
HAL Id: hal-03636542
https://hal.science/hal-03636542v1

Preprint submitted on 11 Apr 2022 (v1), last revised 3 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotics for the rotating fluids and primitive
systems with large ill-prepared initial data in critical

spaces
Frederic Charve

To cite this version:
Frederic Charve. Asymptotics for the rotating fluids and primitive systems with large ill-prepared
initial data in critical spaces. 2022. �hal-03636542v1�

https://hal.science/hal-03636542v1
https://hal.archives-ouvertes.fr


Asymptotics for the rotating fluids and primitive systems

with large ill-prepared initial data in critical spaces

Frédéric Charve∗

Abstract

In this article we study the lifespan and asymptotics (in the large rotation and stratifi-
cation regime) for the Primitive system for highly ill-prepared initial data in critical spaces.
Compared to our previous works, we simplified the proof and made it adaptable to the Rotat-
ing fluids system with highly ill-prepared initial data decomposed as a sum of 2D horizontal
part and a very large 3D part. We also provide explicit convergence rates.

MSC: 35Q35, 35Q86, 35B40, 76D50, 76U05.
Keywords: Geophysical incompressible fluids, Strichartz estimates, Besov and Sobolev spaces.

1 Introduction

1.1 Geophysical fluids

Geophysical fluids dynamics are influenced by two concurrent ”forces”: the Coriolis force (induced
by the rotation of the Earth around its axis), and the vertical stratification of the density (induced
by gravity) in a way that can be measured through the Rossby and Froude numbers, namely
Ro and Fr. The smaller they are, the more influent are these two forces. In this article we
will consider, in the whole space, first the Primitive System (sometimes also called Primitive
Equations) and seconds the Rotating fluids system, only considering the rotationnal effects.

Let us first introduce the Primitive system: we are interested by the regime where both
phenomena are of the same scale (that is we choose Ro = ε and Fr = εF with F > 0) and we
will call ε the Rossby number and F the Froude number. The system is written as follows:

∂tUε + vε · ∇Uε − LUε + 1
εAUε = 1

ε (−∇Φε, 0),

div vε = 0,

Uε|t=0 = U0,ε.

(PEε)

The unknowns are on one hand Uε = (vε, θε) = (v1
ε , v

2
ε , v

3
ε , θε), where vε denotes the velocity of

the fluid and θε the scalar potential temperature (linked to the density, temperature and salinity),
and on the other hand Φε, which is called the geopotential and gathers the pressure term and
the centrifugal force. The diffusion operator L is defined by

LUε
def
= (ν∆vε, ν

′∆θε),

where ν, ν′ > 0 denote the kinematic viscosity and thermal diffusivity (both will be considered as
viscosities). The last term ε−1A gathers the rotation and stratification effects and the matrix A
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is defined by

A def
=


0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0

 .

The rotating fluids system is what we obtain if we only consider the velocity and neglect the last
line and column of A, it is written as follows:

∂tvε + vε · ∇vε − ν∆vε + e3∧vε
ε = −∇pε,

div vε = 0,

vε|t=0 = v0.

(RFε)

Both system are variations of the Navier-Stokes system, but each of them features a special
structure brought by their respective limit systems as ε goes to zero: the QG/oscillating structure
for (PEε), and the 2D-3D structure for (RFε). More details are given in the following parts.
We will use the same notations as in [12, 13]: for s ∈ R and T > 0 we define the space:

ĖsT = CT (Ḣs(R3)) ∩ L2
T (Ḣs+1(R3)),

endowed with the following norm (For (PEε) ν0 = min(ν, ν′), and for (RFε) ν0 = ν):

‖f‖2
ĖsT

def
= ‖f‖2

L∞T Ḣ
s + ν0

∫ T

0

‖f(τ)‖2
Ḣs+1dτ,

where Hs(R3) and Ḣs(R3) respectively denote the inhomogeneous and homogeneous Sobolev
spaces of index s ∈ R.
When T =∞ we simply denote Ės and the corresponding norm is taken over R+ in time.

1.2 Primitive system: strong solutions, limit system and QG/osc de-
composition

As emphasized in [12, 13], thanks to the skew-symmetry of A, the classical energy method used
to study the Navier-Stokes system (based on L2 or Hs/Ḣs inner products) do not ”see” the
penalized terms and are easily adapted to System (PEε). In the present work we will only focus

on the strong solutions provided by the Fujita-Kato theorem: For any fixed ε > 0, if U0,ε ∈ Ḣ
1
2

there exists a unique local-in-time strong solution, Uε, defined on [0, T ∗ε [ and such that for any

T < T ∗ε , Uε ∈ Ė
1
2

T . Note that the solution is global (that is T ∗ε = +∞) when the initial norm
‖Uε,osc‖

Ḣ
1
2

is bounded by cν0 for some small c > 0. We also have recall the following blow up

criterion: if the lifespan T ∗ε is finite then:∫ T∗ε

0

‖∇Uε(τ)‖2
Ḣ

1
2 (R3)

dτ =∞. (1.1)

Moreover, if in addition U0,ε ∈ Ḣs (for some fixed s ∈] − 3
2 ,

3
2 [) then we can propagate the

regularity as done for the Navier-Stokes system: Uε ∈ EsT for any T < T ∗ε . All these results are
true wether F = 1 (non-dispersive regime, we refer to [15, 11]) or F 6= 1 (dispersive regime).

In the present work, for a fixed F 6= 1, our interest is to study the convergence (and obtain
convergence rates) when ε goes to zero (that is for fast rotating and highly stratified systems) in
the case of ill-posed large initial data (see below for more details).

We refer to [15, 4, 5, 12, 13] for studies of the limit system as the small parameter ε goes to
zero and we will only recall here that this limit system is a transport-diffusion system coupled
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with a Biot-Savart inversion law and is called the 3D Quasi-geostrophic system:{
∂tΩ̃QG + ṽQG.∇Ω̃QG − ΓΩ̃QG = 0,

ŨQG = (ṽQG, θ̃QG) = (−∂2, ∂1, 0,−F∂3)∆−1
F Ω̃QG,

(QG)

where we set ∆F = ∂2
1 + ∂2

2 + F 2∂2
3 , and the operator Γ is defined by:

Γ
def
= ∆∆−1

F (ν∂2
1 + ν∂2

2 + ν′F 2∂2
3),

The quantity Ω̃QG = ∂1ṽ
2
QG−∂2ṽ

1
QG−F∂3θ̃QG is called the potential vorticity and led by this limit

system we introduce the following decomposition. Let U = (v, θ) be a 4-dimensional vectorfield,
we first define its potential vorticity Ω(U):

Ω(U)
def
= ∂1v

2 − ∂2v
1 − F∂3θ,

then its orthogonal decomposition into its quasi-geostrophic and oscillating (or oscillatory) parts
(in the same spirit as the Leray or Helmholtz decompositions):

UQG = Q(U)
def
=


−∂2

∂1

0
−F∂3

∆−1
F Ω(U), and Uosc = P(U)

def
= U − UQG. (1.2)

Definition 1 We will say that a vectorfield with four components U is quasi-geostrophic when
U = QU , and oscillating (or oscillatory) when U = PU .

We refer to [15, 4, 5, 10, 11, 12, 13]) for more properties of the associated orthogonal projectors
Q and P. In particular System (QG) can be rewritten into:

∂tŨQG +Q(ṽQG.∇ŨQG)− ΓŨQG = 0,

ŨQG = Q(ŨQG),

ŨQG|t=0 = Ũ0,QG.

(QG)

Not only can we adapt the Leray and Fujita-Kato theorems to System (QG), but this system
also enjoys more ”2D”-features as described in Theorem 14 from [12] (see also [5, 7, 12]): if we

make additional low-frequency assumptions, namely Ũ0,QG ∈ H
1
2 +δ, we obtain global existence

in Ė0∩ Ė 1
2 +δ (see below for this notation) without any smallness condition on the initial data. In

the present article we only assume that Ũ0,QG ∈ Ḣ
1
2 ∩ Ḣ 1

2 +δ, and in this case we only rely on the
classical Fujita-Kato theorem that we state here in a form including the regularity propagation
property (and without assumptions on ν, ν′ > 0):

Theorem 1 For any Ũ0,QG ∈ Ḣ
1
2 (R3), there exists a maximal lifespan T̃ ∗QG > 0 and a unique

solution ŨQG ∈ Ė
1
2
t for all t < T̃ ∗QG. Moreover

• There exists c0 > 0 such that if ‖Ũ0,QG‖
Ḣ

1
2
≤ c0 min(ν, ν′) then T̃ ∗QG = +∞ and for any

t ≥ 0,

‖ŨQG(t)‖2
Ḣ

1
2

+ min(ν, ν′)

∫ t

0

‖ŨQG(τ)‖2
Ḣ

3
2
dτ ≤ ‖Ũ0,QG‖2

Ḣ
1
2
.

• We have the following blow-up criterion:∫ T̃∗QG

0

‖ŨQG(τ)‖2
Ḣ

3
2
dτ < +∞ =⇒ T̃ ∗QG = +∞.
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• Finally, if for some s ∈] − 3
2 ,

3
2 [ we have Ũ0,QG ∈ Ḣ

1
2 ∩ Ḣs then for any t < T̃ ∗QG, ŨQG ∈

Ė
1
2
t ∩ Ėst and there exists a constant C = Cs > 0 such that,

‖ŨQG(t)‖2
Ḣs

+ min(ν, ν′)

∫ t

0

‖ŨQG(τ)‖2
Ḣs+1dτ ≤ ‖Ũ0,QG‖2Ḣse

C
min(ν,ν′)

∫ t
0
‖ŨQG(τ)‖2

Ḣ
3
2
dτ
.

Going back to System (PEε), we introduce Ωε = Ω(Uε), and the usual procedure is then to
study separately Uε,QG = Q(Uε) and Uε,osc = P(Uε). We also decompose the initial data into its
oscillating and quasi-geostrophic parts: U0,ε = U0,ε,osc + U0,ε,QG. We will assume that the QG-

part converges to some quasi-geostrophic vectorfield Ũ0,QG, and that the oscillating part is very
large (in terms of the Rossby number ε) we say that such an initial data is ill-prepared. We refer
to [13] for a small survey concerning recent results about this system and to [15, 1, 4, 10, 11, 12]
for more details.

In the present article, we ask from now on that F 6= 1 and mainly focus on the case ν = ν′

(we will sometimes make remarks about the results in the case ν 6= ν′) to extend our results for
less regular initial data. More precisely, in the continuity of [12, 13], we are interested in showing
that for very large ill-posed, and less regular, initial data, we are still able to show that the
solutions of (PEε) converge to the solution of (QG), and provide a convergence rate according
to the following sketchy statement:

Theorem 2 (Rough statement of the results) For large ill-posed initial data in Ḣ
1
2 ∩ Ḣ 1

2 +δ

(initial oscillating part of size ε−γ) the lifespan T ∗ε can be made as close to T̃ ∗QG as desired provided

that the Rossby number ε is small enough. Moreover, we show that ‖|D|β(Uε− ŨQG)‖L2L∞ is of

size εβ
′

for some small β, β′ > 0. We can reach β = 0 with additional low frequency assumptions
on the initial data.

We also simplified the proofs so that we can adapt them to prove similar results for the case of
the Rotating fluids system.

1.3 Primitive system: auxiliary systems and statement of the results

As in [12, 13], we will not be able to estimate directly Uε−ŨQG and will need to introduce auxiliary
systems that will also help us stating our results. With the usual notation, for f : R3 → R4,
f · ∇f =

∑3
i=1 f

i∂if , let us first rewrite (QG) as follows:{
∂tŨQG − Γ∆Uε + 1

εPAŨQG = −P(ŨQG.∇ŨQG) +G,

ŨQG|t=0 = Ũ0,QG.
(QG)

where G is the following divergence-free and potential vorticity-free vectorfield defined as

G = Gb +Gl
def
= PP(ŨQG.∇ŨQG)− F (ν − ν′)∆∆−2

F


−F∂2∂

2
3

F∂1∂
2
3

0
(∂2

1 + ∂2
2)∂3

 Ω̃QG. (1.3)

In [12, 13], we then considered the solution Wε of the following linear system :{
∂tWε − Γ∆Wε + 1

εPAWε = −G,
Wε|t=0 = U0,ε,osc.

(1.4)
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In the present paper the fact that we only assume Ũ0,QG ∈ Ḣ
1
2 ∩ Ḣ 1

2 +δ makes a major difference
as the term G is now much less handy to manipulate (not L1 in time anymore, more details
below), which suggests to split Wε as follows Wε = Wh

ε +W inh
ε with:{

∂tW
h
ε − Γ∆Wh

ε + 1
εPAW

h
ε = 0,

Wh
ε |t=0 = U0,ε,osc,

and

{
∂tW

inh
ε − Γ∆W inh

ε + 1
εPAW

inh
ε = −G,

W inh
ε |t=0 = 0,

(1.5)

each one with a different behaviour and requiring different Strichartz estimates as outlined in
Proposition 2 below. From now on, we switch to the case ν = ν′, inducing the following sim-
plifications: the non-local operator Γ turns into ν∆ and G = Gb (we refer to [12, 13] for more
details). Next, we define

δε = Uε − ŨQG −Wh
ε −W inh

ε ,

and focus on the system it satisfies, that we write here:∂tδε − ν∆δε + 1
εPAδε =

10∑
i=1

Fi,

δε|t=0 = U0,ε,QG − Ũ0,QG,

(1.6)

with:

F1
def
= −P(δε · ∇δε), F2

def
= −P

(
δε · ∇(ŨQG +W inh

ε )
)
, F3

def
= −P

(
(ŨQG +W inh

ε ) · ∇δε
)
,

F4
def
= −P(δε · ∇Wh

ε ), F5
def
= −P(Wh

ε · ∇δε), F6
def
= −P(ŨQG · ∇W inh

ε ),

F7
def
= −P

(
(ŨQG +W inh

ε ) · ∇Wh
ε

)
, F8

def
= −P

(
Wh
ε · ∇(ŨQG +W inh

ε )
)

F9
def
= −P

(
W inh
ε · ∇(ŨQG +W inh

ε )
)
, F10

def
= −P(Wh

ε · ∇Wh
ε ).

(1.7)
Let us state our first result:

Theorem 3 (No smallness assumption) Assume F 6= 1 and ν = ν′ and let T̃ ∗QG and T ∗ε be

the lifespan of ŨQG and Uε as introduced previously.

1. For any T < T̃ ∗QG, C0 ≥ 1, δ ∈]0, 1
6 ] and any α0 > 0, there exist εT ,mT > 0 and D̃T ≥ 1

(depending on F, ν,C0, δ, α0 and T ) such that for all ε ∈]0, εT ] and all divergence-free initial

data U0,ε = U0,ε,QG + U0,ε,osc ∈ Ḣ
1
2 ∩ Ḣ 1

2 +δ satisfying the following assumptions:

• (H1) There exists a quasi-geostrophic vectorfield Ũ0,QG ∈ Ḣ
1
2 ∩ Ḣ 1

2 +δ such that{
‖U0,ε,QG − Ũ0,QG‖

Ḣ
1
2 ∩Ḣ

1
2

+δ ≤ C0ε
α0 ,

‖Ũ0,QG‖
Ḣ

1
2 ∩Ḣ

1
2

+δ ≤ C0.

