2 Ḣs+1 + C ν s 1-s ∇W inh ε 2 2-s L 3 s δ ε 2 Ḣs + U QG 2 Ḣs ∇W inh ε 2 2-s L 3 s .
(2.46)

Similarly we obtain:

|(F 7 |δ ε ) Ḣs | ≤ ν 18 δ ε 2 Ḣs+1 + C ν s 1-s ∇W h ε 2 2-s L 3 s δ ε 2 Ḣs + U QG 2 Ḣs + W inh ε 2 Ḣs ∇W h ε 2 2-s L 3 s . (2.47) so that when s ∈ [ 1 2 -ηδ, 1 2 
], the previous functions M 1 and M 2 are modified according to: We could use the first point of Proposition 3 with p = 1 but it would require the use of Lemma 1 which is not possible under Assumption (H 3 ) alone.

M 1 (t) def = U QG 2 Ḣ 3 2 1 + 1 ν 2s-1 1-s + 1 ν 2 U QG 2 Ḣ 1 2 + W inh ε 2 Ḣ 3 2 1 + 1 ν 2s-1 1-s + 1 ν 2 W inh ε 2 Ḣ 1 2 + ∇W h ε 2 L 3 + 1 ν 2 W h ε 4 L 6 + 1 ν 2s-1 1-s W h ε 2 1-s L 6 + ∇W h ε 2 2-s L 3 s + ∇W inh ε 2 2-s L 3 s , (2.48) and M 2 (t) def = U QG 2 Ḣs + W inh ε 2 Ḣs ∇W h ε 2 2-s L 3 s + ∇W inh ε 2 2-s L 3 s + U QG 2s Ḣ 3 2 + W inh ε 2s Ḣ 3 2 W inh ε 2 L 6 + W h ε 2 L 6 + ∇W h ε 2 L 3 . (2.
As explained in the previous Remark, we are forced to use Proposition 5 with (d, p, r, q) = (1, 2 2-s , 3 s , 1) and thanks to Assumption (H 4 ) we will be able to take advantage of Lemma 1 and Proposition 3. Thanks to the last part of Proposition 7, when k, k , k < 1 are fixed, (2.34) turns, for any s ∈ [ 1 2 -ηδ, 1 2 ], into (when ε ≤ ε T ):

δ ε (t) 2 Ḣs + ν 2 t 0 ∇δ ε (τ ) 2 Ḣs dτ ≤ B 0 e 4C ν C T ε 2α0 + ε 2 2-s k η0δ + ε 1 2 +2η0δ-s e B0e 4C ν C T (1+ε 2 2-s k η 0 δ ) ≤ D T ε 2α0 + ε 2 2-s k η0δ + ε 1 2 +2η0δ-s , (2.50)
and for s = 1 2 -ηδ, we get that

δ ε 2 L 2 T Ḣ 3 2 -ηδ ≤ D T ε 2α0 + ε 2 3 2 +ηδ k η0δ + ε (2η0+η)δ .
If we have chosen η > 0 so small that 2 3 2 +ηδ ≥ 4 3 k , we get that:

δ ε L 2 T Ḣ 3 2 -ηδ ≤ D T ε min(α0, 2 3 k k η0δ) .
Thanks to (2.37) at s = 1 2 +ηδ, this entails that (thanks once more to Proposition 1) if in addition η > 0 is so small that η 0 -η 2 ≥ kη 0 , then

δ ε L 2 T L ∞ ≤ δ ε L 2 T Ḃ 3 2 2,1 ≤ δ ε 1 2 L 2 T Ḣ 3 2 -ηδ δ ε 1 2 L 2 T Ḣ 3 2 +ηδ ≤ D T ε 1 2 (min(α0, 2 3 k k η0δ)+min(α0,(η0-η 2 )δ)) ≤ D T ε 1 2 (min(α0, 2 3 k k η0δ)+min(α0,kη0δ)) , (2.51)
and when we choose k = k = √ k < 1 we get that:

δ ε L 2 T L ∞ ≤ D T ε 1 2 (min(α0, 2 3 
kη0δ)+min(α0,kη0δ)) .

(2.52)

Finally, applying Proposition 5 to W h ε and also to W inh ε (as explained in the beginning of the present section) with (d, p, r, q) = (0, 2, ∞, 1) (and with the same arguments as in the previous section but with η = 0), we get that:

W h ε + W inh ε L 2
T L ∞ ≤ D T ε kη0δ , gathering the last two estimates concludes the proof.

On the optimality of the condition δ ≤ 1 6

We wish to explain in this section why it is not possible (with the arguments of the present article) to improve the condition δ ≤ 1 6 into the one from [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF]: δ < 1 4 . According to the proof of Proposition 7 the estimates involving L 6 only require the condition δ ≤ 1 3 , δ ≤ 1 6 being required by the ones involving L 3 , and come from the estimates of F 4 , F 6 , F 7 and F 10 . For some of them it is possible to improve the condition but the main limitation comes from F 10 : we look for

k 1 , k 2 ∈ [2, ∞] such that 1 k1 + 1 k2 = 1 2 and, |(F 10 |δ ε ) Ḣs | ≤ ν 18 δ ε 2 Ḣs+1 + C ν s 1-s W h ε 2 1-s L k 1 δ ε 2 Ḣs + C ∇W h ε 2 L k 2 .
At first sight it seems surprising that there is no better choice that (k 1 , k 2 ) = (6, 3) and to understand this, let us focus on the Strichartz estimates involved by the previous bound. Choosing successively (d, p, r, q) ∈ {(0, 2 1-s , k 1 , 2), (1, 2, k 2 , 2)} we end-up with (for θ, θ ∈ [0, 1]) with the regularity indices:

σ = 1 2 + s -3 k1 + θ 2 (1 -2 k1 ), σ = 3+θ
k1 . There exists θ, θ ∈ [0, 1] such that σ = σ = 1 2 + δ if, and only if, we have 

1 k 1 ∈ s -δ 3 , 1 4 (s + 1 2 -δ) ∩ 1 4 ( 1 2 + δ), 1 3 ( 1 2 
   W h ε L 2 1-s T L k 1 ≤ Cε 1 2 (δ+ 3 k 1 -s) U 0,ε,osc Ḣ 1 2 +δ , ∇W h ε L 2 T L k 2 ≤ Cε 1 2 ( 1 2 +δ-3 k 1 ) U 0,ε,osc Ḣ 1 2 +δ .
(2.54)

• Finding k 1 when s = 1 2 and U 0,ε,osc Ḣ 1 2 +δ ≤ m(ε)ε -δ 2 leads to: W h ε L 4 T L k 1 ≤ Cε 1 2 ( 3 k 1 -1 2 ) m(ε), ∇W h ε L 2 T L k 2 ≤ Cε 1 2 ( 1 2 -3 k 1
) m(ε), and they are useful if both powers of ε are nonnegative, which leads to k 1 = 6.

