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Introduction

The aim of this paper is twofold. On the rst hand it is shown that the nilpotent or the solvable approximation of an almost-Riemannian structure at a singular point is always a linear almost-Riemannian structure on a Lie group or a homogeneous space. On the other hand the generic almost-Riemannian structures are described and used to exhibit the generic nilpotent and solvable approximations.

More precisely an almost-Riemannian structure, ARS in short, on an ndimensional dierential manifold is a rank-varying sub-Riemannian structure that can be locally dened by a set of n vector elds satisfying the Lie algebra rank condition and such that the singular locus Z, that is the set of points where their rank is not full, is a proper but with empty interior subset (see [START_REF] Agrachev | A Gauss-Bonnet like formula on two-dimensional almost-Riemannian manifolds[END_REF], [START_REF] Agrachev | Two dimensional almost-Riemannian structures with tangency points[END_REF], [START_REF] Ayala | Almost-Riemannian geometry on Lie groups[END_REF], [START_REF] Boscain | Mason Local properties of almost-Riemannian structures in dimension 3[END_REF], [START_REF] Boscain | Normal forms and invariants for 2dimensional almost-Riemannian structures[END_REF], [START_REF] Jouan | Isometries of almost-Riemannian structures on Lie groups[END_REF]).

In particular almost-Riemannian structures on Lie groups or homogeneous spaces that are dened by invariant and linear vector elds only are referred to as linear ARSs (a vector eld on a Lie group is linear if its ow is a one-parameter group of automorphisms)(see [START_REF] Ayala | Almost-Riemannian geometry on Lie groups[END_REF]).

Following [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry in Sub-Riemannian Geometry[END_REF] and [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF] the nilpotent approximation of such a structure at a point p of the singular locus has been used in [START_REF] Boscain | Normal forms and invariants for 2dimensional almost-Riemannian structures[END_REF] and [START_REF] Boscain | Mason Local properties of almost-Riemannian structures in dimension 3[END_REF] to investigate the behaviour around p in dimension respectively 2 and 3.

However it may happen that some vector elds of the nilpotent approximation vanish, changing the almost-Riemannian structure into a sub-Riemannian one. In that case the nilpotent approximation can be replaced by a solvable one, the denition of which was stated in [START_REF] Jouan | Solvable approximations of 3-dimensional almost-Riemannian structures[END_REF] and is recalled in Section 2.2. In [START_REF] Jouan | Solvable approximations of 3-dimensional almost-Riemannian structures[END_REF] the solvable approximation is used to study the distance around some singular points in the generic 3D-case.

The rst aim is herein to prove that the nilpotent or solvable approximation of an ARS at a singular point is a linear almost-Riemannian structure on a Lie group or a homogeneous space, excepted in some very degenerated cases where nor the nilpotent approximation neither the solvable one denes an ARS. It is the purpose of Section 3, and the statements are illustrated by examples postponed to Section 5.

The generic properties of almost-Riemannian structures are then examined in Section 4. It is in particular shown that generically: (1) the singular set Z is a union of submanifolds Z r of codimension r 2 where the rank is n -r; (2) the rank of ∆ + [∆, ∆] is everywhere full (∆ stands for the distribution). The structure of the points of Z r where dim(T p Z r ) + dim(∆ p ) is not maximal is described in Theorem 6. For example in Z 1 these points are the so-called tangency points (see [START_REF] Boscain | Mason Local properties of almost-Riemannian structures in dimension 3[END_REF]), i.e. the points where T p Z 1 = ∆ p .

They are generically isolated in Z 1 .

Thanks to these genericity results and with the help of local normal forms (see Section 4.2) it it nally shown that generically there are only two possibilities for the nilpotent/solvable approximation at a point p ∈ Z:

1. At a tangency point p in Z 1 one vector eld of the nilpotent approximation vanish, but the solvable approximation is not degenerated and denes a linear ARS.

2. At all other points, that is nontangent points of Z 1 and all points in Z r with r ≥ 2, the nilpotent approximation is not degenerated.

In conclusion the only generic points where the solvable approximation is useful are tangency points in Z 1 .

As shown by the examples the picture is very dierent for nongeneric ARSs.

2 Basic denitions 2. [START_REF] Agrachev | A Comprehensive Introduction to Sub-Riemannian Geometry[END_REF] Almost-Riemannian structures For all that concern general sub-Riemannian geometry, including almost-Riemannian one, the reader is referred to [START_REF] Agrachev | A Comprehensive Introduction to Sub-Riemannian Geometry[END_REF].

Let M be a n-dimensional, connected, C ∞ manifold. The C ∞ -module of C ∞ vector elds on M is denoted by Γ(M ). Let ∆ be a submodule of Γ(M ). The ag of submodules

∆ = ∆ 1 ⊆ ∆ 2 ⊆ ∆ 3 ⊆ • • • ⊆ ∆ k ⊆ . . . is dened by induction: ∆ 2 = ∆+[∆, ∆]
is the submodule of Γ(M ) generated by ∆ and the Lie brackets of its elements, and

∆ k+1 = ∆ k + [∆, ∆ k ]. The Lie algebra generated by ∆ is L(∆) = k≥1 ∆ k . The submodule ∆ satises the rank condition if the evaluation of L(∆) at each point q is equal to T q M . Denition 1 An almost-Riemannian structure (resp. distribution) on a smooth n-dimensional manifold M is a triple (E, f, ⟨., .⟩) (resp. a pair (E, f ))
where E is a rank n vector bundle over M , f : E -→ T M is a morphism of vector bundles, and (E, ⟨., .⟩) is an Euclidean bundle, that is ⟨., .⟩ q is an inner product on the ber E q of E, smoothly varying w.r.t. q, assumed to satisfy the following properties: (i) The set of points q ∈ M such that the restriction of f to E q is onto is a proper open and dense subset of M ;

(ii) The module ∆ of vector elds of M , dened as the image by f of the module of smooth sections of E, satises the rank condition.

The set of points of M where the rank of f (E q ) = ∆ q is less than n is called the singular locus of the ARS and denoted by Z.

Denition 2 An almost-Riemannian structure on a smooth n-dimensional manifold M is a pair (∆, ⟨., .⟩) where ∆ is a submodule of Γ(M ) that can be locally dened by n vector elds and satises the rank condition, and ⟨., .⟩ is a bilinear symmetric and positive denite mapping from ∆ × ∆ to C ∞ (M ), such that the set Z of points q where the dimension of ∆ q is less than n is nonempty but with empty interior.