• (H2) ‖U0,ε,osc‖
Ḣ

1
2

+δ ≤ m(ε)ε−
δ
2 , with 0 < m(ε) ≤ mT ,

we have T ∗ε > T and with Wh
ε ,W

inh
ε and δε defined as previously,

‖δε‖
Ė

1
2
T

≤ D̃T max(εα0 , ε
δ
2 ,m(ε)).

2. For any T < T̃ ∗QG, C0 ≥ 1, δ ∈]0, 1
4 [, γ ∈]0, δ2 [ and any α0 > 0, if η0 = 1

2 (1 − 2γ
δ ) (or

equivalently γ = (1−2η0) δ2 ), there exist εT > 0 and D̃T ≥ 1 (depending on F, ν,C0, δ, α0, γ,
and T ) such that for all ε ∈]0, εT ] and all divergence-free initial data U0,ε = U0,ε,QG +

U0,ε,osc ∈ Ḣ
1
2 ∩ Ḣ 1

2 +δ satisfying (H1) and:
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• (H3) ‖U0,ε,osc‖
Ḣ

1
2

+δ ≤ C0ε
−γ ,

then the following results are true:

(a) T ∗ε > T and for all s ∈ [ 1
2 ,

1
2 + 2η0δ[

‖δε‖ĖsT ≤ D̃T εmin
(
α0,

δ
2−γ+ 1

2 ( 1
2−s)

)
= D̃T εmin

(
α0,

1
2 ( 1

2 +2η0δ−s)
)
. (1.8)

(b) Moreover if, in addition, there exists c ∈]0, 1[ (assumed to be close to 1) such that

• (H4) ‖U0,ε,osc‖
Ḣ

1
2

+cδ∩Ḣ
1
2

+δ ≤ C0ε
−γ ,

then we can get rid of the oscillations: for all η ∈]0, 2η0[, for all η′ ∈]0,min(η, c)[, if

ε ∈]0, εT ] (εT and D̃T now also depend on c, η, η′)∥∥|D|η′δ(Uε − ŨQG)
∥∥
L2
TL
∞ ≤ D̃T εmin

(
α0,(η0− η2 )δ

)
.

(c) Finally, with more low-frequency regularity on the initial oscillating part, that is

• (H5) U0,ε,osc, U0,ε,QG, Ũ0,QG ∈ Ḣ
1
2−δ ∩ Ḣ 1

2 +δ, U0,ε,osc satisfies (H4), and (H1) is
modified as follows:{

‖U0,ε,QG − Ũ0,QG‖
Ḣ

1
2
−δ∩Ḣ

1
2

+δ ≤ C0ε
α0 ,

‖Ũ0,QG‖
Ḣ

1
2
−δ∩Ḣ

1
2

+δ ≤ C0,

then for any T < T̃ ∗QG and any k ∈]0, 1[ (as close to 1 as we wish), if ε ≤ εT then (1.8)

can be extended, for all s ∈ [ 1
2 − ηδ,

1
2 [ (with 0 < η < 2η0) into:

‖δε‖ĖsT ≤ D̃T εmin
(
α0,

k
2−skη0δ,

1
2 ( 1

2 +2η0δ−s)
)
,

and finally, we have for all ε ≤ εT :

‖Uε − ŨQG‖L2
TL
∞ ≤ D̃T ε

1
2 (min(α0,

2
3kη0δ)+min(α0,kη0δ)),

Two immediate extensions can be proved:

Theorem 4 (Smallness assumption) If (H1) is supplemented with ‖Ũ0,QG‖
Ḣ

1
2
≤ c0ν, the

previous theorem can be expressed as in [12, 13], that is the estimates becomes uniform in time,

the constants D̃T become universal constants B0, ”T ∗ε > T” becomes ”T ∗ε = +∞” and there is no

mention to some T < T̃ ∗QG anymore.

Finally, when ν 6= ν′ the result can also be generalized:

Theorem 5 (Extension of Theorem 21 from [12], ν 6= ν′) Replacing Assumption (1) by
(H1) but keeping (2) for the oscillating part, allows to extend the result when ν 6= ν′ for both

small and large ‖Ũ0,QG‖
Ḣ

1
2

.

Remark 1 1. Proving the last result requires an adaptation of the Strichartz estimates from
[12] similar to what we did in [13] and in the present paper in order to improve the condition
r > 4 into r > 2. The low frequency assumption (2) has to be kept because of truncation
arguments.

2. We tried to simplify the statement of the result from Points 2.b and 2.c compared to [13].

Remark 2 As we explained, Theorem 3 is in fact valid for any δ < 1
4 (and the last bound

becomes D̃T εmin(α0,kη0δ)). We can prove it with the arguments from [12, 13] featuring non-local
3D-fractional derivation operators that are adapted neither to anisotropic estimates, nor to 2D-
3D products involved in the rotating fluids case. This is why we present here a simplified version
of the proof, only holding when δ ≤ 1

6 , but adapted to prove the corresponding results for the
rotating fluids system, which is the object of the following part.
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1.4 Rotating fluids: auxiliary systems and statement of the results

As outlined in [16, 17, 18], if v0 belongs to L2(R3) or Ḣ
1
2 (R3) the Leray and Fujita-Kato theorems

can be easily adapted but these energy methods fitted to the generic Navier-Stokes system do not
take advantage of the special 2D structure induced by strong rotation (when the Rossby number
ε is small).

Moreover, when we consider a more physically relevant initial data of the form v0(x) =
v0(xh, x3) = ū0(xh) +w0(x) (where xh = (x1, x2) denotes the horizontal variable, and both parts
have three components and are divergence-free), the previous results have to be adapted and
Chemin, Desjardins, Gallagher and Grenier (we refer to [16, 18]) first introduce, as a candidate
for the limit of the solutions of System (RFε) when ε goes to zero, (ū, p̄) = (ū, p̄)(xh) solving the
following 2D-Navier-Stokes system (but with three components) :

∂tū+ ū · ∇ū− ν∆ū = −∇p̄,
div ū = 0,

ū|t=0 = ū0.

(2D −NS)

This system can be rewritten as follows (with ū = (ūh, ū3) and the convention that operators
acting only on the horizontal variable are written ∇h, div h and ∆h)

∂tūh + ūh · ∇hūh − ν∆hūh = −∇hp̄,
∂tū3 + ūh · ∇hū3 − ν∆hū3 = 0,

div hūh = 0,

ū|t=0 = ū0.

(2D −NS)

The fact that there are three components does not change the result compared to the classical
2D-Navier-Stokes system, and we refer to [16, 18], for the following result:

Theorem 6 Let ū0 ∈ L2(R2)3 such that div hū0,h = ∂1ū
1
0 + ∂2ū

2
0 = 0. There exists a unique

global solution ū ∈ Ė0(R2)3. Moreover this solution belongs to C(R+, L
2(R2)) and satisfies the

equality:
1

2
‖ū(t)‖2L2 + ν

∫ t

0

‖∇ū(τ)‖2L2dτ =
1

2
‖ū0(t)‖2L2 .

Then Chemin, Desjardins, Gallagher and Grenier study the following modified Navier-Stokes-type
system (formally resulting from considering wε = vε − ū and putting the rotation term involving
ū in the pressure gradient):

∂twε + wε · ∇wε + wε · ∇ū+ ū · ∇wε − ν∆wε + e3∧wε
ε = −∇qε,

divwε = 0,

wε|t=0 = w0.

(PRFε)

Note that as emphasized for System (PEε), the rotation term disappears when performing any
inner product in L2 or a Sobolev space, and the real difference comes here from the additional
transport terms which involve products of 2D and 3D functions that require the following Sobolev
product laws:

Proposition 1 There exists a constant C > 0 such that for any s, t < 1 with s+ t > 0 and any
u ∈ Ḣs(R2), v ∈ Ḣt(R3), then uv ∈ Ḣs+t−1(R3) and we have:

‖uv‖Ḣs+t−1(R3) ≤ C‖u‖Ḣs(R2)‖v‖Ḣt(R3).
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Then they obtain the Leray and Fujita-Kato theorems for a fixed ε:

Theorem 7 ([16, 18]) Let ū0 ∈ L2(R2)3 and let ū be the associated global solution of System
(RFε). If w0 ∈ L2(R3) with divw0 = 0 there exists a global weak Leray solution w ∈ Ė0 to
System (PRFε) satisfying for all t ≥ 0:

‖wε(t)‖2L2 + ν

∫ t

0

‖wε(τ)‖2L2dτ ≤ ‖w0‖2L2e
C
ν2 ‖ū0‖2L2 .

Moreover, this solution converges to ū in the sense that for any q ∈]2, 6[ and any T ≥ 0, we have

lim
ε→0

∫ T

0

‖wε(τ)‖2Lq(R3)dτ = 0.

The product laws also make it possible to adapt the Fujita-Kato theorem to this modified 3D-
Navier-Stokes system:

Theorem 8 Under the same notations:

• If w0 ∈ Ḣ
1
2 (R3) with divw0 = 0, there exists a unique local strong (Fujita-Kato) solution

wε defined on some [0, T ∗ε [ and for any t < T ∗ε , wε ∈ Ė
1
2
t .

• Moreover we also have the same blow-up criteria as for Navier-Stokes as well as regularity
propagation when in addition w0 ∈ Ḣs for some s ∈]− 3

2 ,
3
2 [.

• Finally there exists c0 > 0 and C = C(ν, ‖ū‖L2) such that if ‖w0‖
Ḣ

1
2
≤ c0ν then T ∗ε = +∞

and ‖wε‖
Ė

1
2
≤ C‖w0‖

Ḣ
1
2

.

This allows to construct vε = wε + ū that solves (RFε) with the classical Navier-Stokes tools but
more can be done when taking advantage of the special features brought by strong rotation and
more precisely by the dispersive properties featured by the following system (P still denotes the
classical Leray projector on divergence-free vectorfields):{

∂tWε − ν∆Wε + 1
εP(e3 ∧Wε) = 0,

Wε|t=0 = w0.
(LRFε)

The authors prove Strichartz estimates (see Proposition 9) and obtain the following global exis-
tence result:

Theorem 9 ([16, 18]) Let v0 = ū0 + w0 with ū0 ∈ (L2(R2))3 and w0 ∈ (Ḣ
1
2 (R3))3 (both of

them divergence-free). There exists ε0 > 0 such that for all ε ∈]0, ε0], there is a unique global
solution vε to System (RFε) which satisfies (where ū and Wε are the respective unique solutions
of (PRFε) and (LRFε)):

• wε = vε − ū ∈ C0
b (R+, Ḣ

1
2 ) ∩ Ė 1

2 ,

• ‖vε − ū−Wε‖
Ė

1
2
−→
ε→0

0.

Remark 3 1. The result does not require any smallness from the initial data (but of course,
ε0 is taylored depending on the size of the initial data.)

2. In [17] the authors extend their result in the case of anisotropic viscosity (and possible zero
vertical viscosity).
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In the second part of this article, we wish to extend this result in the spirit of what we did with
System (PEε), considering initial data that depend on ε and are ill-posed in the sense that their
norm blow-up when ε goes to zero. Asking small extra-regularity allows us to prove in this case
global existence of solutions and exhibit an explicit convergence rate as a power of the Rossby
number. This is the aim of the following result:

Theorem 10 1. For any C0 ≥ 1, δ ∈]0, 1
4 ], c, k ∈]0, 1[ (as close as we wish to 1) and γ ∈]0, δ2 [,

if η0 = 1
2 (1 − 2γ

δ ) (put differently γ = (1 − 2η0) δ2 ), there exists ε0 > 0 and D0 ≥ 1
(depending on ν,C0, δ, c, k, γ) such that for all ε ∈]0, ε0] and all initial data v0 = ū0 + w0,ε

with ū0 ∈ (L2(R2))3 and w0,ε ∈ (Ḣ
1
2 (R3) ∩ Ḣ 1

2 +δ(R3))3 (both of them divergence-free)
satisfying:

• (H ′2) ‖w0,ε‖
Ḣ

1
2

+cδ∩Ḣ
1
2

+δ ≤ C0ε
−γ ,

then T ∗ε = +∞ and for all s ∈ [ 1
2 ,

1
2 + 2η0δ[ we have:

‖δε‖Ės ≤ D0ε
k( 1

2 +2η0δ−s). (1.9)

2. Moreover we can get rid of the oscillations: for all η ∈]0, 2η0[, η′ ∈]0,min(η, c)[, we have for
all ε ∈]0, ε0] (ε0,D0 now also depend on η, η′)∥∥|D|η′δwε∥∥L2L∞

=
∥∥|D|η′δ(vε − ū)

∥∥
L2L∞

≤ D0ε
kδ(η0− 1

2η
′).

3. Finally, if we ask more low-frequency regularity on the initial 3D-part, that is w0,ε ∈ Ḣ
1
2−δ∩

Ḣ
1
2 +δ and still satisfies (H ′2), then when s ∈ [ 1

2 − ηδ,
1
2 [ (with 0 < η < 2η0 min

(
1, 1

k − 1
)
)

(1.9) becomes for all ε ∈]0, ε0]:

‖δε‖Ės ≤ D0ε
k

2(2−s) ( 1
2 +2η0δ−s),

and we have:
‖wε‖L2L∞ = ‖vε − ū‖L2L∞ ≤ D0ε

5
6kη0δ.

Remark 4 1. Note that Point 2. is slightly better than Point 2.b from Theorem 3.

2. Our result also generalizes the works from [21, 24, 25, 27] as they consider initial data with
only 3D part (that is their limit is the solution of System (2D −NS) with ū = 0, that is
zero initial 2D-part) and [29, 26] which only consider small initial QG-part in the critical
space.

3. Let us mention [20] devoted to the Euler-Coriolis system, with initial data also decomposed
as a sum of a 2D and a 3D functions.

This article will be structured as follows: we begin with energy estimates for W inh
ε and Wh

ε .
Then we focus on the proof of Theorem 3 and 10. We postponed to the appendix the proofs of
the new Strichartz estimates: first the one needed to deal with W inh

ε and then the anisotropic
Strichartz estimates for Wε. An important feature of the present article is that the proof we
present here is much simpler than in [12, 13] as we do not resort to non-local fractional derivatives
operators, but this simpler method is valid for a narrower range for δ (when δ ≤ 1

6 whereas we
can reach δ < 1

4 with the arguments from the cited article).
For the sake of conciseness we will only focus on what is new and will often refer to [5, 12, 13]

about the quasi-geostrophic structure, to [16, 18] for the rotating fluids. We also give minimal
details about the Littlewood-Paley decomposition and will mostly refer to [2] for an in-depth
study.
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2 Proof of Theorem 3

2.1 Estimates on Gb and W inh
ε

Let us recall that we defined in (1.3) the external force term G (which is equal to Gb when ν = ν′).
If W inh

ε et Wh
ε are the solutions of the linear systems from (1.5), then Wh

ε is globally defined,

and W inh
ε is defined on [0, T̃ ∗QG[.

Proposition 2 Assume that Ũ0,QG ∈ Ḣ
1
2 ∩ Ḣ 1

2 +δ (with δ > 0).