• Finding k 1 for any s ∈ [ 1 2 , 1 2 + ηδ] and U 0,ε,osc Ḣ 1 2 +δ ≤ ε -γ then requires that [ 1 2 , 1 2 + ηδ] ⊂ [2δ, 1 2 + 2δ[ which is equivalent to δ ≤ 1 4 and η < 2 (this one being true as η ≤ 2η 0 < 1). This leads to the estimates:

   W h ε L 2 1-s T L k 1 ≤ Cε 1 2 (δ+ 3 k 1 -s-2γ) , ∇W h ε L 2 T L k 2 ≤ Cε 1 2 ( 1 2 +δ-3 k 1 -2γ) ,
Both exponents are positive for any s ∈ [ 1 2 , 1 2 + ηδ] if and only if:

1 k 1 ∈ 1 6 - 2η 0 -η 3 δ, 1 6 + 2 3 η 0 δ ,
and we can put

1 k1 = 1 6 + αδ with α ∈] -2η0-η 3 , 2 
3 η 0 [ and θ, θ then write as follows

(θ, θ ) = 1 2 -s + δ(1 + 3α) 1 3 -δα , δ(1 -3α) 1 6 + δα .
As we already require that δ ≤ 1 4 , both of them lie in [0, 1] if and only if α

∈ [ 1 4 (1 - 1 6δ ), 1 4 ( 1 3δ -1)].
Once more, the existence of such an α is equivalent to the fact that:

1 4 (1 - 1 6δ ), 1 4 ( 1 3δ -1) ∩ - 2η 0 -η 3 , 2 3 η 0 = ∅, which is equivalent to 1 4 (1 - 1 6δ ) < 2 3 η 0 , and 1 4 ( 1 3δ -1) > - 2η 0 -η 3 .
Both conditions are realized when δ ≤ 1 6 . On the other hand if δ ∈] 1 6 , 1 4 ] the first condition means that η 0 > 0 is bounded from below by a positive constant and cannot be chosen as small as we wish. In other words, thanks to the definition of η 0 = 1 2 (1 -2 γ δ ), the condition is equivalent to γ < 1 8 ( 1 2 + δ) which means γ cannot be close to δ 2 anymore (for example the condition becomes γ < 3 32 when δ = 1 4 ). So if we wish to choose γ close to δ 2 we need δ ≤ 1 6 and the only choice is k 1 = 6.

Proof of Theorem 10

The proof will share the same steps as in the previous section, but keeping in mind that dealing with product of 2D and 3D functions will also induce a modification of the use of the Stichartz estimates (that will become anisotropic as in [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF][START_REF] Chemin | Fluids with anisotropic viscosity, Special issue for R. Temam's 60th birthday[END_REF][START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF]).

Auxiliary systems

Let us consider the initial data v 0,ε = ū0 + w 0,ε with ū0

∈ [L 2 (R 2 )] 3 and w 0,ε ∈ [ Ḣ 1 2 (R 3 ) ∩ Ḣ 1 2 +δ (R 3 )] 3 (both of them divergence-free).
From the results recalled in the introduction:

• there exists a global solution ū of System (2D -N S),

• there exists a local strong solution w ε of System (P RF ε ), defined for some lifespan T * ε and for any

T < T * ε , w ε ∈ Ė 1 2
T , • moreover, the blow-up (or continuation) criterion is valid:

T * ε < ∞ =⇒ T * ε 0 ∇w ε (t) 2 Ḣ 1 2 dt = ∞,
• finally, as w 0,ε ∈ Ḣ 1 2 ∩ Ḣ 1 2 +δ then for all T < T * ε , and s ∈ [ 1 2 , 1 2 + δ], w ε ∈ Ės T . Introducing W ε as the global solution of the following linear system:

∂ t W ε -ν∆W ε + 1 ε P(e 3 ∧ W ε ) = 0, W ε|t=0 = w 0,ε , (LRF ε ) we define on δ ε def = v ε -ū -W ε = w ε -W ε , which satisfies:      ∂ t δ ε -ν∆δ ε + 1 ε P(e 3 ∧ δ ε ) = 8 i=1 G i , δ ε|t=0 = 0, (3.55) with:        G 1 def = -P(δ ε • ∇δ ε ), G 2 def = -P(δ ε • ∇W ε ), G 3 def = -P(W ε • ∇δ ε ), G 4 def = -P(W ε • ∇W ε ), G 5 def = -P(δ ε • ∇ū), G 6 def = -P(ū • ∇δ ε ), G 7 def = -P(W ε • ∇ū), G 8 def = -P(ū • ∇W ε ).
(3.56)

Estimates on δ ε

Let us assume that ε satisfies (2.36) and (3.68) and assume by contradiction that T * ε < ∞, then by the continuation criterion, we have:

T * ε 0 ∇w ε (t) 2 Ḣ 1 2 dt = ∞, (3.57) 
If we put (where the constant C refers to the one from (3.60))

T ε def = sup{t ∈ [0, T * ε [, ∀t ≤ t, δ ε (t ) Ḣ 1 2 ≤ ν 4C }, (3.58) 
As δ ε (0) = 0 then T ε > 0. Now assume by contradiction that:

T ε < T * ε , (3.59)
and the Ḣs innerproduct of (3.55) with δ ε leads to:

1 2 d dt δ ε (t) 2 Ḣs + ν ∇δ ε (t) 2 Ḣs ≤ 8 j=1 (G j |δ ε ) Ḣs .
As the method is similar to what we did previously, we will skip details about the following terms whose estimates are done as in the first section:

             |(G 1 |δ ε ) Ḣs | ≤ C δ ε Ḣ 1 2 δ ε 2 Ḣs+1 , |(G 2 |δ ε ) Ḣs | ≤ ν 14 δ ε 2 Ḣs+1 + C ν ∇W ε 2 L 3 δ ε 2 Ḣs , |(G 3 |δ ε ) Ḣs | ≤ ν 14 δ ε 2 Ḣs+1 + C ν 3 W ε 4 L 6 δ ε 2 Ḣs , |(G 4 |δ ε ) Ḣs | ≤ ν 14 δ ε 2 Ḣs+1 + C ν s 1-s W ε 2 1-s L 6 δ ε 2 Ḣs + C ∇W ε 2 L 3 . (3.60)
We will only focus on what changes, namely the terms involving products of 2D and 3D functions. The first two terms are easily estimated with the usual arguments thanks to Proposition 1, as

s ∈ [ 1 2 , 1 2 + ηδ] ⊂ [0, 1[: |(G 5 |δ ε ) Ḣs | ≤ δ ε • ∇ū Ḣs-1 δ ε Ḣs+1 ≤ δ ε Ḣs ∇ū Ḣ0 δ ε Ḣs+1 ≤ ν 14 δ ε 2 Ḣs+1 + C ν ū 2 Ḣ1 δ ε 2 Ḣs (3.61)
Similarly, we easily get (with (s 1 , s 2 ) = ( 1 2 , s -1 2 )):

|(G 6 |δ ε ) Ḣs | ≤ ν 14 δ ε 2 Ḣs+1 + C ν 3 ū 2 L 2 ū 2 Ḣ1 δ ε 2 Ḣs . (3.62)
Now we can turn to the last terms and obtain, adapting the arguments from the previous section (s ∈ [0, 1]), that:

|(G 7 |δ ε ) Ḣs | ≤ W ε • ∇ū L 2 δ ε Ḣ2s ≤ C W ε L ∞,2 h,v ∇ū L 2 (R 2 ) δ ε 1-s Ḣs δ ε s Ḣs+1 ≤ ν 14 δ ε 2 Ḣs+1 + C ν s 1-s ū 2 Ḣ1 δ ε 2 Ḣs + ū 2s Ḣ1 W ε 2 L ∞,2 h,v , (3.63) 
and thanks to the Sobolev injection