Around any point p ∈ M the submodule ∆ can be locally dened by an orthonormal frame (X 1 , X 2 , . . . , X n ). It is enough to select a set of n sections (e 1 , e 2 , . . . , e n ) of E orthonormal in a neighborhood of p and dene

X i = f * e i where by denition f * e i = f • e i .

Norm

The almost-Riemannian norm on ∆ q is dened by ∥v∥ = min{∥u∥ ; u ∈ E q and f (u) = v}.

Privileged coordinates and approximations

All the material of this section comes from [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry in Sub-Riemannian Geometry[END_REF] and [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF], excepted the solvable approximations that are dened in [START_REF] Jouan | Solvable approximations of 3-dimensional almost-Riemannian structures[END_REF].

Let p be a point of M and let ∆ k (p), k ≥ 1 be the evaluation of the submodule ∆ k at p. Thanks to the rank condition these submodules verify

∆ 1 (p) ⊂ ∆ 2 (p) ⊂ • • • ⊂ ∆ r (p) = T p M
for some integer r referred to as the degree of nonholonomy at p. Let n j stand for the dimension of ∆ j (p). The nonholonomic weights w 1 , w 2 , . . . , w n at p are dened by w i = j ⇐⇒ n j-1 < i ≤ n j .

Let (x 1 , x 2 , . . . , x n ) be a system of coordinates centered at p. These coordinates are privileged if for each i there exist w i vector elds in ∆ such that the Lie derivative X j 1 X j 2 . . . X jw i x i does not vanish at p = 0 but that any such Lie derivative of length smaller than w i vanishes at 0 (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry in Sub-Riemannian Geometry[END_REF] or [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF]).

Systems of privileged coordinates always exist (under the rank condition) and in such a system the weighted degree (homogeneous nonholonomic order) of the monomial

x α 1 1 x α 1 2 . . . x αn n is α 1 w 1 + α 2 w 2 + • • • + α n w n ,
the weighted degree of the vector eld ∂ ∂x j is -w j , and the weighted degree of the vector

eld x α 1 1 x α 1 2 . . . x αn n ∂ ∂x j is α 1 w 1 + α 2 w 2 + • • • + α n w n -w j .
More generally the nonholonomic order at p of a function f (resp. a vector eld X) is the minimum of the homogeneous nonholonomic orders of the monomials of its Taylor series.

It is important to notice that the nonholonomic degree ord p X of a vector eld X at p cannot be less than -r, and that ord p [X, Y ] = ord p X + ord p Y if X and Y are homogeneous and [X, Y ] ̸ = 0 (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry in Sub-Riemannian Geometry[END_REF] or [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF]).

The nonholonomic order of a vector eld X belonging to ∆ is at least equal to -1. Consider a set X 1 , X 2 , ..., X n of vector elds that generates ∆ around p. In privileged coordinates each X j can be decomposed into

X j = X (-1) j + X (0) j + X (1) j + • • • + X (s) j + . . . where X (s) j
is the component of X j of homogeneous order s.

The nilpotent approximation of

X j ∈ ∆ is X j = X (-1) j .
The Lie algebra generated by X 1 , X 2 , ..., X n is nilpotent and nite dimensional. The rank condition is preserved: it is satised by X 1 , X 2 , ..., X n as soon it is satised by X 1 , X 2 , ..., X n .

It may happen that some of the vector elds X j globally vanish. In that case they can be replaced by X j = X (0) j . Let us assume that only m elements of X 1 , X 2 , ..., X n are linearly independant (as vector elds). As explained in the next section we can assume without lost of generality that these vector elds are X 1 , X 2 , ..., X m and that X m+1 , ..., X n vanish. The set of vector elds X 1 , . . . , X k , , . . . , X m , X m+1 , . . . , X n , is called the solvable approximation of X 1 , X 2 , ..., X n .

ARSs on Lie groups and homogeneous spaces

The purpose of this section is to recall the denition of linear ARSs on Lie groups and homogeneous spaces (see [START_REF] Ayala | Almost-Riemannian geometry on Lie groups[END_REF]).

Let G be a connected Lie group and g its Lie algebra (the set of leftinvariant vector elds, identied with the tangent space at the identity).

A vector eld X on G is linear if its ow is a one-parameter group of automorphisms or equivalently if X (e) = 0 and for any left-invariant eld Y the Lie bracket [X , Y ] is also left-invariant.

A linear ARS on G is an almost-Riemannian structure dened by a set of: n -s left-invariant vector elds Y 1 , . . . , Y n-s . s > 0 linear vector elds X n-s+1 , . . . , X n . assumed to satisfy the rank condition and to have full rank on a proper open and dense subset of G. The almost-Riemannian metric is dened by the orthonormality of this set of vector elds.

The singular set Z where their rank is less than n cannot be empty because at least X n vanishes at the identity. On the other hand its interior is empty by analyticity as soon as the rank is full at one point.

A linear ARS is said to be simple if s = 1. For instance, the famous Grushin plane on the Abelian Lie group R 2 is a simple ARS.

Consider a homogeneous space G/H of G by a closed and connected subgroup H (the elements of G/H are the right cosets of H). The projection of a left-invariant vector eld Y onto G/H is well-dened and will be referred to as a left-invariant vector eld (see details in [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces[END_REF]). On the other hand the projection of a linear eld X of G does exist on G/H if and only if H is invariant under its ow, or equivalently, because H is connected, if the Lie algebra of H is ad(X )-invariant. This allows to dene linear vector elds and linear ARSs on homogeneous spaces in exactly the same way than on Lie groups.

3 Nilpotent and solvable approximations are linear Though this section deals with local questions, around a point p belonging to the singular locus, it will be more convenient to assume the ARS dened by a bundle E and a morphism f from E to T M as in Denition 1.

Firstly it is necessary to show that it is always possible to dene the ARS locally, around the point p = 0 in local privileged coordinates, by a set a n orthonormal vector elds X 1 , . . . , X n such that the solvable approximation

X 1 , . . . , X k , X k+1 , . . . , X m , X m+1 , . . . , X n , satises X i (0) ̸ = 0 for i = 1, . . . , k; X i ̸ = 0 but X i (0) = 0 for i = k + 1, . . . , m; X i = 0 for i = m + 1, . . . , n.
Let K p be the kernel of the restriction of f to E p , and let V p be an orthogonal complement to

K p in E p , that is K p ⊥ V p and K p ⊕ V p = E p .
Let e 1 , . . . , e n be a set of n sections of E, orthonormal in a neighborhood of p, such that e j (p) ∈ V p for j = 1, . . . , k and e j (p) ∈ K p for j = k +1, . . . , n.