1. There exists a constant C > 0 such that the external force term satisfies for all t < T̃ ∗QG:
For all r > 1, ‖Gb‖

Lrt Ḣ
− 3

2
+ 2
r
≤ C

ν
1
r
‖Ũ0,QG‖2

Ḣ
1
2
e
C
ν Ct ,

For all r > 1
1− δ2

, ‖Gb‖
Lrt Ḣ

− 3
2

+ 2
r

+2δ ≤ C

ν
1
r
‖Ũ0,QG‖2

Ḣ
1
2

+δ
e
C
ν Ct ,

(2.10)

where Ct =
∫ t

0
‖ŨQG(τ)‖2

Ḣ
3
2
dτ .

2. There exists a constant C > 0 such that for all t < T̃ ∗QG and s ∈ [ 1
2 ,

1
2 + 2δ],

‖W inh
ε (t)‖2

Ḣs
+ ν

∫ t

0

‖W inh
ε (τ)‖2

Ḣs+1dτ ≤
C

ν2
‖Ũ0,QG‖4

Ḣ
1
2 ∩Ḣ

1
2

+δ
e

2C
ν Ct . (2.11)

Remark 5 1. It is immediate to prove that for all t ≥ 0 and s ∈ [ 1
2 ,

1
2 + δ],

‖Wh
ε (t)‖2

Ḣs
+ 2ν

∫ t

0

‖Wh
ε (τ)‖2

Ḣs+1dτ ≤ ‖U0,ε,osc‖2Ḣs . (2.12)

We will not use these energy estimates for Wh
ε (except at the end of the bootstrap argument)

as only the norm in Ḣ
1
2 +δ is controlled, but with a negative power of ε.

2. On the contrary, we will abundantly use them for W inh
ε which is a little more regular than

ŨQG and everywhere both of these quantities are involded we will estimate W inh
ε similarly

to ŨQG.

3. As we only control the Ḣ
1
2 +δ-norm of U0,ε,osc, the best we could hope for in terms of

uniform in ε energy estimates for Wh
ε would be provided by the Strichartz estimates (see

the appendix): for all t ≥ 0 and σ ∈] 3
4 ( 1

2 + δ), 1
2 + δ],

‖Wh
ε ‖2

L∞t L
6

3−2σ
+ ν‖∇Wh

ε ‖2
L2
tL

6
3−2σ

≤ Cν 1
2 +δ−σε

3
σ ( 1

2 +δ−σ)‖U0,ε,osc‖2
Ḣ

1
2

+δ
.

4. In the case of small initial data (‖Ũ0,QG‖
Ḣ

1
2
≤ c0ν) we simply use the bound Ct ≤

1
ν ‖Ũ0,QG‖

Ḣ
1
2
≤ C0

ν .

Proof: From the energy estimates given by Theorem 1 (as well as the propagation of the Ḣ
1
2 +δ-

regularity) we obtain by complex interpolation that for all t < T̃ ∗QG and p ∈ [2,∞],
‖ŨQG‖

Lpt Ḣ
1
2

+ 2
p
≤ C

ν
1
p
‖Ũ0,QG‖

Ḣ
1
2
e
C
ν Ct ,

and

‖ŨQG‖
Lpt Ḣ

1
2

+ 2
p

+δ ≤ C

ν
1
p
‖Ũ0,QG‖

Ḣ
1
2

+δe
C
ν Ct .

(2.13)
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Thanks to the Bernstein Lemma, the paraproduct and remainder laws (we refer to [2] for the
Bony decomposition): for any s1, s2 ∈ [ 1

2 ,
1
2 + δ], and any p, q ∈ [2,∞]:

‖Gb‖
Ḣ
s1+s2+ 2

p
+ 2
q
− 5

2
≤ C

(
‖TŨQG∇ŨQG‖Ḣs1+s2+ 2

p
+ 2
q
− 5

2
+ ‖T∇ŨQGŨQG‖Ḣs1+s2+ 2

p
+ 2
q
− 5

2

+
∑

i,j=1,...,3

‖divR(Ũ iQG, Ũ
j
QG)‖

Ḃ
s1+s2+ 2

p
+ 2
q
−1

1,2

)
. (2.14)

If p satisfies 2
p <

3
2 − s1 we can bound the first term as follows:

‖TŨQG∇ŨQG‖Ḣs1+s2+ 2
p

+ 2
q
− 5

2

≤ C‖ŨQG‖
Ḃ
s1+ 2

p
− 3

2
∞,∞

‖∇ŨQG‖
Ḣ
s2+ 2

q
−1 ≤ C‖ŨQG‖

Ḣ
s1+ 2

p
‖ŨQG‖

Ḣ
s2+ 2

q
. (2.15)

When 2
q <

5
2 − s2 (which is true as soon as δ < 1), the second term satisfies:

‖T∇ŨQGŨQG‖Ḣs1+s2+ 2
p

+ 2
q
− 5

2

≤ C‖∇ŨQG‖
Ḃ
s2+ 2

q
− 5

2
∞,∞

‖ŨQG‖
Ḣ
s1+ 2

p
≤ C‖ŨQG‖

Ḣ
s1+ 2

p
‖ŨQG‖

Ḣ
s2+ 2

q
. (2.16)

And as s1 + s2 + 2
p + 2

q > 0 we easily get that∑
i,j=1,...,3

|R(Ũ iQG, Ũ
j
QG)‖

Ḃ
s1+s2+ 2

p
+ 2
q

1,2

≤ C‖ŨQG‖
Ḣ
s1+ 2

p
‖ŨQG‖

Ḣ
s2+ 2

q
.

To sum up, we just obtained that under the previous notations, if we set r such that 1
r = 1

p + 1
q ,

then r satisfies 2
r <

5
2 − s1 (contrary to p, q has no constraint) and we have:

‖Gb‖
Lrt Ḣ

s1+s2+ 2
p

+ 2
q
− 5

2
≤ C‖ŨQG‖

Lpt Ḣ
s1+ 2

p
‖ŨQG‖

Lqt Ḣ
s2+ 2

q

≤ C

ν
1
p+ 1

q

‖Ũ0,QG‖Ḣs1‖Ũ0,QG‖Ḣs2 e
C
ν Ct . (2.17)

Conversely, if r satisfies 2
r <

5
2 − s1 can we find p (with 2

p <
3
2 − s1) and q ∈ [2,∞] such that

1
r = 1

p + 1
q ? Introducing α ∈]0, 5

2 − s1[ such that 2
r <

5
2 − s1 − α we would like to simply take p

so that 2
p = 3

2 − s1 − α which is possible if and only if α ∈]0, 3
2 − s1[, so that two cases have to

be considered:

• If α ∈]0, 3
2 − s1[, setting q = 2 and p so that 2

p = 3
2 − s1 − α ensures that 2

p <
3
2 − s1,

• If α ∈ [ 3
2 − s1,

5
2 − s1[, then we simply take q = r and p =∞ and the condition on p is once

more satisfied.

Writing (2.17) when s1 = s2 = 1
2 or 1

2 + δ gives the first part of the proposition.

To prove the second point, let us simply perform the innerproduct in Ḣs (for some s) of (1.5)

with W inh
ε : for all t < ŨQG,

1

2

d

dt
‖W inh

ε (t)‖2
Ḣs

+ ν‖W inh
ε (t)‖2

Ḣs+1

≤ ‖Gb‖Ḣs−1‖W inh
ε ‖Ḣs+1 ≤

ν

2
‖W inh

ε (τ)‖2
Ḣs+1 +

C

ν
‖Gb‖2

Ḣs−1 . (2.18)

Notice that due to point 1 (with r = 2), s can freely live in [ 1
2 ,

1
2 +2δ] and the result easily follows

as ‖Ũ0,QG‖
Ḣ

1
2 ∩Ḣ

1
2

+δ = max
(
‖Ũ0,QG‖

Ḣ
1
2
, ‖Ũ0,QG‖

Ḣ
1
2

+δ

)
. �
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2.2 Estimates on δε

We will only focus on Theorem 3 (without smallness assumptions), the proof of Theorem 4 being
easier as Ct is bounded by C0

ν .

As we outlined in Section 1.3, when Ũ0,QG is not assumed to be small in Ḣ
1
2 , ŨQG is defined

on [0, T̃ ∗QG[, as well as W inh
ε . Moreover, thanks to the additional regularity assumptions, for all

t < T̃ ∗QG, ŨQG and W inh
ε belong to Ė

1
2
t ∩ Ė

1
2 +δ
t . Note that Uε also belongs to the previous space

but for t < T ∗ε .

Let us fix some T < T̃ ∗QG, assume that ε satisfies Conditions (2.36) and (2.38) (that is ε ≤ εT
for some small εT ) and assume by contradiction that

T ∗ε ≤ T, (2.19)

then it is finite and in particular by the blow-up criterion (1.1) is true. Now as in [12, 13] let us
define (with C introduced in (2.31))

Tε
def
= sup{t ∈ [0, T ∗ε [, ∀t′ ≤ t, ‖δε(t′)‖

Ḣ
1
2
≤ ν

4C
}, (2.20)

If ε > 0 is so small that ‖δε(0)‖Ḣ 1
2

= εα0 ≤ ν
8C then Tε > 0. Now assume by contradiction that:

Tε < T ∗ε . (2.21)

Then for all t ≤ Tε < T ∗ε ≤ T < T̃ ∗QG, performing (for s ∈ [ 1
2 ,

1
2 + ηδ]) the Ḣs-inner product of

System (1.6) by δε we have (the external force terms are defined in (1.7)):

1

2

d

dt
‖δε(t)‖2Ḣs + ν‖∇δε(t)‖2Ḣs ≤

10∑
j=1

(Fj |δε)Ḣs .

Now we bound each term from the r.h.s. The first three ones are treated exactly like in [12] and
there exists a constant C > 0 such that:

|(F1|δε)Ḣs | ≤ C‖δε‖Ḣ 1
2
‖δε‖2Ḣs+1 ,

|(F2|δε)Ḣs | ≤
ν
18‖δε‖

2
Ḣs+1 + C

ν

(
‖ŨQG‖2

Ḣ
3
2

+ ‖W inh
ε ‖2

Ḣ
3
2

)
‖δε‖2Ḣs ,

|(F3|δε)Ḣs | ≤
ν
18‖δε‖

2
Ḣs+1 + C

ν3

(
‖ŨQG‖2

Ḣ
1
2
‖ŨQG‖2

Ḣ
3
2

+ ‖W inh
ε ‖2

Ḣ
1
2
‖W inh

ε ‖2
Ḣ

3
2

)
‖δε‖2Ḣs .

(2.22)
The other terms will be bounded differently: when s ∈ [0, 1], we have 2s = (1 − θ)s + θ(s + 1)
with θ = s, and 1 = (1− θ′)s+ θ′(s+ 1) with θ′ = 1− s,

|(F4|δε)Ḣs | ≤ C‖F4‖L2‖δε‖Ḣ2s ≤ C‖δε‖L6‖∇Wh
ε ‖L3‖δε‖Ḣ2s ≤ C‖∇Wh

ε ‖L3‖δε‖Ḣ1‖δε‖Ḣ2s

≤ C‖∇Wh
ε ‖L3‖δε‖Ḣs‖δε‖Ḣs+1 ≤

ν

18
‖δε‖2Ḣs+1 +

C

ν
‖∇Wh

ε ‖2L3‖δε‖2Ḣs . (2.23)

Similarly (using the Sobolev injections and the fact that 3
2 = (1− θ′)s+ θ′(s+ 1) with θ′ = 3

2 − s
and the Young inequality with ( 4

3 , 4)),

|(F5|δε)Ḣs | ≤ C‖F5‖L2‖δε‖Ḣ2s ≤ C‖Wh
ε ‖L6‖∇δε‖

Ḣ
1
2
‖δε‖Ḣ2s

≤ C‖Wh
ε ‖L6‖δε‖

1
2

Ḣs
‖δε‖

3
2

Ḣs+1
≤ ν

18
‖δε‖2Ḣs+1 +

C

ν3
‖Wh

ε ‖4L6‖δε‖2Ḣs . (2.24)
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Next, with the same tools,

|(F6|δε)Ḣs | ≤ C‖F6‖L2‖δε‖Ḣ2s ≤ C‖ŨQG‖
1
2

Ḣ
1
2
‖ŨQG‖

1
2

Ḣ
3
2
‖∇W inh

ε ‖L3‖δε‖1−sḢs
‖δε‖sḢs+1

≤ C
(
‖ŨQG‖

1
2

Ḣ
1
2
‖ŨQG‖

s− 1
2

Ḣ
3
2
‖∇W inh

ε ‖L3

)(
‖ŨQG‖1−s

Ḣ
3
2
‖δε‖1−sḢs

)
‖δε‖sḢs+1 , (2.25)

and using the Young inequality with the indices (2, 2
1−s ,

2
s ) we obtain that:

|(F6|δε)Ḣs | ≤
ν

18
‖δε‖2Ḣs+1 +

C

ν
s

1−s
‖ŨQG‖2

Ḣ
3
2
‖δε‖2Ḣs +C‖ŨQG‖

Ḣ
1
2
‖ŨQG‖2s−1

Ḣ
3
2
‖∇W inh

ε ‖2L3 . (2.26)

Similarly, we obtain:

|(F7|δε)Ḣs | ≤
ν

18
‖δε‖2Ḣs+1 +

C

ν
s

1−s

(
‖ŨQG‖2

Ḣ
3
2

+ ‖W inh
ε ‖2

Ḣ
3
2

)
‖δε‖2Ḣs

+ C
(
‖ŨQG‖

Ḣ
1
2
‖ŨQG‖2s−1

Ḣ
3
2

+ ‖W inh
ε ‖

Ḣ
1
2
‖W inh

ε ‖2s−1

Ḣ
3
2

)
‖∇Wh

ε ‖2L3 . (2.27)

Considering the following term (part of F8):

|(Wh
ε · ∇ŨQG|δε)Ḣs | ≤ ‖W

h
ε ‖L6‖ŨQG‖

Ḣ
3
2
‖δε‖1−sḢs

‖δε‖sḢs+1

≤
(
‖Wh

ε ‖L6‖ŨQG‖s
Ḣ

3
2

)(
‖ŨQG‖1−s

Ḣ
3
2
‖δε‖1−sḢs

)
‖δε‖sḢs+1 , (2.28)

and thanks once more to the Young inequality with the indices (2, 2
1−s ,

2
s ), we can estimate F8

and F9 as follows

|(F8|δε)Ḣs |+ |(F9|δε)Ḣs | ≤
ν

18
‖δε‖2Ḣs+1 +

C

ν
s

1−s

(
‖ŨQG‖2

Ḣ
3
2

+ ‖W inh
ε ‖2

Ḣ
3
2

)
‖δε‖2Ḣs

+ C
(
‖ŨQG‖2s

Ḣ
3
2

+ ‖W inh
ε ‖2s

Ḣ
3
2

) (
‖W inh

ε ‖2L6 + ‖Wh
ε ‖2L6

)
. (2.29)