Ḣ 1 2 (R 2 ) → L 4 (R 2 )
, and the Young inequality with (2, 2 1-s , 2 s ):

|(G 8 |δ ε ) Ḣs | ≤ ū • ∇W ε L 2 δ ε Ḣ2s ≤ C ū L 4 (R 2 ) ∇W ε L 4,2 h,v δ ε Ḣ2s ≤ C ū 1 2 L 2 (R 2 ) ū s-1 2 Ḣ1 (R 2 ) ∇W ε L 4,2 h,v ū Ḣ1 (R 2 ) δ ε Ḣs 1-s δ ε s Ḣs+1 ≤ ν 14 δ ε 2 Ḣs+1 + C ν s 1-s ū 2 Ḣ1 δ ε 2 Ḣs + ū L 2 ū 2s-1 Ḣ1 ∇W ε 2 L 4,2 h,v . (3.64)
As in the previous section, collecting (3.60) to (3.64), and thanks to the energy equality from Theorem 6, there exists some constant B 0 = B 0 (ν, s, ū0 L 2 ) > 0 such that we can write that for any t ≤ T ε ,

δ ε (t) 2 Ḣs + ν 2 t 0 ∇δ ε (τ ) 2 Ḣs dτ ≤ B 0 e B0 1+ ∇Wε 2 L 2 L 3 + Wε 4 L 4 L 6 + Wε 2 1-s L 2 1-s L 6 × ∇W ε 2 L 2 L 3 + W ε 2 L 2 1-s L ∞,2 h,v + ∇W ε 2 L 2 3 2 -s L 4,2 h,v . (3.65)

Proof of Point 1

We can now plug in (3.65) the Strichartz estimates from Proposition 11 and obtain that for any k ∈]0, 1[ (as close to 1 as wished) fixed, any s ∈ [ 1 2 , 1 2 + ηδ], there exists a constant B 0 such that for all t ≤ T ε ,

δ ε (t) 2 Ḣs + ν 2 t 0 ∇δ ε (τ ) 2 Ḣs dτ ≤ B 0 e B0 1+ε 2η 0 δ +ε 4η 0 δ +ε 1 1-s ( 1 2 +2η 0 δ-s) × ε 2η0δ + ε k( 1 2 +2η0δ-s) . (3.66) Now if ε > 0 is so small that (2.36) is true, then putting D 0 = B 0 e 2B0 : δ ε (t) 2 Ḣs + ν 2 t 0 ∇δ ε (τ ) 2 Ḣs dτ ≤ D 0 ε k( 1 2 +2η0δ-s) . (3.67)
From this the rest of the boostrap argument is classic and similar to what is done in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF]: assuming that ε is so small that (taking s = 1 2 ):

D 0 ε 2kη0δ ≤ ν 8C 2 , (3.68)
then we obtain that for all t ≤ T ε , δ ε (t) Ḣ 1 2 ≤ ν 8C , which contradicts the definition of T ε and the fact that

δ ε (T ε ) Ḣ 1 2 = ν 4C . Then T ε = T * ε , so that, as w ε = δ ε + W ε , we obtain that for all t < T * ε , t 0 w ε (τ ) 2 Ḣ 1 2 dτ ≤ t 0 δ ε (τ ) 2 Ḣ 1 2 dτ + t 0 W ε (τ ) 2 Ḣ 1 2 dτ ≤ 1 ν D 0 ε 2kη0δ + w 0,ε 2 Ḣ 1 2
.

Even if we only control the norm of w 0,ε in Ḣ 1 2 +cδ ∩ Ḣ 1 2 +δ the previous quantity is finite, which contradicts (3.57), so that T * ε = ∞.

Proof of Point 2

This part is nearly identical to what we did in Section 2.4 so we will not give much details: for any η ∈ [0, 2η 0 [, any k ∈]0, 1[ (near to 1) and any η ∈ [0, η[, from (3.67) with s ∈ { 1 2 , 1 2 + ηδ} we get:

|D| η δ δ ε L 2 L ∞ ≤ |D| η δ δ ε L 2 Ḃ 3 2 2,1 ≤ |D| η δ δ ε 1-η η L 2 Ḣ 3 2 -η δ |D| η δ δ ε η η L 2 Ḣ 3 2 +(η-η )δ ≤ δ ε 1-η η L 2 Ḣ 3 2 δ ε η η L 2 Ḣ 3 2 +ηδ ≤ D 0 ε kδ η0(1-η η )+(η0-1 2 η) η η = D 0 ε kδ(η0-1 2 η ) (3.69) 
Thanks to Proposition 11 with (d, p, m, q) = (η δ, 2, ∞, 1) and doing the same as in Section 2.4 we obtain:

|D| η δ W ε L 2 L ∞ ≤ C 0 C k,η0,η ,ν ε kδ(η0-1 2 η
) , which ends the proof.

Proof of Point 3

Let us fix some k, k , k ∈]0, 1[. First thanks to (3.67) for s = 1 2 + ηδ, we get that:

δ ε L 2 Ḣ 3 2 +ηδ ≤ D 0 ε k (η0-η 2 )δ . (3.70) 
For the same reason as in Section 2.5, the estimates for G 8 has to be changed when s < 1 2 in a similar way as we did for F 6 and F 7 , and thanks to Proposition 1, we get:

|(G 8 |δ ε ) Ḣs | ≤ ū • ∇W ε L 2 δ ε Ḣ2s ≤ C ū L 2 (R 2 ) ∇W ε L ∞,2 h,v δ ε Ḣ2s ≤ C ū L 2 (R 2 ) ∇W ε 1 2-s L ∞,2 h,v ∇W ε 1-s 2-s L ∞,2 h,v δ ε 1-s Ḣs δ ε s Ḣs+1 ≤ ν 14 δ ε 2 Ḣs+1 + C ν s 1-s ∇W ε 2 2-s L ∞,2 h,v δ ε 2 Ḣs + ū 2 L 2 ∇W ε 2 2-s L ∞,2 h,v . (3.71) So that (3.65) turns into δ ε (t) 2 Ḣs + ν 2 t 0 ∇δ ε (τ ) 2 Ḣs dτ ≤ B 0 e B0   1+ ∇Wε 2 L 2 L 3 + Wε 4 L 4 L 6 + Wε 2 1-s L 2 1-s L 6 + ∇Wε 2 2-s L 2 2-s L ∞,2 h,v   × ∇W ε 2 L 2 L 3 + W ε 2 L 2 1-s L ∞,2 h,v + ∇W ε 2 2-s L 2 2-s L ∞,2 h,v . (3.72)
Now with the same arguments we obtain that:

δ ε 2 L 2 Ḣ 3 2 -ηδ ≤ D 0 ε 2η0δ + ε k (2η0+η)δ + ε k 2η 0 +η 3 2 +ηδ δ . (3.73) 
If we choose η > 0 so small that

η 0 - η 2 ≥ k η 0 , and 2η 0 + η 3 2 + ηδ ≥ 4 3 k η 0 ,
then thanks to Proposition 11, we obtain (with

k = k = √ k): δ ε L 2 L ∞ ≤ δ ε L 2 Ḃ 3 2 2,1 ≤ δ ε 1 2 L 2 Ḣ 3 2 -ηδ δ ε 1 2 L 2 Ḣ 3 2 +ηδ ≤ D 0 ε 5 6 kη0δ .
Then, using Proposition 11 with (d, p, m, q) = (0, 2, ∞, 1), we obtain:

W ε L 2 L ∞ ≤ D 0 ε kη0δ ,
which concludes the proof.