The vector elds X j = f * (e j ), j = 1, . . . , n dene the ARS around p. Let (x 1 , . . . , x n ) be a set of privileged coordinates and X 1 , . . . , X n be the related nilpotent approximation. Let L be the submodule of Γ(E) generated by e j for j = k + 1, . . . , n. Consider now the mapping e ∈ L -→ f * e.

Its rank is m -k with k ≤ m ≤ n and we can assume without lost of generality that e m+1 , . . . , e n belong to the kernel of that linear map, and that e k+1 , . . . , e m are orthogonal to that kernel.

The vector elds X 1 , . . . , X n satisfy the above conditions.

It may happen that the vector elds X m+1 , . . . , X n fail to be linearly independant. In that case neither the nilpotent approximation nor the solvable one dene an almost-Riemannian structure.

For that reason we will always assume in what follows that the vector elds X 1 , . . . , X k , X k+1 , . . . , X m , X m+1 , . . . , X n , are linearly independant. Denote by Z a (a for approximation) the set of points where their rank is not full. It is not empty because at least one vector eld vanishes at p = 0. On the other hand the approximating vector elds are polynomial and the interior of Z a is empty. Consequently Z a is a proper with empty interior subset of R n and the set of approximating vector elds denes an ARS.

Remarks.

1. It will be shown in the second part of the paper that generically m = n or m = n -1 and that in the second case X n ̸ = 0.

2. In the case where some of the X j vanish or are linearly dependant it seems dicult, if not impossible, to go one step further by considering homogeneous approximations of nonholonomic order s > 0 because, as explained in the sequel, two important properties could be lost. First a homogeneous vector eld of degree s > 0 need not be complete. Second the Lie algebra generated by the approximating vector elds would not be nite dimensional in general. These two drawbacks are related, see [START_REF] Palais | A global formulation of the Lie theory of transformation groups[END_REF] or [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces[END_REF].

The generated Lie algebra

In view of the next sections it is very important to notice that all involved vector elds are complete, because of their triangular form. This fact is well-known for the X i (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry in Sub-Riemannian Geometry[END_REF] or [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF]).

It is as well true for the order zero homogeneous elds X i . Indeed such a eld writes:

X i = n j=1 P ij (x) ∂ ∂x j
where P ij is polynomial of nonholonomic degree w j . In particular P ij depends linearly on the coordinates (x j 1 , . . . , x js ) of weight w j , is polynomial in the coordinates of weight smaller than w j , and does not depend on the coordinates of weight greater than w j . The associated dierential equation is consequently triangular: the coordinates of weight 1 satisfy a linear homogeneous equation, the coordinates of weight 2 satisfy a linear equation with a second member that depends on the the coordinates of weight 1 only, and so on. All solutions are therefore dened on R and X i is complete. We can state:

Proposition 1 The vector elds X j and X j dened above are complete.

This important property does not hold for homogeneous vector elds of positive degree, for example the rst coordinate such a vector eld could be

x 2 1 ∂ ∂x 1 , but ẋ1 = x 2 1 is not complete.
The second feature we will use in the next subsections is the niteness of the generated Lie algebra; Proposition 2 The Lie algebra L generated by

X 1 , . . . , X k , X k+1 , . . . , X m , X m+1 , . . . , X n , is nite dimensional.
Proof. The nonholonomic order of these vector elds is 0 or -1, and the nonholonomic order of their brackets is in the range -r, . . . , 0 where r is the nonholonomic degree of the set of vector elds. Consequently their components are polynomials of degree less than or equal to r. The Lie algebra L is thus a subspace of a nite dimensional vector space of polynomials. ■

The nilpotent case

It is the case where the vector elds X 1 , . . . , X n are linearly independant and the vectors X 1 (0), . . . , X k (0) are independant in R n . In particular no vector eld X i vanishes, and m = n.

For j = k + 1, . . . , n let D j stand for ad( X j ) and for any multi-index J = (j 1 , ..., j s ) let

D J = D js • • • • • D j 1 (here k + 1 ≤ j u ≤ n and s ≥ 0). Let D = Span{D J ( X i )/ i = 1, . . . , k; J as above}. Lemma 1 The Lie algebra g generated by D is D j -invariant for j = k + 1, . . . , n. Proof. Let D J 1 ( X i 1 ) and D J 2 ( X i 2 ) in D. Then D j [D J 1 ( X i 1 ), D J 2 ( X i 2 )] = [D j •D J 1 ( X i 1 ), D J 2 ( X i 2 )]+[D J 1 ( X i 1 ), D j •D J 2 ( X i 2 )] belongs to g. ■
Let L stand for the Lie algebra generated by X 1 , . . . , X n . It is a wellknown fact that this Lie algebra is nilpotent and nite dimensional (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry in Sub-Riemannian Geometry[END_REF] or [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF]).

Theorem 1 1. The ideal generated in L by X 1 , . . . , X k is g. It is a nilpotent Lie algebra.

2. The vector elds X k+1 , . . . , X n do not belong to g and act on g as derivations.

3. The rank at p = 0 of the elements of g is full.

Proof.

1. Since g is D j -invariant for j > k it is clear that it is an ideal of L that contains X 1 , . . . , X k . The ideal generated by these vector elds contains all the D J (X i ) hence is equal to g.

2.

Let us assume that X j belongs to g for some j > k. Because of the rule about the nonholonomic order of brackets of homogeneous vector elds, all the elements of g of order -1 are linear combinations of X 1 , . . . , X k . The vector eld X j is homogeneous of order -1 and can consequently be written as:

X j = k i=1 λ i X i .
But X j vanishes at 0 and the vectors X i (0) are independent by assumption, so that the λ i 's are all equal to 0, a contradiction.

3. Let Y ∈ L \ g. It can be obtained only as brackets of X k+1 , . . . , X n , hence Y (0) = 0 because all these elds vanish at 0.

If g did not satisfy the rank condition then the Lie algebra L neither would satisfy it. This proves item 3.

■ After this analysis at the algebra level we can turn our attention to the Lie group level.

