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Abstract: A mathematical model of COVID-19 with a delay-term for the vaccinated compartment is devel-
oped. It has parameters accounting for vaccine-induced immunity delay, vaccine e�ectiveness, vaccination
rate, and vaccine-induced immunity duration. The model parameters before vaccination are calibrated with
the Philippines’ con�rmed cases. Simulations show that vaccination has a signi�cant e�ect in reducing fu-
ture infections, with the vaccination rate being the dominant determining factor of the level of reduction.
Moreover, depending on the vaccination rate and the vaccine-induced immunity duration, the system could
reach a disease-free state but could not attain herd immunity. Simulations are also done to compare the ef-
fects of the various available vaccines. Results show that P�zer-BioNTech has themost promising e�ect while
Sinovac has the worst result relative to the others.
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MSC: 92D30; 37N25; 34D20

1 Introduction
The COVID-19 pandemic, which was reported to have originated from China [18], is a rapidly evolving public
health problem that immobilizednearly the entireworld, causingmany social disruptions, andbrought havoc
onmany nations’ economies. Considering the health threat brought by the disease, a�ected countries imple-
mented control measures and strategies tominimize and prevent the spread of the virus. Before the availabil-
ity of vaccines, countries worldwide practiced and applied non-pharmaceutical interventions (NPIs), e.g.,
wearing of face masks and face shields, lockdowns, social distancing, contact tracings, quarantines, isola-
tion, and other public health measures and strategies. Since the start of the pandemic, various dilemmas af-
fected the progression estimation of the disease and designing e�ective interventions. Various mathematical
models have been created to understand and estimate the e�ect of these conjectural factors, and to evaluate
and design intervention strategies. For instance, at the early part of the pandemic, the role of the asymp-
tomatic infected are not yet clearly studied and somathematical models are used to examine its likely impact
on disease progression and intervention. Among the very large literature, we can cite [2, 3, 15, 11, 17]. Models
were also used to �nd optimal policies to mitigate the disease, e.g. [4, 10] dealt with the Philippines.
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With the availability of vaccines, other uncertainties and questions emerged and various mathematical
models have been developed and studied to answer some of them. In Jentsch et al. [7], a coupled social-
epidemiological model of SARS-CoV-2 transmission to address the problem of vaccine prioritization was de-
veloped. The authors provided answers whether to prioritize vaccinating individuals who cause the most
transmission or those who are at the highest risk of death. One of their main results is that if vaccines become
available su�ciently late in the pandemic, it is relevant to prioritize vaccinating individuals who caused the
most transmission than those at higher risk of death (like those aged 60 years and older). In Moore et al. [14],
a mathematical model structured by age and the UK region was used to conduct an analysis of a vaccination
programme together with the relaxation of NPIs. Their modelling study estimated that vaccination alone is
insu�cient to contain the outbreak. In [1], Acuña-Zegarra et al. formulated an optimal control problem with
mixed constraints to study optimal vaccination policies. Their solution identi�es vaccination policies that
minimize the burden of COVID-19 quanti�ed by the number of disability-adjusted years of life lost.

In this study,wedevelop amathematicalmodel of COVID-19 that is used to investigate thenowyet unclear
factors related to vaccination. These factors are vaccine-induced immunity delay, vaccination rate, vaccine
e�ectiveness, and vaccine-induced immunity duration. We will investigate on the impact of these factors
in mitigating the spread of COVID-19 and achieving the goal of herd immunity in the Philippines. We note
that the model can estimate the number of undetected infections whichmay represent the naturally immune
members of the population. There are mathematical models developed to study the e�ect of delays in vacci-
nation for other infectious diseases, e.g. [16, 13]. However, none of these models have an explicit vaccinated
compartment with a delay term.

We arranged the rest of the paper as follows: Section 2 describes the model formulation. The analysis
of the model is in Section 3. In Section 4, we present the calibrated parameters and show the results of the
simulations. And lastly, in Section 5 we have a brief discussion of the results and its implications.

2 Mathematical Model
We focus on �ve compartments dividing a population infected by COVID-19. The compartments are Suscepti-
ble (S), Vaccinated (V), Infected (I), Con�rmed (C), and Removed (R). Removed here means either recovered
or dead. Figure 1 shows the dynamics of the model. A susceptible individual (S) could become infected after
contact with infected individuals (I). Infected individuals (I) is considered as a con�rmed case (C) after being
detected. In either case, the individual will end up in the removed compartment (R). We assume that infected
individuals will have full and lasting immunity. But, we assume a waning vaccine-induced immunity. More-
over, we note that vaccinated individuals will not become immune instantaneously but it will involve a delay
time τ.

Figure 1: The flowchart of the model with a delay term to account for vaccine-induced immunity delay.