The last term is also bounded with similar arguments:

|(F10|δε)Ḣs | ≤ ‖∇W
h
ε ‖L3

(
‖Wh

ε ‖L6‖δε‖1−sḢs

)
‖δε‖sḢs+1

≤ ν

18
‖δε‖2Ḣs+1 +

C

ν
s

1−s
‖Wh

ε ‖
2

1−s
L6 ‖δε‖2Ḣs + C‖∇Wh

ε ‖2L3 . (2.30)

Gathering (2.22), (2.23), (2.24), (2.26), (2.27), (2.29) and (2.30) we end up with:

1

2

d

dt
‖δε(t)‖2Ḣs +

ν

2
‖∇δε(t)‖2Ḣs ≤ C‖δε‖Ḣ 1

2
‖δε‖2Ḣs+1 +

C

ν
M1(t)‖δε‖2Ḣs + CM2(t), (2.31)

where

M1(t)
def
= ‖ŨQG‖2

Ḣ
3
2

(
1 +

1

ν
2s−1
1−s

+
1

ν2
‖ŨQG‖2

Ḣ
1
2

)
+ ‖W inh

ε ‖2
Ḣ

3
2

(
1 +

1

ν
2s−1
1−s

+
1

ν2
‖W inh

ε ‖2
Ḣ

1
2

)
+ ‖∇Wh

ε ‖2L3 +
1

ν2
‖Wh

ε ‖4L6 +
1

ν
2s−1
1−s
‖Wh

ε ‖
2

1−s
L6 , (2.32)

and

M2(t)
def
=
(
‖ŨQG‖

Ḣ
1
2
‖ŨQG‖2s−1

Ḣ
3
2

+ ‖W inh
ε ‖

Ḣ
1
2
‖W inh

ε ‖2s−1

Ḣ
3
2

) (
‖∇Wh

ε ‖2L3 + ‖∇W inh
ε ‖2L3

)
+
(
‖ŨQG‖2s

Ḣ
3
2

+ ‖W inh
ε ‖2s

Ḣ
3
2

) (
‖W inh

ε ‖2L6 + ‖Wh
ε ‖2L6

)
+ ‖∇Wh

ε ‖2L3 . (2.33)
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So that for any t ≤ Tε < T ∗ε ≤ T < T̃ ∗QG, thanks to the Gronwall lemma, the Hölder estimate,
the estimates from Theorem 1, Point 2 from Proposition 2 and (H1), there exists a constant B0

depending on C0, ν, C, s such that:

‖δε(t)‖2Ḣs +
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ ≤ C

(
‖δε(0)‖2

Ḣs
+

∫ t

0

M2(τ)dτ

)
e
C
ν

∫ t
0
M1(τ)dτ

≤ Cν,s

[
‖U0,ε,QG − Ũ0,QG‖2Ḣs +

(
‖∇Wh

ε ‖2
L

2
3
2
−s

t L3

+ ‖∇W inh
ε ‖2

L

2
3
2
−s

t L3

)

×
(
‖W inh

ε ‖
L∞t Ḣ

1
2
‖W inh

ε ‖2s−1

L2
t Ḣ

3
2

+ ‖ŨQG‖
L∞t Ḣ

1
2
‖ŨQG‖2s−1

L2
t Ḣ

3
2

)
+

(
‖W inh

ε ‖2s
L2
t Ḣ

3
2

+ ‖ŨQG‖2s
L2
t Ḣ

3
2

)(
‖Wh

ε ‖2
L

2
1−s
t L6

+ ‖W inh
ε ‖2

L
2

1−s
t L6

)
+ ‖∇Wh

ε ‖2L2
tL

3

]

× exp

(
Cν,s

{
(1 + ‖ŨQG‖

L∞t Ḣ
1
2

)‖ŨQG‖2
L2
t Ḣ

3
2

+ (1 + ‖W inh
ε ‖

L∞t Ḣ
1
2

)‖W inh
ε ‖2

L2
t Ḣ

3
2

+ ‖∇Wh
ε ‖2L2

tL
3 + ‖Wh

ε ‖4L4
tL

6 + ‖Wh
ε ‖

2
1−s

L
2

1−s
t L6

})

≤ B0

[
ε2α0 +

‖∇Wh
ε ‖2

L

2
3
2
−s

T L3

+ ‖∇W inh
ε ‖2

L

2
3
2
−s

T L3

+ ‖Wh
ε ‖2

L
2

1−s
T L6

+ ‖W inh
ε ‖2

L
2

1−s
T L6

 e
3C
ν CT

+ ‖∇Wh
ε ‖2L2

tL
3

]
× expB0

{
e

3C
ν Ct + ‖∇Wh

ε ‖2L2
TL

3 + ‖Wh
ε ‖4L4

TL
6 + ‖Wh

ε ‖
2

1−s

L
2

1−s
T L6

}
, (2.34)

where we recall that we introduced Ct =
∫ t

0
‖Ũ0,QG(τ)‖2

Ḣ
3
2
dτ ≤ CT <∞ in Proposition 2.

We can bound the various terms from the previous estimates involving Wh
ε (and W inh

ε ) thanks
to the Strichartz estimates provided by Proposition 7.

2.3 End of the bootstrap argument

Let us first focus on the proof of the second point from Theorem 3. For all s ∈ [ 1
2 ,

1
2 + ηδ], under

Assumption (H3), simplifying (2.34) with Proposition 7 leads for all t ≤ Tε to:

‖δε(t)‖2Ḣs +
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ

≤ B0

(
ε2α0 + ε2η0δ + (ε

1
2 +2η0δ−s + ε

1
2 +δ−s)e

3C
ν CT

)
e
B0

(
e

3C
ν

CT +ε2η0δ+ε
1

1−s ( 1
2

+2η0δ−s)
)
. (2.35)

We recall that η < 2η0 < 1 so we have 0 < (2η0 − η)δ ≤ 1
2 + 2η0δ − s ≤ 2η0δ, and when ε > 0 is

so small that:

ε2η0δ ≤ 1

2
and ε

1
1−s ( 1

2 +2η0δ−s) ≤ ε2(2η0−η)δ ≤ 1

2
, (2.36)

then the previous estimates turns into:

‖δε(t)‖2Ḣs +
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ ≤ D̃T

(
ε2α0 + ε2η0δ + ε

1
2 +2η0δ−s + ε

1
2 +δ−s

)
≤ D̃T εmin(2α0,

1
2 +2η0δ−s) ≤ D̃T εmin(2α0,(2η0−η)δ), (2.37)
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where we set for some t, D̃t
def
= B0e

3C
ν CteB0(1+e

3C
ν

Ct ). Finally if ε > 0 also satisfies:

D̃T εmin(2α0,(2η0−η)δ) ≤
( ν

8C

)2

, (2.38)

then for all t ≤ Tε, taking s = 1
2 , we have

‖δε(t)‖
Ḣ

1
2
≤ ν

8C
,

which contradicts the definition of Tε, so that (2.21) is false and Tε = T ∗ε . Thanks to (2.37),

Theorem 1 and Proposition 2, with s = 1
2 for all t < T ∗ε < T < T̃ ∗QG we have:

∫ t

0

‖∇Uε(τ)‖2
Ḣ

1
2
dτ ≤

∫ t

0

‖∇δε(τ)‖2
Ḣ

1
2
dτ +

∫ t

0

‖∇W inh
ε (τ)‖2

Ḣ
1
2
dτ +

∫ t

0

‖∇Wh
ε (τ)‖2

Ḣ
1
2
dτ

≤ 1

ν

(
D̃T ε2 min(α0,η0δ) + C2

0e
C
ν CT +

CC4
0

ν2
e

2C
ν CT +

∫ T

0

‖Wh
ε (τ)‖2

Ḣ
3
2
dτ

)
<∞, (2.39)

which contradicts (1.1) so that (2.19) is also false and T ∗ε > T which concludes the proof of Point
2-a.
To prove Point 1, resuming the previous bootstrap argument, for s = 1

2 simplifying (2.34) now
under assumption (H2) leads for all t ≤ Tε to (when ε is set so small that m(ε) ≤ 1):

‖δε(t)‖2Ḣs +
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ

≤ B0

(
ε2α0 +m(ε)2 + (m(ε)2 + εδ)e

3C
ν CT

)
e
B0

(
e

3C
ν

CT +m(ε)2

)

≤ D̃T
(
ε2α0 +m(ε)2 + εδ

)
(2.40)

and the same method leads to the result.

2.4 Proof of Point 2.b

This point is close to the corresponding result from [13], but there are two differences: first, we
chose in the present article to state a little differently the result and will give some details (even if
the proof is close to the one in [13]), seconds the new term W inh

ε has to be estimated in addition
to Wh

ε .

For any k ∈]0, 1[ (close to 1), any η ∈ [0, 2η0[ and any η′ ∈ [0, η[, from (2.37) with s ∈
{ 1

2 ,
1
2 + ηδ} we get:

‖|D|η
′δδε‖L2

TL
∞ ≤ ‖|D|η

′δδε‖
L2
T Ḃ

3
2
2,1

≤ ‖|D|η
′δδε‖

1− η
′
η

L2
T Ḣ

3
2
−η′δ‖|D|

η′δδε‖
η′
η

L2
T Ḣ

3
2

+(η−η′)δ

≤ ‖δε‖
1− η

′
η

L2
T Ḣ

3
2
‖δε‖

η′
η

L2
T Ḣ

3
2

+ηδ
≤ D̃T ε

(
(1− η

′
η ) min(α0,η0δ)+

η′
η min(α0,(η0− η2 )δ)

)

≤ D̃T εmin(α0,δ(η0− η2 )) (2.41)

Thanks to Proposition 11 with (d, p, r, q) = (η′δ, 2,∞, 1) implies that for θ ∈ [0, 1],

‖|D|η
′δWh

ε ‖L2L∞ ≤
CF,θ

ν
1−θ

4

ε
θ
4 ‖U0,ε,osc‖

Ḃ
1
2

+η′δ+ θ
2

2,1

. (2.42)
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Thanks to Lemma 1 with (α, β) = (a θ2 , b
θ
2 ) (with a, b > 0) we can write:

‖U0,ε,osc‖
Ḃ

1
2

+η′δ+ θ
2

2,1

≤ Ca,b,θ‖U0,ε,osc‖
b
a+b

Ḣ
1
2

+η′δ+ θ
2

(1−a)
‖U0,ε,osc‖

a
a+b

Ḣ
1
2

+η′δ+ θ
2

(1+b)
.

We then choose a, b > 0 so that {
θ
2 (1− a) = (c− η′)δ,
θ
2 (1 + b) = (1− η′)δ.

Take some b > 0 (to be fixed later), and choose θ = 2
1+b (1 − η

′)δ then the existence of some
a ∈]0, 1[ satisfying the other condition is equivalent to the fact that b > 0 is so small that
(c− η′)(1 + b) < 1− η′ and in that case:

a = 1− (1 + b)
c− η′

1− η′
.

The condition θ ≤ 1 is equivalent to δ ≤ 1
2

1+b
1−η′ , which is true when δ ≤ 1

6 . On the other hand

the condition on the ”p-index” from Proposition 10 is satisfied if and only if δ ≤ 1+b
1−η′ which is

implied by the previous condition. Then (2.42) turns into

‖|D|η
′δWh

ε ‖L2L∞ ≤ CF,C0,ν,δ,b,η,η′ε
δ

2(1+b)
(1−η′)−γ .

The exponent of ε also writes δ
2(1+b) (2η0 − η′ − b(1− 2η0)), which goes to δ(η0− η′

2 ) > δ(η0− η
2 )

when b goes to zero, so choosing b > 0 so small that

δ

2(1 + b)
(2η0 − η′ − b(1− 2η0)) = δ(η0 −

η

2
),

that is b = η−η′
1−η , we finally get:

‖|D|η
′δWh

ε ‖L2L∞ ≤ B0ε
δ(η0− 1

2η). (2.43)

Similarly, we get that ∥∥|D|η′δW inh
ε

∥∥
L2
TL
∞ ≤ D̃T εδ(η0− 1

2η)+γ . (2.44)

Gathering (2.41), (2.43) and (2.44) ends the proof. �

2.5 Proof of Point 2.c

First let us emphasize that in Section 2.2, two terms have to be estimated differently when
s ∈ [ 1

2 − ηδ,
1
2 ], namely F6 and F7, because now the exponent satisfies 2s − 1 < 0 which makes

useless (2.26) and (2.27). Thus we estimate these terms as follows:

|(F6|δε)Ḣs | ≤ C‖F6‖L2‖δε‖Ḣ2s ≤ C‖ŨQG‖
L

6
3−2s
‖∇W inh

ε ‖
L

3
s
‖δε‖1−sḢs

‖δε‖sḢs+1

≤ C
(
‖ŨQG‖Ḣs‖∇W

inh
ε ‖

1
2−s

L
3
s

)(
‖∇W inh

ε ‖
1−s
2−s

L
3
s
‖δε‖1−sḢs

)
‖δε‖sḢs+1 . (2.45)

By the Young inequality with the indices (2, 2
1−s ,

2
s ), we get

|(F6|δε)Ḣs | ≤
ν

18
‖δε‖2Ḣs+1 +

C

ν
s

1−s
‖∇W inh

ε ‖
2

2−s

L
3
s
‖δε‖2Ḣs + ‖ŨQG‖2Ḣs‖∇W

inh
ε ‖

2
2−s

L
3
s
. (2.46)
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Similarly we obtain:

|(F7|δε)Ḣs | ≤
ν

18
‖δε‖2Ḣs+1 +

C

ν
s

1−s
‖∇Wh

ε ‖
2

2−s

L
3
s
‖δε‖2Ḣs

+
(
‖ŨQG‖2Ḣs + ‖W inh

ε ‖2
Ḣs

)
‖∇W inh

ε ‖
2

2−s

L
3
s
. (2.47)

so that when s ∈ [ 1
2 − ηδ,

1
2 ], the previous functions M1 and M2 are modified according to:

M1(t)
def
= ‖ŨQG‖2

Ḣ
3
2

(
1 +

1

ν
2s−1
1−s

+
1

ν2
‖ŨQG‖2

Ḣ
1
2

)
+ ‖W inh

ε ‖2
Ḣ

3
2

(
1 +

1

ν
2s−1
1−s

+
1

ν2
‖W inh

ε ‖2
Ḣ

1
2

)
+ ‖∇Wh

ε ‖2L3 +
1

ν2
‖Wh

ε ‖4L6 +
1

ν
2s−1
1−s

(
‖Wh

ε ‖
2

1−s
L6 + ‖∇Wh

ε ‖
2

2−s

L
3
s

+ ‖∇W inh
ε ‖

2
2−s

L
3
s

)
, (2.48)

and

M2(t)
def
=
(
‖ŨQG‖2Ḣs + ‖W inh

ε ‖2
Ḣs

)(
‖∇Wh

ε ‖
2

2−s

L
3
s

+ ‖∇W inh
ε ‖

2
2−s

L
3
s

)
+
(
‖ŨQG‖2s

Ḣ
3
2

+ ‖W inh
ε ‖2s

Ḣ
3
2

) (
‖W inh

ε ‖2L6 + ‖Wh
ε ‖2L6

)
+ ‖∇Wh

ε ‖2L3 . (2.49)

Remark 6 Note that estimates (2.46) and (2.47) would be useless in Section 2.2 because 2
2−s ≥ 2

if and only if s ∈ [1, 2[, so when s ∈ [ 1
2 ,

1
2 +ηδ] ⊂ [0, 1[ we cannot use neither Proposition 4, neither

Proposition 6 which requires p ≥ 2. We could use the first point of Proposition 3 with p = 1 but
it would require the use of Lemma 1 which is not possible under Assumption (H3) alone.