Appendix

Notations, Sobolev spaces and Littlewood-Paley decomposition

We refer to the appendix of [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF] for general notations and properties of the Sobolev spaces and the Littlewood-Paley decomposition (together with the classical properties). For a complete presentation, we refer to [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]. Let us first mention the following lemma whose proof is close to Lemma 5 from [START_REF] Charve | A priori estimates for the 3D quasi-geostrophic system[END_REF] (see also Section 2.11 in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]):

Lemma 1 For any α, β > 0 there exists a constant C α,β > 0 such that for any u ∈ Ḣs-α ∩ Ḣs+β , then u ∈ Ḃs 2,1 and:

u Ḃs 2,1 ≤ C α,β u β α+β Ḣs-α u α α+β Ḣs+β . (4.74) 
Proposition 3 [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] We have the following continuous injections:

     For any p ≥ 1, Ḃ0 p,1 → L p , For any p ∈ [2, ∞[, Ḃ0 p,2 → L p , For any p ∈ [1, 2], Ḃ0 p,p → L p .
An alternative to the classical L p t Ḃs q,r -type estimates is provided by the Chemin-Lerner time-space Besov spaces: as explained in the following definition, the integration in time is performed before the summation with respect to the frequency decomposition index:

Definition 2 [2] For s, t ∈ R and a, b, c ∈ [1, ∞], we define the following norm u L a t Ḃs b,c = 2 js ∆j u L a t L b j∈Z l c (Z)
.

The space L a t Ḃs b,c is defined as the set of tempered distributions

u such that lim j→-∞ S j u = 0 in L a ([0, t], L ∞ (R d )) and u L a t Ḃs b,c < ∞.
We refer once more to [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] (Section 2.6.3) for more details and will only recall the following proposition:

Proposition 4 For all a, b, c ∈ [1, ∞] and s ∈ R:    if a ≤ c, ∀u ∈ L a t Ḃs b,c , u L a t Ḃs b,c ≤ u L a t Ḃs b,c if a ≥ c, ∀u ∈ L a t Ḃs b,c , u L a t Ḃs b,c ≥ u L a t Ḃs b,c . 
4.2 Strichartz estimates for the primitive system

Statements of the results

Consider the following system (in the case ν = ν , we have L = ν∆):

∂ t f -(ν∆ -1 ε PA)f = F ext , f |t=0 = f 0 . (4.75) 
Let us recall the Strichartz estimates obtained in [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] (we refer to [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] for details about the system, its analysis as well as the notations used).

Proposition 5 For any d ∈ R, r ≥ 2, q ≥ 1, θ ∈ [0, 1] and p ∈ [1, 4 θ(1-2 r )
], there exists a constant C = C F,p,θ,r such that for any f solving (4.75) for initial data f 0 and external force F ext both with zero divergence and potential vorticity, then

|D| d f L p t Ḃ0 r,q ≤ C F,p,θ,r ν 1 p -θ 4 (1-2 r ) ε θ 4 (1-2 r ) f 0 Ḃσ 1 2,q + F ext L 1 t Ḃσ 1 2,q , (4.76) 
where

σ 1 = d + 3 2 -3 r -2 p + θ 2 (1 -2 r
). Let us first state the following modified Strichartz estimates needed to fit to the regularity of the external force term G (see (1.3)) under the actual assumptions on U QG .

Proposition 6 For any d ∈ R, k ∈]1, 2], r ≥ 2, q ≥ 1, θ ∈ [0, 1] and p ∈ [2, 4 θ(1-2 r )
[, there exists a constant C = C F,p,θ,r,k such that for any f solving (4.75) with zero initial data and an external force F ext with zero divergence and potential vorticity, then

|D| d f L p t Ḃ0 r,q ≤ C F,p,θ,r,k ν 1-1 k + 1 p -θ 4 (1-2 r ) ε θ 4 (1-2 r ) F ext L k t Ḃσ 2 2,q , (4.77) 
where

σ 2 = d -1 2 + 2 k -3 r -2 p + θ 2 (1 -2 r
). Remark 7 The case k = 1 is not covered by the second result but is dealt with in the first one. The condition on the p-index is more restrictive. Now, as a consequence of Propositions 5, 6 and 2, we can bound the various terms from (2.34) involving W h ε and W inh ε . We collect these estimates in the following proposition:

Proposition 7 Under the previous notations, if δ ≤ 1 6 , for any s ∈ [ 1 2 , 1 2 + ηδ], there exists a constant C = C(F, δ, s) > 0 such that:

               W h ε L 4 T L 6 + ν 1 4 ∇W h ε L 2 T L 3 ≤ C ν 1-2δ 4 ε δ 2 U 0,ε,osc Ḣ 1 2 +δ W h ε L 2 1-s T L 6 + ν 1 4 ∇W h ε L 2 3 2 -s T L 3 ≤ C ν 1-2δ 4 ε 1 2 ( 1 2 +δ-s) U 0,ε,osc Ḣ 1 2 +δ W inh ε L 2 1-s T L 6 + ν 1 4 ∇W inh ε L 2 3 2 -s T L 3 ≤ C ν 5-2δ 4 ε 1 2 ( 1 2 +δ-s) C 2 0 e C ν C T .
Under Assumption (H 5 ), if δ ≤ 1 6 , for any k ∈]0, 1[ and s ∈ [ 1 2 -ηδ, 1 2 ] with η ≤ 2η 0 , there exists a constant C = C F,δ,s,k,c,γ > 0 such that the previous estimates remain true, except those involving the L 

∇W h ε L 2 2-s T L 3 s + ν ∇W inh ε L 2 2-s T L 3 s ≤ C ν 1-s 2 -γ-kδη0 ε kη0δ (1 + ε γ e C ν C T ).