Here, we adapted a closed population model, i.e. we do not consider natural birth and death rates. We
denoted by N0 the total number of population that is assumed constant. The model is written as frequency
dependent, whereas it can be rewritten as density dependent provided that β is replaced by β/N0. We as-
sume that vaccinated individuals will survive in the span of the needed delay time and become fully immune
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afterwards. The system of di�erential equations with the delay term is given by

dS
dt = −αβI SN0

− νS(t − τ) + ηV (1)

dV
dt = νS(t−τ) − ηV (2)

dI
dt = αβI SN0

− (γ + ρ)I (3)

dC
dt = ρI − δC (4)

dR
dt = γI + δC. (5)

The parameter β denotes the transmission rate of the disease, while the parameter α represents the level of
control measures to limit the transmission. The parameter ν denotes the vaccination rate, which is further
re�ned in (12). The parameter η denotes the vaccine-induced immunity waning rate, while the parameter ρ
denotes the proportion of infections detected and con�rmed through testing. Lastly, the parameters δ and γ

denote the removal rates from C to R and I to R, respectively.

3 Qualitative analysis
The initial value problem requires to know the past history. We assume that for t ∈ [−τ, 0]

S(t) = S0(t), V(t) = V0(t), I(t) = I0(t), C(t) = C0(t), R(t) = R0(t),

where S0, V0, I0, C0, R0 are continuous functions on [−τ, 0]. It is now standard to check that the problem is
well-posed, and the domain {(S, V , I, C, R) ∈ R5

+; 0 ≤ S + V + I + C + R ≤ N0} is positively invariant.
The only equilibrium is the Disease Free Equilibrium of the form (S*, V* = ν

η S
*, I* = 0, C* = 0, R*) with

S* + V* + R* = N0.

3.1 Basic Reproduction Number

Since the infected individuals are in I and C, the rate of new infections in each compartment (F) and the rate
of other transitions between compartments (V) can be rewritten as

F =
(
αβI SN0

0

)
, V =

(
(γ + ρ)I
δC − ρI

)
.

Thus,

JF =
(
αβ S

N0
0

0 0

)
, JV =

(
γ + ρ 0
−ρ δ

)
, J−1V =

(
1

γ+ρ 0
ρ

δ(ρ+γ)
1
δ

)
.

Therefore, the next generation matrix is

JF J−1V =
(

αβ
γ+ρ

S
N0

0
0 0

)
.

We deduce as in Diekman et. al [5] and Driessche and Watmough [6] that the basic reproduction number

R0 :=
αβ

γ + ρ
S*
N0

.

The term αβ
γ+ρ represents the contact ratewith infected individuals during the infection period. Herd immunity

is then obtained whenR0 < 1, i.e. if the proportion of non-immune individuals 1− S*
N0

is smaller than 1− γ+ρ
αβ .
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3.2 Stability of the equilibrium points with delay

Since the population is constant, we restrict ourselves to the system (S, I, C, R), since V = N0 − (S + I + C +R).
Considering a delay τ > 0, the characteristic equation then is given by

det(λId + J0 + e−λτJ1) = 0,

with

J0 = Jac


−αβI SN0

+ η(N0 − (S + I + C + R))
αβI SN0

− (γ + ρ)I
ρI − δC
γI + δC

 (S*, 0, 0, R*) =


−η −αβ S*N0

− η −η −η
0 αβ S*N0

− (γ + ρ) 0 0
0 ρ −δ 0
0 γ δ 0

 ,

and

J1 = Jac


−νS
0
0
0

 =


−ν 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

It comes
λ(λ + δ)

(
λ − αβ S

*

N0
+ (γ + ρ)

)(
λ + η + νe−λτ

)
= 0.

Real eigenvalues are 0, −δ, (γ + ρ)(R0 − 1). One can note that there is no real solution of the equation(
λ + η + νe−λτ

)
= 0. Let λ = a + ib, we deduce

e−aτ cos(bτ) = −a + ην (6)

e−aτ sin(bτ) = b
ν . (7)

Studying the sign of a, we obtain the following result.

Theorem 3.1. 1. If R0 < 1 and 0 ≤ τ < π
2ν , then the DFE is asymptotically stable.

2. If τ > π
2ν , then the DFE is unstable.

4 Simulations

4.1 Parameter values

From [8], the infection period has been estimated at 12 days and sowe set γ = 1/12. Symptoms usually appear
after 5 days, and we assume the detection is then performed. The parameter δ is set to 1/7.

Parameters α, β and ρ, are estimated by �tting the model with the cumulative con�rmed cases of the
Philippines from January 30, 2020 to February 28, 2021, the last day before the start of the vaccination cam-
paign of the Philippines. The data set can be downloaded from https://data.gov.ph. These data are available
to the public and so ethical approval is not required.