As explained in the previous Remark, we are forced to use Proposition 5 with (d, p, r, q) =
(1, 2

2−s ,
3
s , 1) and thanks to Assumption (H4) we will be able to take advantage of Lemma 1 and

Proposition 3. Thanks to the last part of Proposition 7, when k, k′, k′′ < 1 are fixed, (2.34) turns,
for any s ∈ [ 1

2 − ηδ,
1
2 ], into (when ε ≤ εT ):

‖δε(t)‖2Ḣs +
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ

≤ B0e
4C
ν CT

(
ε2α0 + ε

2
2−sk

′η0δ + ε
1
2 +2η0δ−s

)
eB0e

3C
ν

CT (1+ε
2

2−s k
′η0δ)

≤ D̃T
(
ε2α0 + ε

2
2−sk

′η0δ + ε
1
2 +2η0δ−s

)
, (2.50)

and for s = 1
2 − ηδ, we get that

‖δε‖2
L2
T Ḣ

3
2
−ηδ ≤ D̃T

(
ε2α0 + ε

2
3
2

+ηδ
k′η0δ

+ ε(2η0+η)δ

)
.

If we have chosen η > 0 so small that 2
3
2 +ηδ

≥ 4
3k
′′, we get that:

‖δε‖
L2
T Ḣ

3
2
−ηδ ≤ D̃T εmin(α0,

2
3k
′k′′η0δ).

Thanks to (2.37) at s = 1
2 +ηδ, this entails that (thanks once more to Proposition 1) if in addition

η > 0 is so small that η0 − η
2 ≥ kη0, then

‖δε‖L2
TL
∞ ≤ ‖δε‖

L2
T Ḃ

3
2
2,1

≤ ‖δε‖
1
2

L2
T Ḣ

3
2
−ηδ‖δε‖

1
2

L2
T Ḣ

3
2

+ηδ

≤ D̃T ε
1
2 (min(α0,

2
3k
′k′′η0δ)+min(α0,(η0− η2 )δ)) ≤ D̃T ε

1
2 (min(α0,

2
3k
′k′′η0δ)+min(α0,kη0δ)), (2.51)
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and when we choose k′ = k′′ =
√
k < 1 we get that:

‖δε‖L2
TL
∞ ≤ D̃T ε

1
2 (min(α0,

2
3kη0δ)+min(α0,kη0δ)). (2.52)

Finally, applying Proposition 5 to Wh
ε and also to W inh

ε (as explained in the beginning of the
present section) with (d, p, r, q) = (0, 2,∞, 1) (and with the same arguments as in the previous
section but with η′ = 0), we get that:

‖Wh
ε +W inh

ε ‖L2
TL
∞ ≤ D̃T εkη0δ,

gathering the last two estimates concludes the proof. �

2.6 On the optimality of the condition δ ≤ 1
6

We wish to explain in this section why it is not possible to improve the condition δ ≤ 1
6 into the

one from [13]: δ < 1
4 . According to the proof of Proposition 7 the estimates involving L6 only

require the condition δ ≤ 1
3 , δ ≤ 1

6 being required by the ones involving L3, and come from the
estimates of F4, F6, F7 and F10. For some of them it is possible to improve the condition but the
main limitation comes from F10: we look for k1, k2 ∈ [2,∞] such that 1

k1
+ 1

k2
= 1

2 and,

|(F10|δε)Ḣs | ≤
ν

18
‖δε‖2Ḣs+1 +

C

ν
s

1−s
‖Wh

ε ‖
2

1−s
Lk1
‖δε‖2Ḣs + C‖∇Wh

ε ‖2Lk2 .

At first sight it seems surprising that there is no better choice that (k1, k2) = (6, 3) and to
understand this let us focus on the Strichartz estimates involved by the previous bound. Choosing
successively (d, p, r, q) ∈ {(0, 2

1−s , k1, 2), (1, 2, k2, 2)} we end-up with (for θ, θ′ ∈ [0, 1]) with the
regularity indices: {

σ = 1
2 + s− 3

k1
+ θ

2 (1− 2
k1

),

σ′ = 3+θ
k1
.

There exists θ, θ′ ∈ [0, 1] such that σ = σ′ = 1
2 + δ if and only if we have

1

k1
∈
]s− δ

3
,

1

4
(s+

1

2
− δ)

]
∩
[1

4
(
1

2
+ δ),

1

3
(
1

2
+ δ)

[
. (2.53)

It is elementary to see that for any a, b, c, d ∈ R with a < b and c < d,

[a, b[∩]c, d] 6= ∅ ⇐⇒ a ≤ d and c < b,

so the set in (2.53) is nonempty if and only if s ∈ [2δ, 1
2 +2δ[. In this configuration, the Strichartz

estimates for Wh
ε would write as follows:‖W

h
ε ‖

L
2

1−s
T Lk1

≤ Cε
1
2 (δ+ 3

k1
−s)‖U0,ε,osc‖

Ḣ
1
2

+δ ,

‖∇Wh
ε ‖L2

TL
k2 ≤ Cε

1
2 ( 1

2 +δ− 3
k1

)‖U0,ε,osc‖
Ḣ

1
2

+δ .
(2.54)

• Finding k1 when s = 1
2 and ‖U0,ε,osc‖

Ḣ
1
2

+δ ≤ m(ε)ε−
δ
2 leads to:{

‖Wh
ε ‖L4

TL
k1 ≤ Cε

1
2 ( 3
k1
− 1

2 )m(ε),

‖∇Wh
ε ‖L2

TL
k2 ≤ Cε

1
2 ( 1

2−
3
k1

)m(ε),

and they are useful if both powers of ε are nonnegative, which leads to k1 = 6.
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• Finding k1 for any s ∈ [ 1
2 ,

1
2 +ηδ] and ‖U0,ε,osc‖

Ḣ
1
2

+δ ≤ ε−γ then requires that [ 1
2 ,

1
2 +ηδ] ⊂

[2δ, 1
2 + 2δ[ which is equivalent to δ ≤ 1

4 and η < 2 (this one being true as η ≤ 2η0 < 1).
This leads to the estimates:‖W

h
ε ‖

L
2

1−s
T Lk1

≤ Cε
1
2 (δ+ 3

k1
−s−2γ),

‖∇Wh
ε ‖L2

TL
k2 ≤ Cε

1
2 ( 1

2 +δ− 3
k1
−2γ),

Both exponents are positive for any s ∈ [ 1
2 ,

1
2 + ηδ] if and only if:

1

k1
∈
]1

6
− 2η0 − η

3
δ,

1

6
+

2

3
η0δ
[
,

and we can put 1
k1

= 1
6 + αδ with α ∈]− 2η0−η

3 , 2
3η0[ and θ, θ′ then write as follows

(θ, θ′) =

( 1
2 − s+ δ(1 + 3α)

1
3 − δα

,
δ(1− 3α)

1
6 + δα

)
.

As we already require that δ ≤ 1
4 , both of them lie in [0, 1] if and only if α ∈ [ 1

4 (1 −
1
6δ ), 1

4 ( 1
3δ − 1)]. Once more, the existence of such an α is equivalent to the fact that:[1

4
(1− 1

6δ
),

1

4
(

1

3δ
− 1)

]
∩
]
− 2η0 − η

3
,

2

3
η0

[
6= ∅,

which is equivalent to

1

4
(1− 1

6δ
) <

2

3
η0, and

1

4
(

1

3δ
− 1) > −2η0 − η

3
.

Both conditions are realized when δ ≤ 1
6 . On the other hand if δ ∈] 1

6 ,
1
4 ] the first condition

means that η0 > 0 is bounded from below by a positive constant and cannot be chosen as
small as we wish. In other words, thanks to the definition of η0 = 1

2 (1− 2γδ ), the condition

is equivalent to γ < 1
8 ( 1

2 + δ) which means γ cannot be close to δ
2 anymore (for example

the condition becomes γ < 3
32 when δ = 1

4 ). So if we wish to choose γ close to δ
2 we need

δ ≤ 1
6 and the only choice is k1 = 6.

3 Proof of Theorem 10

The proof will share the same steps as in the previous section, but keeping in mind that dealing
with product of 2D and 3D functions will also induce a modification of the use of the Stichartz
estimates (that will become anisotropic as in [16, 17, 18]).

3.1 Auxiliary systems

Let us consider the initial data v0,ε = ū0 + w0,ε with ū0 ∈ [L2(R2)]3 and w0,ε ∈ [Ḣ
1
2 (R3) ∩

Ḣ
1
2 +δ(R3)]3 (both of them divergence-free). From the results recalled in the introduction:

• there exists a global solution ū of System (2D −NS),

• there exists a local strong solution wε of System (PRFε), defined for some lifespan T ∗ε and

for any T < T ∗ε , wε ∈ Ė
1
2

T ,

• moreover, the blow-up (or continuation) criterion is valid:

T ∗ε <∞ =⇒
∫ T∗ε

0

‖∇wε(t)‖2
Ḣ

1
2
dt =∞,
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• finally, as w0,ε ∈ Ḣ
1
2 ∩ Ḣ 1

2 +δ then for all T < T ∗ε , and s ∈ [ 1
2 ,

1
2 + δ], wε ∈ ĖsT .

Introducing Wε as the global solution of the following linear system:{
∂tWε − ν∆Wε + 1

εP(e3 ∧Wε) = 0,

Wε|t=0 = w0,ε,
(LRFε)

we define on δε
def
= vε − ū−Wε = wε −Wε, which satisfies:∂tδε − ν∆δε + 1

εP(e3 ∧ δε) =

8∑
i=1

Gi,

δε|t=0 = 0,

(3.55)

with: 
G1

def
= −P(δε · ∇δε), G2

def
= −P(δε · ∇Wε), G3

def
= −P(Wε · ∇δε),

G4
def
= −P(Wε · ∇Wε), G5

def
= −P(δε · ∇ū), G6

def
= −P(ū · ∇δε),

G7
def
= −P(Wε · ∇ū), G8

def
= −P(ū · ∇Wε).

(3.56)

3.2 Estimates on δε

Let us assume that ε satisfies (2.36) and (3.68) and assume by contradiction that T ∗ε <∞, then
by the continuation criterion, we have:∫ T∗ε

0

‖∇wε(t)‖2dt =∞, (3.57)

If we put (where the constant C refers to the one from (3.60))

Tε
def
= sup{t ∈ [0, T ∗ε [, ∀t′ ≤ t, ‖δε(t′)‖

Ḣ
1
2
≤ ν

4C
}, (3.58)

As δε(0) = 0 then Tε > 0. Now assume by contradiction that:

Tε < T ∗ε , (3.59)

and the Ḣs innerproduct of (3.55) with δε leads to:

1

2

d

dt
‖δε(t)‖2Ḣs + ν‖∇δε(t)‖2Ḣs ≤

8∑
j=1

(Gj |δε)Ḣs .

As the method is similar to what we did previously, we will skip details about the following terms
whose estimates are done as in the first section:

|(G1|δε)Ḣs | ≤ C‖δε‖Ḣ 1
2
‖δε‖2Ḣs+1 ,

|(G2|δε)Ḣs | ≤
ν
14‖δε‖

2
Ḣs+1 + C

ν ‖∇Wε‖2L3‖δε‖2Ḣs ,

|(G3|δε)Ḣs | ≤
ν
14‖δε‖

2
Ḣs+1 + C

ν3 ‖Wε‖4L6‖δε‖2Ḣs ,
|(G4|δε)Ḣs | ≤

ν
14‖δε‖

2
Ḣs+1 + C

ν
s

1−s
‖Wε‖

2
1−s
L6 ‖δε‖2Ḣs + C‖∇Wε‖2L3 .

(3.60)

We will only focus on what changes, namely the terms involving products of 2D and 3D functions.
The first two terms are easily estimated with the usual arguments thanks to Proposition 1, as
s ∈ [ 1

2 ,
1
2 + ηδ] ⊂ [0, 1[:

|(G5|δε)Ḣs | ≤ ‖δε · ∇ū‖Ḣs−1‖δε‖Ḣs+1 ≤ ‖δε‖Ḣs‖∇ū‖Ḣ0‖δε‖Ḣs+1

≤ ν

14
‖δε‖2Ḣs+1 +

C

ν
‖ū‖2

Ḣ1‖δε‖2Ḣs (3.61)
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Similarly, we easily get (with (s1, s2) = ( 1
2 , s−

1
2 )):

|(G6|δε)Ḣs | ≤
ν

14
‖δε‖2Ḣs+1 +

C

ν3
‖ū‖2L2‖ū‖2Ḣ1‖δε‖2Ḣs . (3.62)

Now we can turn to the last terms and obtain, adapting the arguments from the previous section
(s ∈ [0, 1]), that:

|(G7|δε)Ḣs | ≤ ‖Wε · ∇ū‖L2‖δε‖Ḣ2s ≤ C‖Wε‖L∞,2h,v
‖∇ū‖L2(R2)‖δε‖1−sḢs

‖δε‖sḢs+1

≤ ν

14
‖δε‖2Ḣs+1 +

C

ν
s

1−s
‖ū‖2

Ḣ1‖δε‖2Ḣs + ‖ū‖2s
Ḣ1‖Wε‖2L∞,2h,v

, (3.63)

and thanks to the Sobolev injection Ḣ
1
2 (R2) ↪→ L4(R2) , and the Young inequality with (2, 2

1−s ,
2
s ):

|(G8|δε)Ḣs | ≤ ‖ū · ∇Wε‖L2‖δε‖Ḣ2s ≤ C‖ū‖L4(R2)‖∇Wε‖L4,2
h,v
‖δε‖Ḣ2s

≤ C
(
‖ū‖

1
2

L2(R2)‖ū‖
s− 1

2

Ḣ1(R2)
‖∇Wε‖L4,2

h,v

) (
‖ū‖L2(R2)‖δε‖Ḣs

)1−s ‖δε‖sḢs+1

≤ ν

14
‖δε‖2Ḣs+1 +

C

ν
s

1−s
‖ū‖2

Ḣ1‖δε‖2Ḣs + ‖ū‖L2‖ū‖2s−1

Ḣ1
‖∇Wε‖2L4,2

h,v

. (3.64)

As in the previous section, collecting (3.60) to (3.64), and thanks to the energy equality from
Theorem 6, there exists some constant B0 = B0(ν, s, ‖ū0‖L2) > 0 such that we can write that for
any t ≤ Tε,

‖δε(t)‖2Ḣs +
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ ≤ B0e

B0

(
1+‖∇Wε‖2L2L3+‖Wε‖4L4L6+‖Wε‖

2
1−s

L
2

1−s L6

)

×

(
‖∇Wε‖2L2L3 + ‖Wε‖2

L
2

1−s L∞,2h,v

+ ‖∇Wε‖2
L

2
3
2
−s L4,2

h,v

)
. (3.65)

3.3 Proof of Point 1

We can now plug in (3.65) the Strichartz estimates from Proposition 11 and obtain that for any
k ∈]0, 1[ (as close to 1 as wished) fixed, any s ∈ [ 1

2 ,
1
2 + ηδ], there exists a constant B0 such that

for all t ≤ Tε,

‖δε(t)‖2Ḣs +
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ

≤ B0e
B0

(
1+ε2η0δ+ε4η0δ+ε

1
1−s ( 1

2
+2η0δ−s)

)
×
(
ε2η0δ + εk( 1

2 +2η0δ−s)
)
. (3.66)

Now if ε > 0 is so small that (2.36) is true, then putting D0 = B0e
2B0 :

‖δε(t)‖2Ḣs +
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ ≤ D0ε

k( 1
2 +2η0δ−s). (3.67)

From this the rest of the boostrap argument is classic and similar to what is done in [12, 13]:
assuming that ε is so small that (taking s = 1

2 ):

D0ε
2kη0δ ≤

( ν

8C

)2

, (3.68)
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then we obtain that for all t ≤ Tε, ‖δε(t)‖
Ḣ

1
2
≤ ν

8C , which contradicts the definition of Tε and

the fact that ‖δε(Tε)‖
Ḣ

1
2

= ν
4C . Then Tε = T ∗ε , so that, as wε = δε +Wε, we obtain that for all

t < T ∗ε ,∫ t

0

‖wε(τ)‖2
Ḣ

1
2
dτ ≤

∫ t

0

‖δε(τ)‖2
Ḣ

1
2
dτ +

∫ t

0

‖Wε(τ)‖2
Ḣ

1
2
dτ ≤ 1

ν

(
D0ε

2kη0δ + ‖w0,ε‖2
Ḣ

1
2

)
.