Let G be the simply connected Lie group whose Lie algebra is g. Since g is nilpotent the underlying manifold of G is R N , N = dim(g). The rst task is to show that R n is a homogeneous space of G. This is mainly due to the fact that g is generated by homogeneous vector elds. Lemma 2 The set R n is a homogeneous space of G. More accurately if H stands for the connected subgroup of G whose Lie algebra is the set of elements of g that vanish at 0, then R n is dieomorphic to the quotient

G/H.

Proof.

Since the elements of g are complete vector elds of R n the group G acts naturally on R n as a group of dieomorphisms, and it is enough to show that this action is transitive. More accurately G is the set of exp(t s Y s ) . . . exp(t 1 Y 1 ) where Y i ∈ g is a vector eld on R n and t i ∈ R, i.e. a group of dieomorphisms of R n .

Let us begin by a simple remark. Let Y = n j=1 y j (x) ∂ ∂x j be an element of g, and assume that Y is homogeneous and that Y (0) ̸ = 0. There exists an index i such that y i (0) ̸ = 0, and by homogeneity y i is constant: ∀x ∈ R n , y i (x) = a i ̸ = 0. By homogeneity again the polynomials y j are homogeneous of order w j -w i . Consequently

Y = w j =w i a j ∂ ∂x j + w j >w i y j (x) ∂ ∂x j where a i ̸ = 0.
Since g is generated by homogeneous elements and its rank is full at 0, we can choose in g a set n homogeneous elements Y 1 , Y 2 , . . . , Y n linearly independant at 0. We can also assume that the nonholonomic order at p of Y 1 , . . . , Y n 1 is -1, the one of Y n 1 +1 , . . . , Y n 2 is -2 and so on. Up to linear combinations we can assume that Y 1 , . . . , Y n 1 have the following form:

Y i = ∂ ∂x i + w j >1 y j (x) ∂ ∂x j .
More generally we can assume that if the order of Y i is w i then

Y i = ∂ ∂x i + w j >w i y j (x) ∂ ∂x j .
This way it is clear that the rank of the set of vector elds Y 1 , Y 2 , . . . , Y n is full everywhere in R n . This implies that the action of G on R n is transitive. ■

To complete the construction we associate to the derivation D j = ad( X j ) of g a linear vector eld X j on G for j > k (X j does exist because G is simply connected). It is clear that the projection of X j on R n is X j (see [START_REF] Ph | Jouan Equivalence of Control Systems with Linear Systems on Lie Groups and Homogeneous Spaces[END_REF] for details). Finally the vector elds X 1 , . . . , X k are invariant, and X k+1 , . . . , X n are linear vector elds on the homogeneous space R n = G/H.

We can state:

Theorem 2 The space R n is a homogeneous space of the nilpotent Lie group G whose Lie algebra is g.

The vector elds X 1 , . . . , X k are projections of invariant vector elds of G and X k+1 , . . . , X n are projections of linear vector elds of G.

Consequently the set X 1 , . . . , X n denes a linear ARS on the homogeneous space R n .

3.3

The non-nilpotent case

We set D j = ad( X j ) for j = k + 1, . . . , m and D j = ad( X j ) for j = m + 1, . . . , n. As well as in the nilpotent case we set

D J = D js • • • • • D j 1
for any multi-index J = (j 1 , ..., j s ) where s ≥ 0 and k + 1 ≤ j u ≤ n, and

D = Span{D J (X i )/ i = 1, . . . k; J as above}.
The Lie algebra g generated by D is again D j -invariant for j = k + 1, . . . , n, which shows that g is the ideal generated in L by X 1 , . . . , X k .

Theorem 3 1. The ideal generated in L by X 1 , . . . , X k is g. It is a nilpotent Lie algebra.

2. The vector elds X m+1 , . . . , X n do not belong to g and act on g as derivations.

3. The vector elds X j , with k + 1 ≤ j ≤ m that do not belong to g act on g as derivations.

4. The rank at p = 0 of the elements of g is full.

Proof. The proofs that g is the ideal generated in L by X 1 , . . . , X k and that its rank at p = 0 is full are identical to the nilpotent case.

The Lie algebra g is generated by homogeneous vector elds of order at most -1. Since the order of a Lie bracket is the sum of the orders of the factors and a vector eld of order less than -r vanishes, all brackets of length larger than r vanish, which shows that g is nilpotent.

The points 2. and 3. are clear. ■

Opposite to the nilpotent case we cannot assert that the vector elds X k+1 , . . . , X m do not belong to g. Because of this phenomenon, illustrated by Example 3 in Section 5, we are lead to introduce one more index. Up to a reordering we can assume that X k+1 , . . . , X l belong to g and that X l+1 , . . . , X m do not belong to g, where k + 1 ≤ l ≤ m.

Theorem 4 The space R n is a homogeneous space of the nilpotent Lie group G whose Lie algebra is g.

The vector elds X 1 , . . . , X l are projections of invariant vector elds of G. The vector elds X l+1 , . . . , X m are projections of linear or ane vector elds of G and X m+1 , . . . , X n are projections of linear ones.

Consequently the set of vector elds X 1 , . . . , X m , X m+1 , . . . , X n denes a linear ARS on the homogeneous space R n . Proof. Similar to the one of Theorem 2.

■

Remark.

As shown by Example 4 in Section 5 the Lie algebra L generated by X 1 , . . . , X m , X m+1 , . . . , X n need not be solvable when m ≤ n -2.

However it is solvable if m = n -1 and it will be proven in the next section that generically m = n -1 or m = n.

It is why we call solvable the approximations of the previous kind.

Genericity

The examples of Section 5 show that many dierent, complicated structures may arise and the aim of this section is to determine the generic ones.

In what follows we will say that a property of almost-Riemannian distributions (resp. structures) on a manifold M is generic if for any rank n

vector bundle E (resp. Euclidean vector bundle (E, ⟨., .⟩)) over M the set of smooth morphisms of vector bundles from E to T M for which this property is satised is open and dense in the C 2 Whitney topology.

Let U be an open subset of M on which E and T M are trivializable, and let Π be the projection from E onto M . Then the restriction to Π -1 (U ) of a vector bundle morphism f is equivalent to a smooth mapping X from U to the set M n (R) of n × n square matrices.

Alternately X can be viewed as a mapping (X 1 , X 2 , . . . , X n ) from U to the set Γ(U ) n of n vector elds on U .