Proof of Proposition 6

As we outlined in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], for any divergence-free and with zero potential vorticity initial data g 0 , the operators P and P 3+4 (on one hand), Q and P 2 (on the other hand) coincide when ν = ν (see the cited articles for precisions and notations):

g 0 = Pg 0 = PPg 0 = P 3+4 Pg 0 = P 3+4 g 0 .
We will denote as S ε (t) the associated semi-group, that is g(t) = S ε (t)g 0 is the unique solution of (4.75) with initial data g 0 and no external force:

S ε (t)g 0 = g(t) = F -1 e -νt|ξ| 2 +i t ε |ξ| F F |ξ| P 3 (ξ, ε) g 0 (ξ) + e -νt|ξ| 2 -i t ε |ξ| F F |ξ| P 4 (ξ, ε) g 0 (ξ) ,
and in order to simplify we will write:

S ε (t)g 0 = F -1 e -νt|ξ| 2 +i t ε |ξ| F F |ξ| g 0 (ξ) ,
So that, thanks to the Duhamel formula, the solution f from Proposition 6 writes:

f (t, x) = t 0 S ε (t -τ )F ext (τ, x)dτ.
We will only focus on what is new (and refer to [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] for details or notations). If ϕ is the usual truncation function involved in the Littlewood-Paley decomposition, let us denote by ϕ 1 another smooth truncation function, with support in a slightly larger annulus than supp ϕ (say for example the annulus centered at zero and of radii 1 2 and 3) and equal to 1 on supp ϕ. For given p, r ≥ 1, let B be the set:

B def = {ψ ∈ C ∞ 0 (R + × R 3 , R), ψ L p (R+,L r (R 3 )) ≤ 1},
then we follow the same classical steps, for any j ∈ Z:

∆j f L p L r = sup ψ∈B ∞ 0 R 3 t 0 S ε (t -τ ) ∆j F ext (τ, x)dτ ψ(t, x)dxdt = C sup ψ∈B ∞ 0 R 3 ∞ 0 e -ν(t-τ )|ξ| 2 +i t-τ ε |ξ| F F |ξ| ϕ 1 (2 -j ξ) ψ(t, ξ)1 {τ ≤t} dt ∆j F ext (τ, ξ)dξdτ ≤ C sup ψ∈B ∞ 0 ∆j F ext (τ, .) L 2 × R 3 ∞ 0 ∞ 0 e -ν(t+t -2τ )|ξ| 2 +i t-t ε |ξ| F F |ξ| ϕ 1 (2 -j ξ) 2 ψ(t, ξ) ψ(t , ξ)1 {τ ≤t} 1 {τ ≤t } dtdt dξ 1 2 dτ ≤ C sup ψ∈B ∞ 0 ∆j F ext (τ, .) L 2 × ∞ 0 ∞ 0 L j ( t -t ε )ψ(t, .) L r e ν(t+t -2τ )∆ ϕ 1 (2 -j D)ψ(t , .) L r 1 {τ ≤min(t,t )} dtdt 1 2 dτ, (4.78) 
with L j (σ) defined as in [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF]:

L j (σ)g = R 3 e ix•ξ+iσ |ξ| F F |ξ| ϕ 1 (2 -j |ξ|) g(ξ)dξ.
We refer to [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], for the proof that for all r ∈ [2, ∞] and θ ∈ [0, 1]:

   e σ∆ ϕ 1 (2 -j D)g L r ≤ C e -σ 4 2 2j g L r L j (σ)g L r ≤ (C F ) 1-2 r 2 3j(1-2 r ) |σ| θ 2 (1-2 r ) g L r .
Going back to (4.78), we get:

∆j f L p L r ≤ C 1 2 -1 r F 2 3j( 1 2 -1 r ) ε θ 4 (1-2 r ) sup ψ∈B ∞ 0 ∆j F ext (τ, .) L 2 K(τ ) 1 2 dτ ≤ C 1 2 -1 r F 2 3j( 1 2 -1 r ) ε θ 4 (1-2 r ) ∆j F ext L k L 2 × sup ψ∈B ∞ 0 K(τ ) k 2 dτ 1 k , (4.79)
where

K(τ ) def = ∞ 0 ∞ 0 e -ν 4 2 2j (t+t -2τ ) ψ(t ) L r ψ(t) L r |t -t | θ 2 (1-2 r )
1 {τ ≤min(t,t )} dtdt .

Next we use Jensen's inequality in the following formulation (we refer to [START_REF] Boyer | Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF] 

η ∈ L 1 (Ω) for some α ∈ [1, ∞[, we have f η ∈ L 1 (Ω) and Ω f ηdx α ≤ η α-1 L 1 Ω |f | α ηdx. Choosing α = k 2 , Ω =]0, ∞[ 2 , f (t, t ) = e -ν 8 2 2j (t+t -2τ ) 1 {τ ≤min(t,t )} and, η(t, t ) = f τ (t)f τ (t ) |t -t | θ 2 (1-2 r )
, with f τ (t) = e -ν 8 2 2j (t-τ ) 1 {τ ≤t} ψ(t) L r , we obtain that:

K(τ ) k 2 ≤ ∞ 0 ∞ 0 f τ (t)f τ (t ) |t -t | θ 2 (1-2 r ) dtdt k 2 -1 × ∞ 0 ∞ 0 e -ν 8 (1+ k 2 )2 2j (t+t -2τ ) ψ(t ) L r ψ(t) L r |t -t | θ 2 (1-2 r )
1 {τ ≤min(t,t )} dtdt , (4.80)

Remark 8 This is here that we require

k 2 ∈ [1, ∞[, that is k ∈]1, 2].
The first integral is dealt with the Hardy-Littlewood-Sobolev estimates as in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF]: introducing

1 q1 = 1 -θ 4 (1 -2 r ) (which is in [1, ∞[),
and some constant E (depending on θ, r)

∞ 0 ∞ 0 f τ (t)f τ (t ) |t -t | θ 2 (1-2 r ) dtdt ≤ E f τ 2 L q 1 ≤ E e -ν 8 (.-τ )2 2j 1 {τ ≤•} L q 2 ψ L pL r 2 ≤ E 8 νq 2 1 q 2 2 -2j q 2 ψ L p L r 2 , (4.81) for q 2 ∈ [1, ∞] chosen so that 1 q2 + 1 p = 1 q1 , that is 1 q2 = 1 p -θ 4 (1 -2 r ).
Remark 9 As we want q 2 ≥ 1 we need p ≤

4 θ(1-2 r ) .
Plugging (4.81) and (4.80) in (4.79), we obtain that (also using that ψ L pL r ≤ 1):

∞ 0 K(τ ) k 2 dτ 1 k ≤ E 8 νq 2 1 q 2 2 -2j q 2 1-2 k × ∞ 0 ∞ 0 ∞ 0 ψ(t ) L r ψ(t) L r |t -t | θ 2 (1-2 r ) e -ν 8 (1+ k 2 )2 2j (t+t -2τ ) 1 {τ ≤min(t,t )} dτ dtdt 1 k . (4.82)
Computing the integral in τ , using the fact that t + t -2 min(t, t ) = |t -t |, and introducing

g(t) = ψ(t) L r 1 {t≥0} and W (t) = e -ν 8 (1+ k 2 )2 2j |t| |t| θ 2 (1-2 r )
, we get that:

∞ 0 K(τ ) k 2 dτ 1 k ≤ E 8 νq 2 1 q 2 2 -2j q 2 1-2 k 4 ν(1 + k 2 ) 2 -2j R R W (t -t )g(t)g(t )dtdt 1 k ≤ E 8 νq 2 1 q 2 2 -2j q 2 1-2 k 4 ν(1 + k 2 ) 2 -2j 1 k ( g L p W * g L p ) 1 k . (4.83) If p ≥ 2 then W * g L p ≤ W L p 2 g L p .
As soon as pθ 4 (1 -2 r ) < 1 the following integral exists and we have:

W 1 k L p 2 = R e -pν 16 (1+ k 2 )2 2j |t| |t| pθ 4 (1-2 r ) dt 2 p k = R e -|u| |u| pθ 4 (1-2 r ) du 2 p k 16 pν(1 + k 2 ) 2 -2j 2 p k -θ 2 k (1-2 r )
, so that we end up with (using in the exponents that

1 k = 1 -1 k ): ∆j f L p L r ≤ C 1 2 -1 r F 2 j( 3 2 -3 r -2 q 2 -2 k ) ε θ 4 (1-2 r ) ∆j F ext L k L 2 × E 8 νq 2 1 q 2 1-2 k 4 ν(1 + k 2 ) 1 k R e -|u| |u| pθ 4 (1-2 r ) du 2 p k 16 pν(1 + k 2 ) 2 p k -θ 2 k (1-2 r ) ≤ C F,p,θ,r,k ν 1-1 k + 1 p -θ 4 (1-2 r ) 2 j( 3 2 -3 r -2 q 2 -2 k ) ε θ 4 (1-2 r ) ∆j F ext L k L 2 , (4.84)
where

C F,p,θ,r,k = (C F ) 1 2 -1 r E 2 k -1 4 1 + k 2 1-1 k    1 p -θ 4 (1 -2 r ) 2 k -1 2 5-2 k 1 + k 2 2 k p 2(1-1 k )    1 p -θ 4 (1-2 r ) × R e -|u| du |u| pθ 4 (1-2 r ) 2 p (1-1 k ) (4.85)
Multiplying by 2 jd and summing over j ∈ Z ends the proof of Proposition 6.

Proof of Proposition 7

The first line can be deduced from the second one taking s = 1 2 so we will focus on the last two lines.

Choosing (d, p, r, q, θ) = (0, 2 1-s , 6, 2, 3( 1 2 + δ -s)), thanks to Propositions 3, 4 (that applies when 2 1-s ≥ 2, which is true when s ∈ [0, 1[) and 5, we have

W h ε L 2 1-s T L 6 ≤ C W h ε L 2 1-s T Ḃ0 6,2 ≤ C W h ε L 2 1-s T Ḃ0 6,2 ≤ C ν 1-2δ 4 ε 1 2 ( 1 2 +δ-s) U 0,ε,osc Ḣ 1 2 +δ . Note that the condition θ ∈ [0, 1] (respectively p ∈ [1, 4 θ(1-2 r ) ]) is satisfied for any s ∈ [ 1 2 , 1 2 + ηδ] if and only if δ ≤ 1 3 (respectively δ ≤ 1 2
). These conditions are true for any s ∈ [ 1 2 -ηδ, 1 2 [ if and only if δ(1 + η) ≤ 1 3 . With the same coefficients, and choosing k = 2 in Proposition 6, we obtain that:

W inh ε L 2 1-s T L 6 ≤ C ν 3-2δ 4 ε 1 2 ( 1 2 +δ-s) G b L 2 T Ḣ-1 2 +δ ,
and we conclude thanks to Proposition 2. The fact that θ ≤ 1 is satisfied with the same conditions, the condition for p turns into δ < 1 2 . All of these are true when δ ≤ 1 6 and η ≤ 1.

With the same arguments, choosing (d, p, r, q, θ) = (1,

2 3 2 -s , 3, 2, 6( 1 2 + δ -s)), leads to        ∇W h ε L 2 3 2 -s T L 3 ≤ C ν 1-δ 2 ε 1 2 ( 1 2 +δ-s) U 0,ε,osc Ḣ 1 2 +δ , ∇W inh ε L 2 3 2 -s T L 3 ≤ C ν 2-δ 2 ε 1 2 ( 1 2 +δ-s) G b L 2 T Ḣ-1 2 +δ .
And the result follows. Note that θ ∈ [0, 1] now requires δ ≤ 1 6 and p ∈ [2, 4

θ(1-2 r ) ] when δ ≤ 1 (δ < 1 in the second case), so that when δ ≤ 1 6 all the above conditions are satisfied for s ∈

[ 1 2 , 1 2 + ηδ].
To prove the last point, let us emphasize that, under the additional assumption U 0,ε,QG ∈ Ḣ 1 2 -δ (see (H 5 )) we can now bound G b exactly as in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF] (see (2.23)) and will not need anymore to split into

W inh ε + W h ε . For all s ∈ [ 1 2 -δ, 1 2 + δ]: G b L 1 T Ḣs ≤ C F ∇ U QG 1 2 L 2 Ḣ 1 2 -δ ∇ U QG 1 2 L 2 Ḣ 1 2 +δ ∇ U QG L 2 Ḣs ≤ U 0,QG 2 Ḣ 1 2 -δ ∩ Ḣ 1 2 +δ ν e C ν C T ≤ C 2 0 ν e C ν C T , (4.86) 
so that W inh ε can be estimated through the same Strichartz estimates as W h ε . But when s ∈ [ 1 2 -ηδ, 1 2 ], we have 2 2-s < 2 so we cannot bound the L 

∇W h ε L 2 2-s T L 3 s ≤ ∇W h ε L 2 2-s T Ḃ0 3 s ,1 ≤ C F,s,θ ν 1-s 2 -θ 4 (1-2s 3 ) ε θ 4 (1-2s 3 ) U 0,ε,osc Ḃ 1 2 + θ 2 (1-2s 3 ) 2,1 . Thanks to Lemma 1, with (α, β) = (a θ 2 (1 -2s 3 ), b θ 2 (1 -2s 3 )), U 0,ε,osc Ḃ 1 2 + θ 2 (1-2s 3 ) 2,1 ≤ C a,b,θ,s U 0,ε,osc b a+b Ḣ 1 2 + θ 2 (1-2s 3 )(1-a) U 0,ε,osc a a+b Ḣ 1 2 + θ 2 (1-2s 3 
)(1+b) ,
and to find a, b > 0 satisfying 

θ 2 (1 -2s 3 )(1 -a) = cδ, θ 2 (1 -2s 3 )(1 + b) = δ,
∈]0, 1 c -1[, which leads to ∇W h ε L 2 2-s T L 3 s ≤ C F,s,δ,b,c,C0 ν 1-s 2 -δ 2(1+b) ε δ 2(1+b) -γ . (4.88)
The exponent of ε writes:

δ 2(1 + b) -γ = δ 2(1 + b) (2η 0 -b(1 -2η 0 )) -→ b→0 η 0 δ, such that for a given k < 1 close to 1, we can choose b ∈]0, 1 c -1[ so small that δ 2(1 + b) -γ = kη 0 δ, (4.89) 
which gives the result. To bound W inh ε we use the same Strichartz estimates with the same coefficients and thanks to (4.86), we obtain the rest of the estimates. To finish, let us precise that θ ≤ 1 for any s ∈ [ 1 2 -ηδ, 1 2 ] is equivalent to the the fact that following bound is true for s

= 1 2 2δ 1 + b = 4(γ + kη 0 δ) ≤ 1 - 2s 3 , which is equivalent to δ(1 -2η 0 (1 -k)) ≤ 1
3 and true as we already have δ ≤ 1 6 , η ≤ 2η 0 < 1 and k < 1.