Even if we only control the norm of w0,ε in Ḣ
1
2 +cδ ∩ Ḣ 1

2 +δ the previous quantity is finite, which
contradicts (3.57), so that T ∗ε =∞.

3.4 Proof of Point 2

This part is nearly identical to what we did in Section 2.4 so we will not give much details: for
any η ∈ [0, 2η0[, any k ∈]0, 1[ (near to 1) and any η′ ∈ [0, η[, from (3.67) with s ∈ { 1

2 ,
1
2 + ηδ} we

get:

‖|D|η
′δδε‖L2L∞ ≤ ‖|D|η

′δδε‖
L2Ḃ

3
2
2,1

≤ ‖|D|η
′δδε‖

1− η
′
η

L2Ḣ
3
2
−η′δ‖|D|

η′δδε‖
η′
η

L2Ḣ
3
2

+(η−η′)δ

≤ ‖δε‖
1− η

′
η

L2Ḣ
3
2
‖δε‖

η′
η

L2Ḣ
3
2

+ηδ
≤ D0ε

kδ
(
η0(1− η

′
η )+(η0− 1

2η) η
′
η

)
= D0ε

kδ(η0− 1
2η
′) (3.69)

Thanks to Proposition 11 with (d, p,m, q) = (η′δ, 2,∞, 1) and doing the same as in Section 2.4
we obtain:

‖|D|η
′δWε‖L2L∞ ≤ C0Ck,η0,η′,νε

kδ(η0− 1
2η
′),

which ends the proof. �

3.5 Proof of Point 3

Let us fix some k, k′, k′′ ∈]0, 1[. First thanks to (3.67) for s = 1
2 + ηδ, we get that:

‖δε‖
L2Ḣ

3
2

+ηδ ≤ D0ε
k′(η0− η2 )δ. (3.70)

For the same reason as in Section 2.5, the estimates for G8 has to be changed when s < 1
2 in a

similar way as we did for F6 and F7, and thanks to Proposition 1, we get:

|(G8|δε)Ḣs | ≤ ‖ū · ∇Wε‖L2‖δε‖Ḣ2s ≤ C‖ū‖L2(R2)‖∇Wε‖L∞,2h,v
‖δε‖Ḣ2s

≤ C
(
‖ū‖L2(R2)‖∇Wε‖

1
2−s

L∞,2h,v

)(
‖∇Wε‖

1−s
2−s

L∞,2h,v

‖δε‖1−sḢs

)
‖δε‖sḢs+1

≤ ν

14
‖δε‖2Ḣs+1 +

C

ν
s

1−s
‖∇Wε‖

2
2−s

L∞,2h,v

‖δε‖2Ḣs + ‖ū‖2L2‖∇Wε‖
2

2−s

L∞,2h,v

. (3.71)

So that (3.65) turns into

‖δε(t)‖2Ḣs+
ν

2

∫ t

0

‖∇δε(τ)‖2
Ḣs
dτ ≤ B0e

B0

1+‖∇Wε‖2L2L3+‖Wε‖4L4L6+‖Wε‖
2

1−s

L
2

1−s L6

+‖∇Wε‖
2

2−s

L
2

2−s L∞,2
h,v



×

(
‖∇Wε‖2L2L3 + ‖Wε‖2

L
2

1−s L∞,2h,v

+ ‖∇Wε‖
2

2−s

L
2

2−s L∞,2h,v

)
. (3.72)

Now with the same arguments we obtain that:

‖δε‖2
Ḣ

3
2
−ηδ ≤ D0

(
ε2η0δ + εk

′(2η0+η)δ + ε
k′

2η0+η
3
2

+ηδ
δ
)
. (3.73)
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If we choose η > 0 so small that

η0 −
η

2
≥ k′′η, and

2η0 + η
3
2 + ηδ

≥ 4

3
k′′η0,

then thanks to Proposition 11, we obtain (with k′ = k′′ =
√
k):

‖δε‖L2L∞ ≤ ‖δε‖
L2Ḃ

3
2
2,1

≤ ‖δε‖
1
2

L2Ḣ
3
2
−ηδ‖δε‖

1
2

L2Ḣ
3
2

+ηδ
≤ D0ε

5
6kη0δ.

Then, using Proposition 11 with (d, p,m, q) = (0, 2,∞, 1), we obtain:

‖Wε‖L2L∞ ≤ D0ε
kη0δ,

which concludes the proof. �

4 Appendix

4.1 Notations, Sobolev spaces and Littlewood-Paley decomposition

We refer to the appendix of [12] for general notations and properties of the Sobolev spaces and
the Littlewood-Paley decomposition (together with the classical properties). For a complete
presentation, we refer to [2]. Let us first mention the following lemma whose proof is close to
Lemma 5 from [9] (see also Section 2.11 in [2]):

Lemma 1 For any α, β > 0 there exists a constant Cα,β > 0 such that for any u ∈ Ḣs−α∩Ḣs+β ,

then u ∈ Ḃs2,1 and:

‖u‖Ḃs2,1 ≤ Cα,β‖u‖
β

α+β

Ḣs−α
‖u‖

α
α+β

Ḣs+β
. (4.74)

Proposition 3 [2] We have the following continuous injections:
For any p ≥ 1, Ḃ0

p,1 ↪→ Lp,

For any p ∈ [2,∞[, Ḃ0
p,2 ↪→ Lp,

For any p ∈ [1, 2], Ḃ0
p,p ↪→ Lp.

An alternative to the classical Lpt Ḃ
s
q,r-type estimates is provided by the Chemin-Lerner time-space

Besov spaces: as explained in the following definition, the integration in time is performed before
the summation with respect to the frequency decomposition index:

Definition 2 [2] For s, t ∈ R and a, b, c ∈ [1,∞], we define the following norm

‖u‖L̃at Ḃsb,c =
∥∥∥(2js‖∆̇ju‖LatLb

)
j∈Z

∥∥∥
lc(Z)

.

The space L̃at Ḃ
s
b,c is defined as the set of tempered distributions u such that limj→−∞ Sju = 0 in

La([0, t], L∞(Rd)) and ‖u‖L̃at Ḃsb,c <∞.

We refer once more to [2] (Section 2.6.3) for more details and will only recall the following
proposition:

Proposition 4 For all a, b, c ∈ [1,∞] and s ∈ R:if a ≤ c, ∀u ∈ Lat Ḃsb,c, ‖u‖L̃at Ḃsb,c ≤ ‖u‖Lat Ḃsb,c
if a ≥ c, ∀u ∈ L̃at Ḃsb,c, ‖u‖L̃at Ḃsb,c ≥ ‖u‖Lat Ḃsb,c .
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4.2 Strichartz estimates for the primitive system

4.2.1 Statements of the results

Consider the following system (in the case ν = ν′, we have L = ν∆):{
∂tf − (ν∆− 1

εPA)f = Fext,

f|t=0 = f0.
(4.75)

Let us recall the Strichartz estimates obtained in [13] (we refer to [12, 13] for details about the
system, its analysis as well as the notations used).

Proposition 5 For any d ∈ R, r ≥ 2, q ≥ 1, θ ∈ [0, 1] and p ∈ [1, 4
θ(1− 2

r )
], there exists a constant

C = CF,p,θ,r such that for any f solving (4.75) for initial data f0 and external force Fext both
with zero divergence and potential vorticity, then

‖|D|df‖L̃pt Ḃ0
r,q
≤ CF,p,θ,r

ν
1
p−

θ
4 (1− 2

r )
ε
θ
4 (1− 2

r )
(
‖f0‖Ḃσ1

2,q
+ ‖Fext‖L̃1

t Ḃ
σ1
2,q

)
, (4.76)

where σ1 = d+ 3
2 −

3
r −

2
p + θ

2 (1− 2
r ).

Let us first state the following modified Strichartz estimates needed to fit to the regularity of the
external force term G (see (1.3)) under the actual assumptions on ŨQG.

Proposition 6 For any d ∈ R, k ∈]1, 2], r ≥ 2, q ≥ 1, θ ∈ [0, 1] and p ∈ [2, 4
θ(1− 2

r )
[, there exists

a constant C = CF,p,θ,r,k such that for any f solving (4.75) with zero initial data and an external
force Fext with zero divergence and potential vorticity, then

‖|D|df‖L̃pt Ḃ0
r,q
≤ CF,p,θ,r,k

ν1− 1
k+ 1

p−
θ
4 (1− 2

r )
ε
θ
4 (1− 2

r )‖Fext‖L̃kt Ḃσ2
2,q
, (4.77)

where σ2 = d− 1
2 + 2

k −
3
r −

2
p + θ

2 (1− 2
r ).

Remark 7 The case k = 1 is not covered by the second result but is dealt with in the first one.
The condition on the p-index is more restrictive.

Now, as a consequence of Propositions 5, 6 and 2, we can bound the various terms from (2.34)
involving Wh

ε and W inh
ε . We collect these estimates in the following proposition:

Proposition 7 Under the previous notations, if δ ≤ 1
6 , for any s ∈ [ 1

2 ,
1
2 + ηδ], there exists a

constant C = C(F, δ, s) > 0 such that:

‖Wh
ε ‖L4

TL
6 + ν

1
4 ‖∇Wh

ε ‖L2
TL

3 ≤
C

ν
1−2δ

4

ε
δ
2 ‖U0,ε,osc‖

Ḣ
1
2

+δ

‖Wh
ε ‖

L
2

1−s
T L6

+ ν
1
4 ‖∇Wh

ε ‖
L

2
3
2
−s

T L3

≤ C

ν
1−2δ

4

ε
1
2 ( 1

2 +δ−s)‖U0,ε,osc‖
Ḣ

1
2

+δ

‖W inh
ε ‖

L
2

1−s
T L6

+ ν
1
4 ‖∇W inh

ε ‖
L

2
3
2
−s

T L3

≤ C

ν
5−2δ

4

ε
1
2 ( 1

2 +δ−s)C2
0e

C
ν CT .

Under Assumption (H5), if δ ≤ 1
6 , for any k ∈]0, 1[ and s ∈ [ 1

2 − ηδ,
1
2 ] with η ≤ 2η0, there exists

a constant C = C(F, δ, s, k, c, γ) > 0 such that the previous estimates remain true, except those

involving the L

2
3
2
−s

T L3-norms, which are replaced by:

‖∇Wh
ε ‖

L
2

2−s
T L

3
s

+ ν‖∇W inh
ε ‖

L
2

2−s
T L

3
s

≤ C

ν1− s2−γ−kδη0
εkη0δ(1 + εγe

C
ν CT ).
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4.2.2 Proof of Proposition 6

As we outlined in [12, 13], for any divergence-free and with zero potential vorticity initial data
g0, the operators P and P3+4 (on one hand), Q and P2 (on the other hand) coincide when ν = ν′

(see the cited articles for precisions and notations):

g0 = Pg0 = PPg0 = P3+4Pg0 = P3+4g0.

We will denote as Sε(t) the associated semi-group, that is g(t) = Sε(t)g0 is the unique solution
of (4.75) with initial data g0 and no external force:

Sε(t)g0 = g(t) = F−1

(
e−νt|ξ|

2+i tε
|ξ|F
F |ξ|P3(ξ, ε)ĝ0(ξ) + e−νt|ξ|

2−i tε
|ξ|F
F |ξ|P4(ξ, ε)ĝ0(ξ)

)
,

and in order to simplify we will write:

Sε(t)g0 = F−1

(
e−νt|ξ|

2+i tε
|ξ|F
F |ξ| ĝ0(ξ)

)
,

So that, thanks to the Duhamel formula, the solution f from Proposition 6 writes:

f(t, x) =

∫ t

0

Sε(t− τ)Fext(τ, x)dτ.

We will only focus on what is new (and refer to [12, 13] for details or notations). If ϕ is the
usual truncation function involved in the Littlewood-Paley decomposition, let us denote by ϕ1

another smooth truncation function, with support in a slightly larger annulus than supp ϕ (say
for example the annulus centered at zero and of radii 1

2 and 3) and equal to 1 on supp ϕ. For
given p, r ≥ 1, let B be the set:

B def
= {ψ ∈ C∞0 (R+ × R3,R), ‖ψ‖Lp̄(R+,Lr̄(R3)) ≤ 1},

then we follow the same classical steps, for any j ∈ Z:

‖∆̇jf‖LpLr = sup
ψ∈B

∫ ∞
0

∫
R3

(∫ t

0

Sε(t− τ)∆̇jFext(τ, x)dτ

)
ψ(t, x)dxdt

= C sup
ψ∈B

∫ ∞
0

∫
R3

(∫ ∞
0

e−ν(t−τ)|ξ|2+i t−τε
|ξ|F
F |ξ|ϕ1(2−jξ)ψ̂(t, ξ)1{τ≤t}dt

)
˙̂∆jFext(τ, ξ)dξdτ

≤ C sup
ψ∈B

∫ ∞
0

‖ ˙̂∆jFext(τ, .)‖L2

×
(∫

R3

∫ ∞
0

∫ ∞
0

e−ν(t+t′−2τ)|ξ|2+i t−t
′

ε

|ξ|F
F |ξ|ϕ1(2−jξ)2ψ̂(t, ξ)ψ̂(t′, ξ)1{τ≤t}1{τ≤t′}dtdt

′dξ

) 1
2

dτ

≤ C sup
ψ∈B

∫ ∞
0

‖∆̇jFext(τ, .)‖L2

×
(∫ ∞

0

∫ ∞
0

‖Lj(
t− t′

ε
)ψ(t, .)‖Lr‖eν(t+t′−2τ)∆ϕ1(2−jD)ψ(t′, .)‖Lr̄1{τ≤min(t,t′)}dtdt

′
) 1

2

dτ,

(4.78)

with Lj(σ) defined as in [13]:

Lj(σ)g =

∫
R3

eix·ξ+iσ
|ξ|F
F |ξ|ϕ1(2−j |ξ|)ĝ(ξ)dξ.
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We refer to [13], for the proof that for all r ∈ [2,∞] and θ ∈ [0, 1]:‖e
σ∆ϕ1(2−jD)g‖Lr̄ ≤ C ′e−

σ
4 22j‖g‖Lr̄

‖Lj(σ)g‖Lr ≤ (CF )1− 2
r

23j(1− 2
r

)

|σ|
θ
2

(1− 2
r

)
‖g‖Lr̄ .