It is not useful to assume that f satises the properties of almost-Riemannian distributions because these conditions will turn out to be generic.

The rst two theorems deal with distributions only, and do not require neither metric, nor normal forms.

In what follows we denote by M n×m (R) the set of real n × m matrices (simply M n (R)) if m = n) and by L r the set of elements of M n×m (R) of corank r. It is a submanifold of M n×m (R) of codimension (n-q+r)(m-q+r) where q = min{n, m} (see [START_REF] Golubitsky | Stable mappings and their singularities[END_REF]).

Recall from Section 2 that f being given, ∆ stands for the submodule of Γ(M ) it denes.

4.1

Generic distributions Theorem 5 The following properties are generic:

1. Let R be the largest integer such that R 2 ≤ n. For 1 ≤ r ≤ R let Z r be the set of points where the rank of f p , or locally the rank of {X 1 , X 2 , . . . , X n }, is n -r. Each Z r is a codimension r 2 submanifold and the singular locus Z is the union of these disjoint submanifolds.

2. The submanifold Z r+1 is included in the closure Z r of Z r for r = 1, . . . , R -1.

3. For any local representation X of the distribution the mapping x -→ det(X(x)) is a submersion at all points x ∈ Z 1 .

4. For n ≥ 3 the rank of ∆ + [∆, ∆] is full at all points.

Proof.

1. Let E be a rank n vector bundle over M and let Hom be the vector bundle over M whose ber at p ∈ M is the vector space Hom p = Hom(E p , T p M ) of homomorphisms from E p to T p M .

A smooth vector bundle morphism f from E to T M can be viewed as a smooth section of Hom.

In each ber Hom p the set of morphisms of corank r > 0 is a submanifold of Hom p of codimension r 2 . Their union over M denes a codimension r 2 submanifold S r of Hom. Since the union of the S r for r = 1, . . . , n is closed, the set of smooth sections of Hom that are tranversal to all the S r is open and dense in the set of smooth sections of Hom endowed with the C 2 Whitney topology.

The codimension of S r is r 2 and transversality means nonintersection if r 2 > n. If f -1 (S r ) is not empty transversality implies that it is a submanifold of M of codimension r 2 . This proves 1.

2.

In what follows we will always assume that the distributions under consideration are tranversal to the manifolds S r for r = 1, . . . , n.

Let such a distribution be locally dened by X around a point p assumed to belong to Z r with r ≥ 2. The rank of Λ = X(p) is n-r and there exists an

invertible matrix P such that P ΛP -1 = A Λ B Λ C Λ D Λ where A Λ ∈ M n-r (R)
is invertible. As in the proof of the product of coranks Theorem we consider

T = I 0 -C Λ A -1 Λ I so that T P ΛP -1 = A Λ B Λ 0 D Λ -C Λ A -1 Λ B Λ .
Let the matrix P be xed. The set Ω of matrices Q such that,with obvious notations,

A Q is invertible, hence Φ(Q) = D Q -C Q A -1 Q B Q is well dened, is
open and the mapping Φ is a submersion from this open subset of M n (R) onto M r (R). Clearly rank (Q) = n -r + rank (Φ(Q)) and for 0 ≤ s ≤ r we have L s Mn(R) = Φ -1 (L s Mr(R) ) (with obvious notations again). Since the distribution is generic we have X -⋔ p L r which implies that Φ•X is a submersion at p (see [START_REF] Golubitsky | Stable mappings and their singularities[END_REF], Lemma 4.3). Let V be an open neighborhood of p and

W = V X -1 (Ω). Then Φ • X(W ) is a neighborhood of 0 in M r (R) that encounters L s Mr(R) for 0 ≤ s ≤ r. Consequently ∀s, 0 < s < r, V Z s ̸ = ∅.
3. Consider now the determinant mapping, denoted by det, from

M n (R) to R. The dierential of det at Λ applied to H is d det(Λ).H = Trace( ΛH)
where Λ stands for the transpose of the matrix of cofactors of Λ. Consequently d det(Λ) ̸ = 0 if and only if rank (Λ) ≥ n -1. This shows that det is

a submersion on M n (R) \   r≥2 L r   . In particular det is a submersion in a neighborhood W of L 1 small enough for L 1 = {det = 0} W .
Let us consider a distribution locally dened by X around a point p assumed to belong to Z 1 . Since X -⋔ p L 1 and according to [START_REF] Golubitsky | Stable mappings and their singularities[END_REF] (Lemma 4.3) det •X is a submersion at p. In other words q -→ det(X(q)) is a submersion at p. 4. It remains to show that the rank of ∆ + [∆, ∆] is generically full everywhere. Let X = (X 1 , . . . , X n ) be a set of n vector elds on an open subset U of M that dene locally the distribution. Up to a system of coordinates X is a mapping from U to (R n ) n ≡ M n (R). Let J 1 be a typical ber of the space of 1-jets of sections of T n U , identied with (R n ) n ×(M n (R)) n . The set F i of elements X = (X, dX) of J 1 such that X i = 0 and rank (dX i ) < n is closed with empty interior: it is a nite union of submanifolds of codimension n+ρ 2 , where ρ is the corank of dX i . Consequently the set O = J 1 \( n i=1 F i ) is the open and dense subset of J 1 of elements that verify X i = 0 =⇒ dX i invertible.

Let Ψ be the mapping from

J 1 to M n× n(n+1) 2 (R) dened by Ψ(X) = X, ([X i , X j ] = dX j .X i -dX i .X j ) 1≤i<j≤n .
The mapping Ψ is a submersion on O.

On the other hand the set L r of elements of M n× n(n+1)

2

(R) of corank r is a submanifold of codimension r n(n-1)

2

+ r and Ψ -1 (L r ) O is a submanifold of O of the same codimension.

But n < r n(n-1)

2

+ r excepted in the particular case n = 2 and r = 1 where there is equality (this case has been studied in [START_REF] Agrachev | Two dimensional almost-Riemannian structures with tangency points[END_REF]).

To nish the set of X that are transversal to the F i , the union of which is closed, is open and dense. Such distributions take their values in O, and the set of X that are moreover transversal to all the Ψ -1 (L r ) O is open and dense.