Similarly, the condition on p is realized when for any s ∈ [ 1 2 -ηδ, 1 2 ], we have

δ 2(1 + b) = γ + kη 0 δ ≤ 1 - s 2 ,
which is equivalent the fact that it is satisfied for s = 1 2 , and is equivalent to asking δ(1 -2η 0 (1k)) ≤ 3 2 , and is also true as δ ≤ 1 6 .

Strichartz estimates for the rotating fluids

Statement of the results

In this section, we will provide isotropic and anisotropic strichartz estimates for System (LRF ε ). Let us begin with the estimates proved by Chemin, Desjardins, Gallagher and Grenier (that we present here with our notations and without external force term):

Proposition 9 ( [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF][START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF]) For any p ∈ [1, ∞] and any α > 0 there exists a constant C such that for any vector field w 0 , any j, k ∈ Z, if W ε solves (LRF ε ) with initial data w 0 :

   ∆j W ε L p L ∞ (R 3 ) ≤ C2 j( 3 2 -2 p ) ε2 2j 1 4p(1+α) ∆j w 0 L 2 (R 3 ) , ∆j ∆v k W ε L p L ∞,2 h,v ≤ C2 j(1-2 p ) min 1, ε2 2j 1 4p 2 1 2p (j-k) ∆j ∆v k w 0 L 2 (R 3 ) ,
where (for j, k ∈ Z) ∆j = ϕ(2 -j D) and ∆v k = ϕ(2 -k D 3 ) are the usual homogeneous Littlewood-Paley truncation operator, and its vertical counterpart (we refer to [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF][START_REF] Chemin | Fluids with anisotropic viscosity, Special issue for R. Temam's 60th birthday[END_REF][START_REF] Iftimie | The resolution of the Navier-Stokes equations in anisotropic spaces[END_REF] for details about the anisotropic Littlewood Paley theory), and where we define for a

, b ∈ [1, ∞], f L a,b h,v def = f (x h , .) L b (Rv) L a (R 2 h ) .
In the series of works [START_REF] Koh | Dispersive estimates for the Navier-Stokes equations in the rotational framework[END_REF][START_REF] Koh | Strichartz estimates for the Euler equations in the rotational framework[END_REF][START_REF] Lee | Dispersive estimates for the stably stratified Boussinesq equations[END_REF][START_REF] Iwabuchi | Global solutions for the incompressible rotating stably stratified fluids[END_REF] the authors manage to improve their Strichartz estimates from [START_REF] Iwabuchi | Ryo Dispersive effect of the Coriolis force and the local wellposedness for the Navier-Stokes equations in the rotational framework[END_REF][START_REF] Iwabuchi | Ryo Global solutions for the Navier-Stokes equations in the rotational framework[END_REF] thanks to the Riesz-Thorin theorem (as in [START_REF] Dutrifoy | Examples of dispersive effects in non-viscous rotating fluids[END_REF]) and the Littman theorem (see references in [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF]: the first one allows to turn the condition "r > 4" into "r > 2" whereas the second allows slightly larger upper bounds for δ). We also improved our Strichartz estimates from [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF] thanks to the same tools tools in [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] and we refer to the appendix of this article for an explaination of the improvements in the rotating fluids case. We begin with the statement of the estimates we use in the proof of Theorem 10.

Proposition 10 1. For any d ∈ R, m ≥ 2, θ ∈ [0, 1], and p ∈ [1, 2 θ(1-2 m )
], there exists a constant C = C p,θ,m such that for any divergence-free vectorfield w 0,ε , the solution W ε of (LRF ε ) with initial data w 0,ε satisfies:

|D| d W ε L p Ḃ0 m,q ≤ C p,θ,m ν 1 p -θ 2 (1-2 m ) ε θ 2 (1- 2 
m ) w 0,ε Ḃσ 1 2,q , (4.90) 2. If δ ≤ 1 4 , for any k ∈]0, 1[ (as close to 1 as we wish) and s ∈ [ 1 2 , 1 2 + ηδ], there exist C = C(δ, s, γ) > 0 such that:

with σ 1 = d + 3 2 -3 m -2 p + θ(1 -2 m ).
W ε L 2 1-s T L ∞,2 h,v + ν 1 2 ∇W ε L 2 3 2 -s T L 4,2 h,v ≤ CC 0 ν 1 2 (1-s-2γ-k( 1 2 +δ-s)) ε k 2 ( 1 2 +2η0δ-s) .
3. The previous estimates remain valid for any s ∈ [ 1 2 -ηδ, 1 2 + ηδ] when η ≤ 2η 0 min(1, 1 k -1) but the norm in L 

Proof of Proposition 10

As explained in [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], the proof of the first point is globally the same as in section 2.2 from the cited article. The only difference is that, as the hessian enjoys better properties in the case of the rotating fluids, the following estimate

L j (σ)g L q ≤ (C F ) 1-2 q 2 3j(1-2 q ) |σ| θ 2 (1-2 q ) g L q ,
is replaced by

L j (σ)g L q ≤ (C F ) 1-2 q 2 3j(1-2 q )
|σ| θ(1-2 q ) g L q , so that Point 1 provides a similar estimates as in Proposition 5, but with θ replaced by 2θ.

Let us focus on the second point, which extends the anisotropic estimates from [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF]. Assume that W ε solves (LRF ε ) with initial data w 0,ε . For any p, m ∈ [1, ∞] and any fixed j ∈ Z, we can write: ∆j |ξ| ∆j ∆v k w 0,ε (ξ)ϕ 1 (2 -j ξ)ϕ 1 (2 -k ξ 3 ) ψ(t, ξ)dξdt.

W ε L p L m,2 h,v ≤ k≤j+1 ∆j ∆v k W ε L p L m,2 h,v , (4 
Following the very same steps as in [START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] (and Section 4. where for any τ, σ and any function g, G j,k (τ, σ)g = F -1 e -σ|ξ| 2 +iτ ξ 3 |ξ| ϕ 1 (2 -j ξ) 2 ϕ 1 (2 -k ξ 3 ) 2 g(ξ) .

The Plancherel identity implies that (as in Section 4.2.2, ϕ 1 is supported in the annulus centered at zero and of radii 1 2 and 3.)