Going back to (4.78), we get:

‖∆̇jf‖LpLr ≤ C
1
2−

1
r

F 23j( 1
2−

1
r )ε

θ
4 (1− 2

r ) sup
ψ∈B

∫ ∞
0

‖∆̇jFext(τ, .)‖L2K(τ)
1
2 dτ

≤ C
1
2−

1
r

F 23j( 1
2−

1
r )ε

θ
4 (1− 2

r )‖∆̇jFext‖LkL2 × sup
ψ∈B

(∫ ∞
0

K(τ)
k̄
2 dτ

)1

k̄ , (4.79)

where

K(τ)
def
=

∫ ∞
0

∫ ∞
0

e−
ν
4 22j(t+t′−2τ) ‖ψ(t′)‖Lr̄‖ψ(t)‖Lr̄

|t− t′| θ2 (1− 2
r )

1{τ≤min(t,t′)}dtdt
′.

Next we use Jensen’s inequality in the following formulation (we refer to [3], Prop. II.2.20):

Proposition 8 Let Ω ⊂ Rd be an open set, and η ∈ L1(Ω) a nonnegative function. For any
function f such that |f |αη ∈ L1(Ω) for some α ∈ [1,∞[, we have fη ∈ L1(Ω) and∣∣∣ ∫

Ω

fηdx
∣∣∣α ≤ ‖η‖α−1

L1

∫
Ω

|f |αηdx.

Choosing α = k̄
2 , Ω =]0,∞[2, f(t, t′) = e−

ν
8 22j(t+t′−2τ)1{τ≤min(t,t′)} and,

η(t, t′) =
fτ (t)fτ (t′)

|t− t′| θ2 (1− 2
r )
, with fτ (t) = e−

ν
8 22j(t−τ)1{τ≤t}‖ψ(t)‖Lr̄ ,

we obtain that:

K(τ)
k̄
2 ≤

(∫ ∞
0

∫ ∞
0

fτ (t)fτ (t′)

|t− t′| θ2 (1− 2
r )
dtdt′

) k̄
2−1

×
∫ ∞

0

∫ ∞
0

e−
ν
8 (1+ k̄

2 )22j(t+t′−2τ) ‖ψ(t′)‖Lr̄‖ψ(t)‖Lr̄
|t− t′| θ2 (1− 2

r )
1{τ≤min(t,t′)}dtdt

′, (4.80)

Remark 8 This is here that we require k̄
2 ∈ [1,∞[, that is k ∈]1, 2].

The first integral is dealt with the Hardy-Littlewood-Sobolev estimates as in [12, 13]: introducing
1
q1

= 1− θ
4 (1− 2

r ) (which is in [1,∞[), and some constant E (depending on θ, r)

∫ ∞
0

∫ ∞
0

fτ (t)fτ (t′)

|t− t′| θ2 (1− 2
r )
dtdt′ ≤ E‖fτ‖2Lq1

≤ E
(
‖e− ν8 (.−τ)22j

1{τ≤·}‖Lq2‖ψ‖Lp̄Lr̄
)2

≤ E

([
8

νq2

] 1
q2

2−
2j
q2 ‖ψ‖Lp̄Lr̄

)2

, (4.81)

for q2 ∈ [1,∞] chosen so that 1
q2

+ 1
p̄ = 1

q1
, that is 1

q2
= 1

p −
θ
4 (1− 2

r ).

Remark 9 As we want q2 ≥ 1 we need p ≤ 4
θ(1− 2

r )
.
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Plugging (4.81) and (4.80) in (4.79), we obtain that (also using that ‖ψ‖Lp̄Lr̄ ≤ 1):

(∫ ∞
0

K(τ)
k̄
2 dτ

) 1
k̄

≤

(
E
[

8

νq2

] 1
q2

2−
2j
q2

)1− 2
k̄

×

(∫ ∞
0

∫ ∞
0

∫ ∞
0

‖ψ(t′)‖Lr̄‖ψ(t)‖Lr̄
|t− t′| θ2 (1− 2

r )
e−

ν
8 (1+ k̄

2 )22j(t+t′−2τ)1{τ≤min(t,t′)}dτdtdt
′

) 1
k̄

. (4.82)

Computing the integral in τ , using the fact that t + t′ − 2 min(t, t′) = |t − t′|, and introducing

g(t) = ‖ψ(t)‖Lr̄1{t≥0} and W (t) = e−
ν
8

(1+ k̄
2

)22j |t|

|t|
θ
2

(1− 2
r

)
, we get that:

(∫ ∞
0

K(τ)
k̄
2 dτ

) 1
k̄

≤

(
E
[

8

νq2

] 1
q2

2−
2j
q2

)1− 2
k̄
(

4

ν(1 + k̄
2 )

2−2j

∫
R

∫
R
W (t− t′)g(t)g(t′)dtdt′

) 1
k̄

≤

(
E
[

8

νq2

] 1
q2

2−
2j
q2

)1− 2
k̄
(

4

ν(1 + k̄
2 )

2−2j

) 1
k̄

(‖g‖Lp̄‖W ∗ g‖Lp)
1
k̄ . (4.83)

If p ≥ 2 then ‖W ∗ g‖Lp ≤ ‖W‖L p2 ‖g‖Lp̄ . As soon as pθ
4 (1− 2

r ) < 1 the following integral exists
and we have:

‖W‖
1
k̄

L
p
2

=

(∫
R

e−
pν
16 (1+ k̄

2 )22j |t|

|t| pθ4 (1− 2
r )

dt

) 2
pk̄

=

(∫
R

e−|u|

|u| pθ4 (1− 2
r )
du

) 2
pk̄
(

16

pν(1 + k̄
2 )

2−2j

) 2
pk̄
− θ

2k̄
(1− 2

r )

,

so that we end up with (using in the exponents that 1
k̄

= 1− 1
k ):

‖∆̇jf‖LpLr ≤ C
1
2−

1
r

F 2j(
3
2−

3
r−

2
q2
− 2
k̄

)ε
θ
4 (1− 2

r )‖∆̇jFext‖LkL2

×

(
E
[

8

νq2

] 1
q2

)1− 2
k̄
(

4

ν(1 + k̄
2 )

) 1
k̄
(∫

R

e−|u|

|u| pθ4 (1− 2
r )
du

) 2
pk̄
(

16

pν(1 + k̄
2 )

) 2
pk̄
− θ

2k̄
(1− 2

r )

≤ CF,p,θ,r,k

ν1− 1
k+ 1

p−
θ
4 (1− 2

r )
2j(

3
2−

3
r−

2
q2
− 2
k̄

)ε
θ
4 (1− 2

r )‖∆̇jFext‖LkL2 , (4.84)

where

CF,p,θ,r,k = (CF )
1
2−

1
rE

2
k−1

(
4

1 + k̄
2

)1− 1
k


(

1
p −

θ
4 (1− 2

r )
) 2
k−1

25− 2
k(

1 + k̄
2

) 2
k̄
p2(1− 1

k )


1
p−

θ
4 (1− 2

r )

×

(∫
R

e−|u|du

|u| pθ4 (1− 2
r )

) 2
p (1− 1

k )

(4.85)

Multiplying by 2jd and summing over j ∈ Z ends the proof of Proposition 6. �

4.2.3 Proof of Proposition 7

The first line can be deduced from the second one taking s = 1
2 so we will focus on the last two

lines.
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Choosing (d, p, r, q, θ) = (0, 2
1−s , 6, 2, 3( 1

2 + δ − s)), thanks to Propositions 3, 4 (that applies

when 2
1−s ≥ 2, which is true when s ∈ [0, 1[) and 5, we have

‖Wh
ε ‖

L
2

1−s
T L6

≤ C‖Wh
ε ‖

L
2

1−s
T Ḃ0

6,2

≤ C‖Wh
ε ‖

L̃
2

1−s
T Ḃ0

6,2

≤ C

ν
1−2δ

4

ε
1
2 ( 1

2 +δ−s)‖U0,ε,osc‖
Ḣ

1
2

+δ .

Note that the condition θ ∈ [0, 1] (respectively p ∈ [1, 4
θ(1− 2

r )
]) is satisfied for any s ∈ [ 1

2 ,
1
2 + ηδ]

if and only if δ ≤ 1
3 (respectively δ ≤ 1

2 ). These conditions are true for any s ∈ [ 1
2 − ηδ,

1
2 [ if and

only if δ(1 + η) ≤ 1
3 .

With the same coefficients, and choosing k = 2 in Proposition 6, we obtain that:

‖W inh
ε ‖

L
2

1−s
T L6

≤ C

ν
3−2δ

4

ε
1
2 ( 1

2 +δ−s)‖Gb‖
L2
T Ḣ
− 1

2
+δ ,

and we conclude thanks to Proposition 2. The fact that θ ≤ 1 is satisfied with the same condi-
tions, the condition for p turns into δ < 1

2 . All of these are true when δ ≤ 1
6 and η ≤ 1.

With the same arguments, choosing (d, p, r, q, θ) = (1, 2
3
2−s

, 3, 2, 6( 1
2 + δ − s)), leads to

‖∇Wh
ε ‖

L

2
3
2
−s

T L3

≤ C

ν
1−δ

2

ε
1
2 ( 1

2 +δ−s)‖U0,ε,osc‖
Ḣ

1
2

+δ ,

‖∇W inh
ε ‖

L

2
3
2
−s

T L3

≤ C

ν
2−δ

2

ε
1
2 ( 1

2 +δ−s)‖Gb‖
L2
T Ḣ
− 1

2
+δ .

And the result follows. Note that θ ∈ [0, 1] now requires δ ≤ 1
6 and p ∈ [2, 4

θ(1− 2
r )

] when

δ ≤ 1 (δ < 1 in the second case), so that when δ ≤ 1
6 all the above conditions are satisfied for

s ∈ [ 1
2 ,

1
2 + ηδ].

To prove the last point, let us emphasize that, under the additional assumption U0,ε,QG ∈
Ḣ

1
2−δ (see (H5)) we can now bound Gb exactly as in [12] (see (2.23)) and will not need anymore

to split into W inh
ε +Wh

ε . For all s ∈ [ 1
2 − δ,

1
2 + δ]:

‖Gb‖L1
T Ḣ

s ≤ CF ‖∇ŨQG‖
1
2

L2Ḣ
1
2
−δ‖∇ŨQG‖

1
2

L2Ḣ
1
2

+δ
‖∇ŨQG‖L2Ḣs

≤
‖Ũ0,QG‖2

Ḣ
1
2
−δ∩Ḣ

1
2

+δ

ν
e
C
ν CT ≤ C2

0

ν
e
C
ν CT , (4.86)

so that W inh
ε can be estimated through the same Strichartz estimates as Wh

ε . But when s ∈
[ 1
2 − ηδ,

1
2 ], we have 2

2−s < 2 so we cannot bound the L
2

2−s
T L

3
s -norm with the L̃

2
2−s
T Ḃ0

3
s ,2

-norm

anymore and instead we write for (d, p, r, q) = (1, 2
2−s ,

3
s , 1) and for any θ ∈ [0, 1] (as 2

2−s ≥ 1
when s ∈ [0, 2[):

‖∇Wh
ε ‖

L
2

2−s
T L

3
s

≤ ‖∇Wh
ε ‖

L̃
2

2−s
T Ḃ0

3
s
,1

≤ CF,s,θ

ν1− s2−
θ
4 (1− 2s

3 )
ε
θ
4 ‖U0,ε,osc‖

Ḃ
1
2

+ θ
2

(1− 2s
3

)

2,1

.

Thanks to Lemma 1, with (α, β) = (a θ2 (1− 2s
3 ), b θ2 (1− 2s

3 )),

‖U0,ε,osc‖
Ḃ

1
2

+ θ
2

(1− 2s
3

)

2,1

≤ Ca,b,θ,s‖U0,ε,osc‖
b
a+b

Ḣ
1
2

+ θ
2

(1− 2s
3

)(1−a)
‖U0,ε,osc‖

a
a+b

Ḣ
1
2

+ θ
2

(1− 2s
3

)(1+b)
,

and to find a, b > 0 satisfying {
θ
2 (1− 2s

3 )(1− a) = cδ,
θ
2 (1− 2s

3 )(1 + b) = δ,
(4.87)
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we simply set θ = 2δ
1+b

1
1− 2s

3

and a = 1− (1 + b)c for some small b ∈]0, 1
c − 1[, which leads to

‖∇Wh
ε ‖

L
2

2−s
T L

3
s

≤ CF,s,δ,b,c,C0

ν1− s2−
δ

2(1+b)

ε
δ

2(1+b)
−γ . (4.88)

The exponent of ε writes:

δ

2(1 + b)
− γ =

δ

2(1 + b)
(2η0 − b(1− 2η0)) −→

b→0
η0δ,

such that for a given k < 1 close to 1, we can choose b ∈]0, 1
c − 1[ so small that

δ

2(1 + b)
− γ = kη0δ, (4.89)

which gives the result. To bound W inh
ε we use the same Strichartz estimates with the same

coefficients and thanks to (4.86), we obtain the rest of the estimates.
To finish, let us precise that θ ≤ 1 for any s ∈ [ 1

2−ηδ,
1
2 ] is equivalent to the the fact that following

bound is true for s = 1
2

2δ

1 + b
= 4(γ + kη0δ) ≤ 1− 2s

3
,

which is equivalent to δ(1− 2η0(1− k)) ≤ 1
3 and true as we already have δ ≤ 1

6 , η ≤ 2η0 < 1 and
k < 1.