Excepted in the case n = 2 and r = 1 transversality means nonintersection and implies that the rank of ∆ + [∆, ∆] is full at all points. ■ Two subspaces of T p M are attached to a point p belonging to the strate Z r of the singular locus, namely ∆ p , the distribution at p, and T p Z r , the tangent subspace to Z r at p. Their dimensions being respectively n -r and n -r 2 , the dimension of T p Z r + ∆ p is at most equal to min(n, 2n -r 2 -r). We are interested in the cases where the actual dimension of T p Z r + ∆ p is less than min(n, 2n -r 2 -r). For example in Z 1 this means that ∆ p = T p Z r (tangency points).

In what follows we note s = min(n, 2n -r 2 -r) -dim (T p Z r + ∆ p ), and ⌊α⌋ stands for the integer part of the real number α. Theorem 6 The following properties are generic:

r = 1. The points p ∈ Z 1 where T p Z 1 = ∆ p are isolated in Z 1 .
r ≥ 2. Let m(n, r) be the largest dimension that T p Z r + ∆ p may reach, that is m(n, r) = min(n, 2n -r 2 -r), and let s = m(n, r) -dim(T p Z r + ∆ p ). Then 1. The set of points p ∈ Z r where s = 1 is a submanifold of Z r for

n ≥ r 2 + r -⌊ r -1 2 
⌋. It is empty if n < r 2 + r -⌊ r -1 2 ⌋.
2. The set of points p ∈ Z r where s ≥ 2 and

s 2 ≤ r is a submanifold of Z r for r 2 + r -⌊ r -s 2 s -1 ⌋ ≤ n ≤ r 2 + r + ⌊ r -s 2 s -1 ⌋. It is empty if n is not in this interval.
3. The set of points p ∈ Z r where s ≥ 2 and s 2 > r is empty.

Proof. In this proof all distributions are assumed to satisfy the transversality conditions of Theorem 5.

1. Let us consider such a distribution and a point p in Z r for some r > 0, locally dened by X on an open set U containing p.

Moreover the set L r is a codimension r 2 submanifold of M n (R) and it can be locally dened, in a neighborhood V of the point X(p) ∈ L r , by a submersion Φ from V to R r 2 , so that L r V = Φ -1 (0).

Let us denote by d(p) the dimension of the quotient (T

p Z r + ∆ p ) /T p Z r .
Since the dimension of Z r is n -r 2 and the one of ∆ p is n -r we have n -r ≤ dim(T p Z r + ∆ p ) ≤ min(n, 2n -r 2 -r), and:

r 2 -r ≤ d(p) ≤ min(n -r, r 2 ).
The distribution being assumed to be transversal to L r at p the restriction of dX at any supplementary subspace to T p Z r in T p U is an isomorphism onto its image. On the other hand dX(p)(T p Z r ) ⊂ ker(dΦ(X p )) because Z r = X -1 (L r ), and since Φ is a submersion at p we obtain

d(p) = rank d(Φ • X)(p).X(p).
Moreover there are exactly n -r indices such that the vector elds X i 1 , X i 2 , . . . , X i n-r are independant at p so that

d(p) = rank (d(Φ • X)(p).X i 1 (p), . . . , d(Φ • X)(p).X i n-r (p)).
3. In a neighborhood of p where the vector elds X i 1 , X i 2 , . . . , X i n-r are independant at all points we dene:

x -→ Θ(x) = (X(x); d(Φ • X)(x).X i 1 (x), . . . , d(Φ • X)(x).X i n-r (x))
The mapping Θ takes its values in

M n (R) × M r 2 ×(n-r) (R) and Θ(x) belongs to L r × L s if and only if x ∈ Z r and d(x) = min(r 2 , n -r) -s.
This shows that s measures the gap between d(p) and the maximal value it can take. Consequently we are interested in the values of s that verify:

0 ≤ s ≤ min(r, n -r 2 ).
4. The sets L r × L s are submanifolds in the typical bers of the space of 1-jets of smooth sections of Hom. Since their union is closed the set of smooth sections of Hom that are transversal to all these submanifolds is open and dense in the set of smooth sections of Hom endowed with the Whitney C 2 topology.

Let us rst assume that

n -r ≥ r 2 . The codimension of L r × L s in M n (R) × M r 2 ×(n-r) (R) is r 2 + s(n -r 2 -r + s).
For s = 1 it is n -r + 1. Since n ≥ n -r + 1 the set of points of Z r where s = 1 is generically a submanifold of codimension n -r + 1. In particular for r = 1 the codimension of this submanifold is n and it consists in isolated points.

For s ≥ 2 transversality means nonintersection if n < r 2 + s(n -r 2r + s). But the two conditions n ≥ r 2 + s(n -r 2 -r + s) and n -r ≥ r 2 are equivalent to 0 ≤ n -r 2 -r ≤ r -s 2 s -1 , hence to:

r 2 + r ≤ n ≤ r 2 + r + ⌊ r -s 2 s -1 ⌋. (1) 
Notice that s 2 ≤ r is a necessary condition for this inequality to hold.

Let us now assume that

n -r ≤ r 2 . The codimension of L r × L s is r 2 + s(r 2 + r + s -n). Again transversality means nonintersection if n < r 2 + s(r 2 + r + s -n).
The two conditions n -r ≤ r 2 and n ≥ r 2 + s(r 2 + r + s -n) are equivalent to:

r 2 + r -⌊ r -s 2 s -1 ⌋ ≤ n ≤ r 2 + r (2) 
Again s 2 ≤ r is necessary for this inequality to hold.

7. The results of items 4 and 5 provide all the statements of the theorem. We consider an almost-Riemannian structure dened by a Euclidean vector bundle (E, ⟨ , ⟩) and a vector bundle morphism f , and we are interested in local normal forms of orthonormal vector elds dening the structure in a neighborhood of a point p that we can assume to be p = 0 in local coordinates.

These normal forms turn out to be the key of the next section.

First we follow the lines of [START_REF] Agrachev | A Gauss-Bonnet like formula on two-dimensional almost-Riemannian manifolds[END_REF] (also used in [START_REF] Boscain | Normal forms and invariants for 2dimensional almost-Riemannian structures[END_REF] and [START_REF] Boscain | Mason Local properties of almost-Riemannian structures in dimension 3[END_REF]).