G j,k (τ, σ) L 2 →L 2 = G j,k (τ, σ) L 2,2 h,v →L 2,2 h,v ≤ Ce -σ 4 2 2j
. (4.94)

Moreover, thanks to Lemma 3 from [START_REF] Chemin | Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their application[END_REF], we also have for any θ ∈ [0, 1]: , (4.97)

G j,k (τ, σ) L 1,2 h,v →L ∞,2 h,v ≤ C min(1, |τ | -1 2 2 j-k )2 2j e -σ 4 2 2j ≤ C|τ | -θ 2 2 θ(j-k) 2 2j e -σ
where we put g(t) = ψ(t) L m,2 h,v e -ν 4 t2 2j . Following the same steps as in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF] we end up, thanks to the Hardy-Littlewood estimate, with:

∆j ∆v k W ε L p L m,2 h,v ≤ C ∆j w 0,ε L 2 ε θ 4 (1-2 m ) 2 1 2 θ(j-k)(1-2 m ) 2 j(1-2 m -2 q 2 ) 4 q 2 ν 1 q 2 , (4.98) 
with q 2 defined by 1 q2 = 1 p -θ 4 (1 -2 m ) (the condition on p comes from the fact that we ask q 2 ∈ [1, ∞]). Next, summing for k ≤ j + 1 (which explains why we ask m > 2 and θ > 0) we get that: ∆j

W ε L p L m,2 h,v ≤ C p,θ,m ν 1 p -θ 4 (1-2 m ) ∆j w 0,ε L 2 ε θ 4 (1-2 m ) 2 j(1-2 m -2 p + θ 2 (1-2 m )) . (4.99)
Multiplying by 2 jd and summing over j ∈ Z concludes the proof of Point 2.

Proof of Proposition 11

Similarly to the proof of Proposition 7, we use here Proposition 10. Point 1 is proven choosing (d, p, m, q, θ) ∈ {(1, 2, 3, 2, 3δ), (0, 2 1-s , 6, 2, 3 2 ( 1 2 + δ -s))} and we get:

     ∇W ε L 2 T L 3 ≤ C ν 1-2δ 4 ε δ 2 w 0,ε Ḣ 1 2 +δ , W ε L 2 1-s T L 6 ≤ C ν 1-δ 2 ε 1 2 ( 1 2 +δ-s) w 0,ε Ḣ 1 2 +δ .
In the first case, the fact that θ ∈ [0, 1] requires δ ≤ 1 3 and the condition p ≤ 2 θ(1-2 m ) requires δ ≤ 1. In the second case, the fact that these conditions are true for any s ∈ [ 1 2 , 1 2 + ηδ] require respectively δ ≤ 2 3 and δ ≤ 1 2 . The second condition is also true for any s ∈ [ 1 2 -ηδ, 1 2 ] and the first one is true for such s when δ(1 + η) ≤ 2 3 , which is realized when δ ≤ 1 4 and η ≤ 1. Let us now turn to the anisotropic estimates from Point 2. As the summability index in the Besov spaces from the second point of Proposition 10 is equal to 1 (our estimates do not allow it to be equal to 2), we have no choice but asking not only that the Ḣ 1 2 +δ -norm but also the Ḣ 1 2 +cδ -norm of w 0,ε are bounded by ε -γ .

Choosing (d, p, m) = (0, 2 1-s , ∞) and using Lemma 1 with (α, β) = (a θ 2 , b θ 2 ) (with a, b < 0) leads to: We recall that c ∈]0, 1[ is expected to be close to 1, and as was done in [START_REF] Charve | Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data[END_REF][START_REF] Charve | Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data[END_REF], we want to choose a, b > 0 so small that:

W ε L 2 1-s T L ∞,2
s + θ 2 (1 -a) = 1 2 + cδ, s + θ 2 (1 + b) = 1 2 + δ.
The rest is very close to what we did in Section 4.2.3: for some b > 0 to be fixed later, let us take θ = 2 1+b ( 1 2 + δ -s) then the existence of some a ∈]0, 1[ satisfying the other condition is equivalent

2. 1

 1 Estimates on G b and W inh ε Let us recall that we defined in (1.3) the external force term G (which is equal to G

L 3

 3 -norms, which are replaced by:

3 s

 3 ,2 -norm anymore and instead we write for (d, p, r, q) = (1, 2 2-s , 3 s , 1) and for any θ ∈ [0, 1] (as 2 2-s ≥ 1 when s ∈ [0, 2[):

3 and a = 1 -

 31 (1 + b)c for some small b

2 .with σ 2 = 1 .

 221 For any d ∈ R, m > 2, θ ∈]0, 1], p ∈ [1, 4 θ(1-2 m )] there exists a constant C = C p,θ,m such that for any divergence-free vectorfield w 0,ε , we have:|D| d W ε L p L m,d + 1 -2 m -2 p + θ 2 (1 -2 m). As a consequence we can state the following proposition, which allows to bound the terms involving W ε in (3.65).Proposition 11 Under the previous notations, if δ ≤1 3 , for any s ∈ [ 1 2 , 1 2 +ηδ], there exists a constant C = C(δ, s) > 0 such that:

  .92) and, definingB def = {ψ ∈ C ∞ 0 (R + × R 3 , R), ψ L p(R+ ,L m,2 h,v ) ≤1}, we have (with the same truncation function ϕ 1 as in Section 4.2.2) ∆j ∆v k W ε L p L m

2 h

 2 94) and (4.95) and using the Riesz-Thorin theorem, we end-up for any m ∈ [2, ∞] and θ ∈ [0, 1] with:G j,k (τ, σ) L m,

49 )

 49 Remark 6 Note that estimates (2.46) and (2.47) would be useless in Section 2.2 because 2 2-s ≥ 2 if and only if s ∈ [1, 2[, so when s ∈ [ 1 2 , 1 2 + ηδ] ⊂ [0, 1[ we cannot use neither Proposition 4, nor Proposition 6 which requires p ≥ 2.

  , Prop. II.2.20): Proposition 8 Let Ω ⊂ R d be an open set, and η ∈ L 1 (Ω) a nonnegative function. For any function f such that |f | α

to the fact that b > 0 is so small that ( 12 + cδ -s)(1 + b) < 1 2 + δ -s and in that case:

and we obtain:

Thanks to Assumption (H 2 ) from Theorem 10, we can choose b so small that:

and plugging this into (4.100) gives the estimate. For this choice of b, the corresponding θ is in

, and the fact that it is true for any

which is true as soon as δ ≤ 1 2 , k < 1 and 2η 0 < 1.

which is true when δ ≤ 1 2 and η ≤ 2η 0 ( 1 k -1).

Let us turn to the "p-index" from Proposition 10. From the equivalence:

which is true when δ ≤ 1 2 and η ≤ 2η 0 . The second term is treated choosing (d, p, m) = (1, 2 3 2 -s , 4) and θ = 2 1+b ( 1 2 + δ -s) with the same a, b as in the previous lines, for wich the analogous conditions on θ, p require that (4.102) and (4.104) are true but for 1 4 instead of 1 2 in the right-hand-side, which explains that the final condition for all of them to be true for any s ∈

Finally, the last point is treated choosing (d, p, m) = (1, 2 2-s , 2) and θ = 2 1+b ( 1 2 + δ -s) with the very same choice for b and conditions, which concludes the proof.
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