Similarly, the condition on p is realized when for any s ∈ [ 1
2 − ηδ,

1
2 ], we have

δ

2(1 + b)
= γ + kη0δ ≤ 1− s

2
,

which is equivalent the fact that it is satisfied for s = 1
2 , and is equivalent to asking δ(1− 2η0(1−

k)) ≤ 3
2 , and is also true as δ ≤ 1

6 . �

4.3 Strichartz estimates for the rotating fluids

4.3.1 Statement of the results

In this section, we will provide isotropic and anisotropic strichartz estimates for System (LRFε).
Let us begin with the estimates proved by Chemin, Desjardins, Gallagher and Grenier (that we
present here with our notations and without external force term):

Proposition 9 ([16, 18]) For any p ∈ [1,∞] and any α > 0 there exists a constant C such that
for any vector field w0, any j, k ∈ Z, if Wε solves (LRFε) with initial data w0:‖∆̇jWε‖LpL∞(R3) ≤ C2j(

3
2−

2
p )
(
ε22j

) 1
4p(1+α) ‖∆̇jw0‖L2(R3),

‖∆̇j∆̇
v
kWε‖LpL∞,2h,v

≤ C2j(1−
2
p ) min

(
1,
(
ε22j

) 1
4p 2

1
2p (j−k)

)
‖∆̇j∆̇

v
kw0‖L2(R3),

where (for j, k ∈ Z) ∆̇j = φ(2−jD) and ∆̇v
k = φ(2−kD3) are the usual homogeneous Littlewood-

Paley truncation operator, and its vertical counterpart (we refer to [16, 17, 22] for details about
the anisotropic Littlewood Paley theory), and where we define for a, b ∈ [1,∞],

‖f‖La,bh,v
def
=
∥∥‖f(xh, .)Lb(Rv)‖

∥∥
La(R2

h)
.
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In the series of works [27, 28, 29, 26] the authors manage to improve their Strichartz estimates
from [25, 24] thanks to the Riesz-Thorin theorem (as in [20]) and the Littman theorem (see
references in [13]). We also improved our Strichartz estimates from [12] thanks to the same tools
tools in [13] (the first one allows to turn the condition ”r > 4” int ”r > 2”, see below for details,
whereas the second allows slightly larger upper bound for δ) and we refer to the appendix of this
article for an explaination of the improvements in the rotating fluids case. We begin with the
statement of the estimates we use in the proof of Theorem 10.

Proposition 10 1. For any d ∈ R, m ≥ 2, θ ∈ [0, 1], and p ∈ [1, 2
θ(1− 2

m )
], there exists a

constant C = Cp,θ,m such that for any divergence-free vectorfield w0,ε, the solution Wε of
(LRFε) with initial data w0,ε satisfies:

‖|D|dWε‖L̃pḂ0
m,q
≤ Cp,θ,m

ν
1
p−

θ
2 (1− 2

m )
ε
θ
2 (1− 2

m )‖w0,ε‖Ḃσ1
2,q
, (4.90)

with σ1 = d+ 3
2 −

3
m −

2
p + θ(1− 2

m ).

2. For any d ∈ R, m > 2, θ ∈]0, 1], p ∈ [1, 4
θ(1− 2

m )
] there exists a constant C = Cp,θ,m such

that for any divergence-free vectorfield w0,ε, we have:

‖|D|dWε‖LpLm,2h,v
≤ Cp,θ,m

ν
1
p−

θ
4 (1− 2

m )
ε
θ
4 (1− 2

m )‖w0,ε‖Ḃσ2
2,1
, (4.91)

with σ2 = d+ 1− 2
m −

2
p + θ

2 (1− 2
m ).

As a consequence we can state the following proposition, which allows to bound the terms
involving Wε in (3.65).

Proposition 11 1. Under the previous notations, if δ ≤ 1
3 , for any s ∈ [ 1

2 ,
1
2 +ηδ], there exists

a constant C = C(δ, s) > 0 such that:
‖Wε‖L4

TL
6 + ν

1
4 ‖∇Wε‖L2

TL
3 ≤

CC0

ν
1−2δ

4

εη0δ,

‖Wε‖
L

2
1−s
T L6

≤ CC0

ν
1−2δ

4

ε
1
2 ( 1

2 +2η0δ−s).

2. If δ ≤ 1
4 , for any k ∈]0, 1[ (as close to 1 as we wish) and s ∈ [ 1

2 ,
1
2 + ηδ], there exist

C = C(δ, s, γ) > 0 such that:

‖Wε‖
L

2
1−s
T L∞,2h,v

+ ν
1
2 ‖∇Wε‖

L

2
3
2
−s

T L4,2
h,v

≤ CC0

ν
1
2 (1−s−2γ−k( 1

2 +δ−s))
ε
k
2 ( 1

2 +2η0δ−s).

3. The previous estimates remain valid for any s ∈ [ 1
2 − ηδ,

1
2 + ηδ] when η ≤ 2η0 min(1, 1

k − 1)

but the norm in L

2
3
2
−s

T L4,2
h,v has to be replaced by:

‖∇Wε‖
L

2
2−s
T L∞,2h,v

≤ CC0

ν
1
2 (2−s−2γ−k( 1

2 +δ−s))
ε
k
2 ( 1

2 +2η0δ−s).
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4.3.2 Proof of Proposition 10

As explained in [13], the proof of the first point is globally the same as in section 2.2 from the
cited article. The only difference is that, as the hessian enjoys better properties in the case of the
rotating fluids, the following estimate

‖Lj(σ)g‖Lq ≤ (CF )1− 2
q

23j(1− 2
q )

|σ|
θ
2 (1− 2

q )
‖g‖Lq̄ ,

is replaced by

‖Lj(σ)g‖Lq ≤ (CF )1− 2
q

23j(1− 2
q )

|σ|θ(1−
2
q )
‖g‖Lq̄ ,

so that Point 1 provides a similar estimates as in Proposition 5, but with θ replaced by 2θ.
Let us focus on the second point, which extends the anisotropic estimates from [16]. Assume

that Wε solves (LRFε) with initial data w0,ε. For any p,m ∈ [1,∞] and any fixed j ∈ Z, we can
write:

‖∆̇jWε‖LpLm,2h,v
≤
∑
k≤j+1

‖∆̇j∆̇
v
kWε‖LpLm,2h,v

, (4.92)

and, defining

B def
= {ψ ∈ C∞0 (R+ × R3,R), ‖ψ‖Lp̄(R+,L

m̄,2
h,v ) ≤ 1},

we have (with the same truncation function φ1 as in Section 4.2.2)

‖∆̇j∆̇
v
kWε‖LpLm,2h,v

= C sup
ψ∈B

∫ ∞
0

∫
R3

e−νt|ξ|
2+i tε

ξ3
|ξ| ̂∆̇j∆̇v

kw0,ε(ξ)φ1(2−jξ)φ1(2−kξ3)ψ̂(t, ξ)dξdt.

Following the very same steps as in [13] (and Section 4.2.2) we get

‖∆̇j∆̇
v
kWε‖LpLm,2h,v

≤ C‖∆̇j∆̇
v
kw0,ε‖L2

× sup
ψ∈B

(∫ ∞
0

∫ ∞
0

‖ψ(t)‖Lm̄,2h,v
‖Gj,k

( t− t′
ε

, ν(t+ t′)
)
ψ̄(t′)‖Lm,2h,v

dtdt′
) 1

2

, (4.93)

where for any τ, σ and any function g,

Gj,k(τ, σ)g = F−1
(
e−σ|ξ|

2+iτ
ξ3
|ξ|φ1(2−jξ)2φ1(2−kξ3)2ĝ(ξ)

)
.

The Plancherel identity implies that (as in Section 4.2.2, φ1 is supported in the annulus centered
at zero and of radii 1

2 and 3.)

‖Gj,k(τ, σ)‖L2→L2 = ‖Gj,k(τ, σ)‖L2,2
h,v→L

2,2
h,v
≤ Ce−σ4 22j

. (4.94)

Moreover, thanks to Lemma 3 from [16] (which is recalled as Proposition 9), we also have for any
θ ∈ [0, 1]:

‖Gj,k(τ, σ)‖L1,2
h,v→L

∞,2
h,v
≤ C min(1, |τ |− 1

2 2j−k)22je−
σ
4 22j

≤ C|τ |− θ2 2θ(j−k)22je−
σ
4 22j

. (4.95)

Gathering (4.94) and (4.95) and using the Riesz-Thorin theorem, we end-up for any m ∈ [2,∞]
and θ ∈ [0, 1] with:

‖Gj,k(τ, σ)‖Lm,2h,v
≤ Ce−σ4 22j

|τ |− θ2 (1− 2
m )2θ(j−k)(1− 2

m )22j(1− 2
m ). (4.96)
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Therefore, plugging this estimate into (4.93),

‖∆̇j∆̇
v
kWε‖LpLm,2h,v

≤ C‖∆̇j∆̇
v
kw0,ε‖L2

× ε θ4 (1− 2
m )2

θ
2 (j−k)(1− 2

m )2j(1−
2
m ) sup

ψ∈B

(∫ ∞
0

∫ ∞
0

g(t)g(t′)

|t− t′| θ2 (1− 2
m )
dtdt′

) 1
2

, (4.97)

where we put g(t) = ‖ψ(t)‖Lm̄,2h,v
e−

ν
4 t2

2j

. Following the same steps as in [12, 13] we end up, thanks

to the Hardy-Littlewood estimate, with:

‖∆̇j∆̇
v
kWε‖LpLm,2h,v

≤ C‖∆̇jw0,ε‖L2ε
θ
4 (1− 2

m )2
1
2 θ(j−k)(1− 2

m )2j(1−
2
m−

2
q2

)

(
4

q2ν

) 1
q2

, (4.98)

with q2 defined by 1
q2

= 1
p −

θ
4 (1 − 2

m ) (the condition on p comes from the fact that we ask

q2 ∈ [1,∞]). Next, summing for k ≤ j + 1 (which explains why we ask m > 2 and θ > 0) we get
that:

‖∆̇jWε‖LpLm,2h,v
≤ Cp,θ,m

ν
1
p−

θ
4 (1− 2

m )
‖∆̇jw0,ε‖L2ε

θ
4 (1− 2

m )2j(1− 2
m−

2
p+ θ

2 (1− 2
m )). (4.99)

Multiplying by 2jd and summing over j ∈ Z concludes the proof of Point 2. �

4.3.3 Proof of Proposition 11

Similarly to the proof of Proposition 7, we use here Proposition 10. Point 1 is proven choosing
(d, p,m, q, θ) ∈ {(1, 2, 3, 2, 3δ), (0, 2

1−s , 6, 2,
3
2 ( 1

2 + δ − s))} and we get:
‖∇Wε‖L2

TL
3 ≤

C

ν
1−2δ

4

ε
δ
2 ‖w0,ε‖

Ḣ
1
2

+δ ,

‖Wε‖
L

2
1−s
T L6

≤ C

ν
1−δ

2

ε
1
2 ( 1

2 +δ−s)‖w0,ε‖
Ḣ

1
2

+δ .

In the first case, the fact that θ ∈ [0, 1] requires δ ≤ 1
3 and the condition p ≤ 2

θ(1− 2
m )

requires

δ ≤ 1. In the second case, the fact that these conditions are true for any s ∈ [ 1
2 ,

1
2 + ηδ] require

respectively δ ≤ 2
3 and δ ≤ 1

2 . The second condition is also true for any s ∈ [ 1
2 − ηδ,

1
2 ] and the

first one is true for such s when δ(1 + η) ≤ 2
3 , which is realized when δ ≤ 1

4 and η ≤ 1.
Let us now turn to the anisotropic estimates from Point 2. As the summability index in the

Besov spaces from the second point of Proposition 10 is equal to 1 (our estimates do not allow

it to be equal to 2), we have no choice but asking not only that the Ḣ
1
2 +δ-norm but also the

Ḣ
1
2 +cδ-norm of w0,ε are bounded by ε−γ .

Choosing (d, p,m) = (0, 2
1−s ,∞) and using Lemma 1 with (α, β) = (a θ2 , b

θ
2 ) (with a, b < 0)

leads to:

‖Wε‖
L

2
1−s
T L∞,2h,v

≤ C

ν
1−s

2 −
θ
4

ε
θ
4 ‖w0,ε‖

Ḃ
s+ θ

2
2,1

≤ C

ν
1−s

2 −
θ
4

ε
θ
4Ca,b,θ‖w0,ε‖

b
a+b

Ḣs+
θ
2

(1−a)
‖w0,ε‖

a
a+b

Ḣs+
θ
2

(1+b)
.

We recall that c ∈]0, 1[ is expected to be close to 1, and as was done in [12, 13], we want to choose
a, b > 0 so small that: {

s+ θ
2 (1− a) = 1

2 + cδ,

s+ θ
2 (1 + b) = 1

2 + δ.

The rest is very close to what we did in Section 4.2.3: for some b > 0 to be fixed later, let us take
θ = 2

1+b (
1
2 + δ− s) then the existence of some a ∈]0, 1[ satisfying the other condition is equivalent
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to the fact that b > 0 is so small that ( 1
2 + cδ − s)(1 + b) < 1

2 + δ − s and in that case:

a = 1− (1 + b)
1
2 + cδ − s
1
2 + δ − s

,

and we obtain:

‖Wε‖
L

2
1−s
T L∞,2h,v

≤ C

ν
1
2 (1−s− 1

1+b ( 1
2 +δ−s))

ε
1

2(1+b)
( 1

2 +δ−s)‖w0,ε‖
Ḣ

1
2

+cδ∩Ḣ
1
2

+δ . (4.100)

Thanks to Assumption (H ′2) from Theorem 10, we can choose b so small that:

1

2(1 + b)
(
1

2
+ δ − s)− γ =

k

2
(
1

2
+ 2η0δ − s), (4.101)

and plugging this into (4.100) gives the estimate. For this choice of b, the corresponding θ is in
[0, 1] if and only if 2γ + k( 1

2 + 2η0δ− s) ≤ 1
2 , and the fact that it is true for any s ∈ [ 1

2 ,
1
2 + ηδ] is

equivalent to

2γ + 2kη0δ ≤
1

2
⇐⇒

(
1− 2η0(1− k)

)
δ ≤ 1

2
,

which is true as soon as δ ≤ 1
2 , k < 1 and 2η0 < 1.

Now θ ∈ [0, 1] for any s ∈ [ 1
2 − ηδ,

1
2 + ηδ] if and only if 2γ + k( 1

2 + 2η0δ − s) ≤ 1
2 is satisfied

for s = 1
2 − ηδ, which is equivalent to(

1− 2η0 + k(η + 2η0)
)
δ ≤ 1

2
, (4.102)

which is true when δ ≤ 1
2 and η ≤ 2η0( 1

k − 1).

Let us turn to the ”p-index” from Proposition 10. From the equivalence:

2

1− s
≤ 2(1 + b)

1
2 + δ − s

=
2

2γ + k( 1
2 + 2η0δ − s)

⇐⇒ δ(1− 2η0) +
k

2
+ 2kη0 + (1− k)s ≤ 1, (4.103)

we get that p ≤ 2
θ(1− 2

m )
for all s ∈ [ 1

2−ηδ,
1
2 +ηδ], is equivalent to the fact it is true for s = 1

2 +ηδ,

that is

δ
(

1− (1− k)(2η0 − η)
)
≤ 1

2
, (4.104)

which is true when δ ≤ 1
2 and η ≤ 2η0.

The second term is treated choosing (d, p,m) = (1, 2
3
2−s

, 4) and θ = 2
1+b (

1
2 + δ − s) with the

same a, b as in the previous lines, for wich the analogous conditions on θ, p require that (4.102)
and (4.104) are true but for 1

4 instead of 1
2 in the right-hand-side, which explains that the final

condition for all of them to be true for any s ∈ [ 1
2 − ηδ,

1
2 + ηδ] is:

δ ≤ 1

4
and η ≤ 2η0 min(1,

1

k
− 1).

Finally, the last point is treated choosing (d, p,m) = (1, 2
2−s , 2) and θ = 2

1+b (
1
2 + δ − s) with the

very same choice for b and conditions, which concludes the proof. �
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