Let W be a codimension 1 submanifold transversal to the distribution. We can dene a coordinate system y = (x 2 , . . . , x n ) in W , and choose an orientation transversal to W . Let γ y be the family of normal geodesics parametrized by arclength, transversal to W at y, and positively oriented. The mapping (x 1 , y) → γ y (x 1 ) is a local dieomorphism and the geodesics x 1 → γ y (x 1 ) realize the minimal distance between W = {x 1 = 0} and the surfaces {x 1 = c} for c small enough. The transversality conditions of the PMP are consequently satised along all these surfaces: if λ(x 1 ) is a covector associated to one of these geodesics then the tangent space to {x 1 = c} at γ y (x 1 ) is ker(λ(x 1 )). Now let X 1 = ∂ x 1 be the vector eld dened by X 1 (q) = d dx 1 γ y (x 1 ) at the point q = γ y (x 1 ). It is a unitary vector eld belonging to ∆. Let X 2 , . . . , X n be n-1 vector elds such that {X 1 , X 2 , . . . , X n } be an orthonormal frame of ∆. For geodesics the control functions (u 1 , u 2 , . . . , u n ) from the PMP satisfy u j = ⟨λ, X j ⟩. But here (u 1 , u 2 , . . . , u n ) = (1, 0 . . . , 0) so that ⟨λ, X j ⟩ = 0 for j = 2, . . . , n and the vector elds X 2 , . . . , X n are tangent to the surfaces {x 1 = c}. Consequently the vector elds have the following form:

X 1 =       1 0 . . 0       , X j =       0 a 2,j . . a n,j       for 1 < j < n
for any choice of the coordinates in W and any choice of X 2 , . . . , X n , under the condition that they provide an orthonormal frame related to the sub-Riemannian metric.

Notice that thanks to the transversality conditions the vectors elds X 2 , . . . , X n are not only orthogonal to X 1 for the sub-Riemannian metric but also for the canonical inner product of R n for the chosen coordinates.

Let us assume now that p = 0 belongs to Z r with r ≥ 1 and r 2 ≤ n. We want to show that the coordinates and X 2 , . . . , X n can be chosen in such a way that they write:

X 1 =           1 0 . . . . 0           X 2 =           0 1 + b 2 (x) a 3,2 (x) . . . a n,2 (x)           . . . X n-r =           0 . . 1 + b n-r (x) a n-r+1,n-r . a n,n-r (x)           and X n-r+1 . . X n =         0 . . 0 ------ D(x)         where D(x) ∈ M r (R), b j (0) = a i,j (0) 
= 0, and D(0) = 0. Firstly we can assume that X j (0) = ∂ x j for j = 2, . . . , n-r and X j (0) = 0 for j = n -r + 1, . . , n. Indeed X 2 , . . . , X n are tangent to W where we can choose freely the cooordinates (x 2 , . . . , x n ).

If r = n -1, which is generically possible only if n = 2 and r = 1, it is nished. Otherwise we can rst replace X 2 by the normalization of n j=2 a 2j X j . Then we replace X j by X j -a 2j a 22 X 2 for j > 2. These vector elds belong to ∆, their rst two coordinates vanish and they are orthonormal to (the new) X 2 . It remains to orthonormalize these n -2 vector elds. This cannot be done directly because some of them vanish in the singular locus. However they are images by the vector bundle morphism f of locally nonvanishing smooth sections of E that can be orthonormalized. The desired form of the vector elds is obtained by induction.

4.3

Nilpotent and solvable approximations of generic distributions Theorem 7 For a generic distribution holds:

(i) Let p be a tangency point in Z 1 , that is a point where T p Z 1 = ∆ p . Then X n = 0 but X n ̸ = 0, in normal form.

(ii) At all other points, including all points in Z r with r ≥ 2, the nilpotent approximation X 1 , X 2 , . . . , X n is a set of n linearly independant vector elds.

Proof.

Consider a generic distribution, a point p in Z 1 and privileged coordinates centered at p such that

X 1 =         1 0 . . . 0         X 2 =         0 1 + b 2 (x) a 3,2 (x) . . a n,2 (x)         . . . X n-1 =         0 . . 0 1 + b n-1 (x) a n,n-1 (x)         X n =         0 . . . 0 a n (x)         where b j (0) = a i,j (0) = 0. The determinant of X is a n (x)Π n-1 j=2 (1 + b j (x)) and the singular locus is locally Z = Z 1 = {a n = 0}. Let a n (x) = n i=1 α i x i + o(∥x∥).
Since the determinant is a submersion at p there exists i such that α i ̸ = 0.

If there exists i

0 ≤ n -1 such that α i 0 ̸ = 0 then X n ̸ = 0. Moreover da n (0).X i 0 = α i 0 ̸ = 0. Hence X i 0 (0) / ∈ T 0 Z 1 and T 0 Z 1 + ∆ 0 = R n .
2. If α i = 0 for i = 1, . . . , n -1, then X n = 0, but α n ̸ = 0 and X n = (α n x n +q(x 1 , . . . , x n-1 )) ∂ ∂x n , where q(x 1 , . . . , x n-1 ) is quadratic.

Moreover T 0 Z 1 = ker da n (0) = {x n = 0}, hence X j (0) ∈ T 0 Z 1 for j = 1, . . . , n -1 and ∆ 0 = T 0 Z 1 .
Let now p ∈ Z r with r ≥ 2. We can choose privileged coordinates centered at p such that:

X 1 =           1 0 . . . . 0           X 2 =           0 1 + b 2 (x) a 3,2 (x) . . X n-r+1 . . X n =         0 . . 0 ------ D(x)        
where b j (0) = a i,j (0) = 0 and D(x) ∈ M r (R).

Let x = (y, z) where y = (x 1 , . . . , x n-r ) and z = (x n-r+1 , . . . , x n ). The assumption p = 0 ∈ Z r implies D(0) = 0 and we can write:

D(x) = l(y) + k(z) + Q(y, z)
where l and k are linear and Q contains all the terms of degree greater than one. Here l(y) = (l ij (y)) n-r+1≤i,j≤n belongs to M r (R) and each entry l ij is linear w.r.t. y = (x 1 , . . . , x n-r ).

As in the proof of Theorem 6 we denote by d(p) the dimension of the quotient (T p Z r + ∆ p ) /T p Z r . It is clear that here d(0) = dim (dD(0).∆ 0 ), at p = 0. But ∆ 0 = Span{X 1 (0), . . . , X n-r (0)} and for j = 1, . . . , n -r: dD(0).X j (0) = ∂D ∂x j (0) = ∂l ∂x j (0).

Consequently d(0) = rank (l) (as a mapping from R n-r to M r (R)).

For j = n -r + 1, . . . , n the nilpotent approximation X j of X j is

X j = n i=n-r+1 l ij (y) ∂ ∂x i .
This is due to the fact that the weights of the coordinates are 1 for i = 1, . . . , n -r and 2 for i = n -r + 1, . . . , n.

Let us assume that the vector elds X n-r+1 , . . . , X n are not linearly independant. Then the mapping l takes its values in a subspace of M r (R) of dimension r 2 -r and d(p) is smaller than or equal to r 2 -r. But r 2 -r ≤ d(p) ≤ min(n -r, r 2 ) according to the proof of Theorem 6 and the equality can hold for r = 1 only. Indeed let s = min(n -r, r 2 ) -d(p) as in the proof of Theorem 6. Then:

1. If n -r ≥ r 2 then s = r 2 -(r 2 -r) = r. But r ≥ 2 implies s ≥ 2 and s 2 > r which is impossible according to Theorem 6.

2. If n -r < r 2 then s = n -r -(r 2 -r) = n -r 2 . But n, r and s must satisfy n ≥ r 2 + s(r 2 + r + s -n) according to the proof of Theorem 6. For s = n -r 2 this is s ≥ sr which is impossible for r ≥ 2.

■

The canonical coordinates are privileged with weights (1, 2, 5) and the vector elds X 1 , X 2 , and X 3 are homogeneous of order -1 hence equal to their nilpotent approximations. The algebra g is here the ideal of L generated by X 1 that is g = Span{X 1 , X 4 , X 5 , X 6 , X 7 }.

The vector elds X 2 and X 3 are linear, as well as X 8 = 1 2 [X 2 , X 3 ] and

X 9 = [X 2 , X 8 ].
The orders of X 8 and X 9 are respectively -2 and -3 which shows that the vector elds of order smaller than -1 are not necessarily in g.

Notice that the singular locus is here Z = {xy = 0}. ■

Example 3

Consider in R 4 the almost-Riemannian structure dened by the vector elds:

X 1 = ∂ x , X 2 = ∂ y + x∂ z , X 3 = y∂ w , X 4 = 1 2 x 2 ∂ z + 1 2 y 2 ∂ w .
Since [X 1 , X 2 ] = ∂ z and [X 2 , X 3 ] = ∂ w , the coordinates (x, y, z, w) are privileged with weights (1, 1, 2, 2) at p = (0, 0, 0, 0). The vector elds X 1 , X 2 are homogeneous of order -1 and independent at 0, and the vector eld X 3 is homogeneous of order -1 but vanishes at 0. The last eld X 4 is homogeneous of order 0. Consequently the rst three are equal to their nilpotent approximation and X 4 = X 4 . According to the notations of Section 3 we have k = 2 and m = 3.

The Lie algebra L is spanned by X 1 , X 2 , X 3 , X 4 and

X 5 = [X 1 , X 2 ] = ∂ z , X 6 = [X 2 , X 3 ] = ∂ w , X 7 = [X 1 , X 4 ] = x∂ z .
Despite the fact that X 3 (0) = X 3 (0) = 0 we cannot assert as in the nilpotent case that X 3 does not belong to g (see Section 3.3 after Theorem 3). Indeed the ideal generated in L by X 1 and X 2 is here

g = Span{X 1 , X 2 , X 3 , X 5 , X 6 , X 7 } because X 3 = [X 2 , X 4 ].
As explained in Section 3.3 this may happen when k < m < n.

Notice that the determinant of X 1 , X 2 , X 3 , X 4 is -1 2 x 2 y. Therefore the singular locus is Z = {xy = 0} which shows that the structure is not generic.
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Examples

The following four examples use the notations of Section 3.

The rst one is a standard example of a solvable approximation on the group Heisenberg. Example 2 shows that the elements of the Lie algebra L of nonholonomic order smaller than -1 are not necessarily in g. We exhibit a vector eld of the distribution that vanishes at p but belongs to the ideal g in Example 3 (which implies that the rank of the nilpotent approximation is not full).

To nish the Lie algebra L of Example 4 is not solvable, it contains a semi-simple subalgebra. Recall that this is not generic.

In these four examples the vector elds are equal to their nilpotent or solvable approximations at 0. It is of course possible to add terms of higher nonholonomic order without modifying the conclusions.

Example 1

Consider in R 3 the almost-Riemannian structure dened by the vector elds:

At p = (0, 0, 0) the coordinates (x, y, z) are privileged with weights (1, 1, 2), the vector elds X 1 and X 2 are homogeneous of order -1 and X 3 is homogeneous of order 0, so that X 1 = X 1 , X 2 = X 2 , X 3 = 0 and X 3 = X 3 . The nilpotent approximation at p is not an almost-Riemannian structure, it is the constant rank 2 sub-Riemannian structure dened by X 1 and X 2 . The Lie algebra generated by

here the Heisenberg Lie algebra, and X 3 is a linear vector eld on g. Finally X 1 , X 2 , X 3 is a linear ARS on the Heisenberg group.

Example 2

The almost-Riemannian structure is here dened in R 3 by:

The Lie algebra L contains X 1 , X 2 , X 3 and

■

In the general case the Lie algebra L need not be solvable. Indeed it is a subalgebra of the semi-direct product of g by its algebra of derivations. But the algebra of derivations of a nilpotent Lie algebra is not solvable in general. For instance the derivations of the Heisenberg algebra is the set of endomorphisms the matrix of which writes in the canonical basis:

The subalgebra of such derivations that moreover satisfy e = f = a + d = 0 is equal to sl 2 hence semisimple.

Example 4 illustrates that possibility.

Example 4

Consider in R 5 , with coordinates (

The coordinates (x, y, z, w, t) are privileged with weights (1, 1, 1, 2, 2) at the origin. At this point the vector elds X 1 , X 2 , X 3 (resp. X 4 , X 5 ) are homogeneous of order -1 (resp. 0), hence equal to their nilpotent approximations (resp. X 4 = X 4 and X 5 = X 5 ).

Since X 10 = [X 4 , X 5 ], [X 10 , X 4 ] = 2X 4 and [X 10 , X 5 ] = -2X 5 the vector elds X 4 , X 5 and X 10 , that do not belong to g, generate a semi-simple Lie algebra isomorphic to sl 2 . Consequently the algebra L is not solvable.

The singular locus is here Z = {xyz = 0}, and again the structure is not generic.

■