We acknowledge that the three parameters are varying through time due to the varying controls being
implemented and of the evolution of the virus. Thus, our parameter estimation are piecewise functions as
follows:

α =



α1, for 0 ≤ t < 46 (January 30, 2020 - March 15, 2020)
α2, for 46 ≤ t < 123 (March 16, 2020 - May 31, 2020)
α3, for 123 ≤ t < 320 (June 1, 2020 - Dec. 14, 2020)
α4, for 320 ≤ t < 340 (Dec. 15, 2020 - Jan. 3, 2021)
α5, for 340 ≤ t < 396 (Jan. 4, 2021 - Feb. 28, 2021)
α6, for t ≥ 396, (March 1, 2021 onwards)

(8)

https://data.gov.ph
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where the dates correspond to the noticeable changes in the control measures of the country and we put in
α6 our estimate for the future transmission reduction control,

β =
{
β1, for 0 ≤ t < 343 (January 30, 2020 - Jan. 6, 2021)
β1(1 + β2), for t ≥ 343, (Jan. 7, 2021 onwards)

(9)

where β2 corresponds to the increase of the transmission rate due to the introduction of the more transmis-
sible new variant of the virus in the population,

ρ =
{
ρ1, for 0 ≤ t < 184 (January 30, 2020 - July 31, 2020)
ρ2, for t ≥ 184, (Aug. 1, 2020 onwards)

(10)

where ρ2 corresponds to the start of the current testing rate of the country.
The cost function to beminimized for the parameter estimation consists of a nonlinear least square func-

tion given by

F(θ) =
N∑
i=1

(Td(ti) − Ts(ti , θ))2, (11)

where θ = (α, β, ρ) and constrained by 0 ≤ θ ≤ 1. Td(ti) and Ts(ti , θ) denote the cumulative con�rmed
cases from data and model at time ti, respectively. The optimization problem is solved using the Leven-
berg–Marquardt algorithm [9, 12].

The obtained parameter values are given in Table 1 and the �t is shown in Figure 2. With the estimated
parameters, the relative cost function value is 1.3058 × 10−3.
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Figure 2: The model’s �t with data and the infection curve including the undetected ones. With N0 = 108, 116, 615, I0 = 2,
C0 = 1, S0 = N0 − I0 − C0, R0 = 0, the model predicted a cumulative infection (including the undetected ones) of 2,387,393
against the con�rmed cases of 576,352 by Feb. 28, 2021.

The vaccination rate is given by

ν(t) =

νe
( νp
N0

)
, for t > tv

0, for t < tv,
(12)

where νe is the parameter for vaccine e�ectiveness and νp
N0

is the proportion of vaccinated susceptibles per
day, and tv is the start time of vaccination. The parameters are summarized in Table 1.

4.2 E�ect of vaccination on disease progression

We study the possible impact of vaccination, with its related factors, in controlling COVID-19 in the country.
Considering that some travel restrictions are being lifted and easing of community quarantines are already



E�ect of Vaccination to COVID-19 Disease Progression and Herd Immunity | 267

Table 1: The parameters of the model.

Parameter Description Unit Value
νp number of vaccinated individuals persons/day 0 − 500000
νe vaccination e�ectiveness dimensionless 0.5 − 1
η vaccine-induced immunity waning rate 1/day 1

600 −
1
90

τ vaccine-induced immunity delay days 14 − 98

α transmission reduction dimensionless

α1 1
α2 0.48181
α3 0.41553
α4 0.60158
α5 0.41712

β transmission rate 1/day β1 0.26467
β2 3.8981 × 10−7

ρ proportion of infections detected 1/day
ρ1 0.01154
ρ2 0.036766

δ removal rate from C to R 1/day 1/7
γ removal rate from I to R 1/day 1/12

being done in many parts of the country, we let α6 = α5 × 1.2. With the vaccination campaign starting at day
396, Figure 3 shows the impact of vaccination considering vaccination rate (νp), vaccine e�ectiveness (νe),
vaccine-induced immunity delay (τ), and vaccine-induced immunity duration (1/η). Wemeasure this impact
by the maximum value of the Con�rmed compartment.

In the simulations inFigure 3, the ranges are [0, 500000], [0.5, 1], [14, 98] (days), and [90, 600] (days) for
νp, νe, τ, and1/η, respectively,which correspond to theprobable values of the parameters for thePhilippines.
These values are represented in percentile.When these parameters are needed to be �xed, we used the values
νp = 100000, νe = 0.9, τ = 56, and η = 0. From the start of vaccination, we let the simulations run for an
additional 671 days or up to Dec. 31, 2022.
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Figure 3: The e�ect of each of the vaccine-related parameters νp, νe, τ, and η to the maximum value of the Con�rmed (C) com-
partment. The x-axis is in terms of the percentile of the ranges [0, 500000], [0.5, 1], [14, 98] (days), and [90, 600] (days), for
νp, νe, τ, and 1/η, respectively.
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4.3 E�ect of vaccination on herd immunity

Oneof the goals of vaccination is for the country to reachherd immunity against the virus.We compute theday
when the country will reach herd immunity considering the various factors related to vaccination. As shown
in Section 3.1, the population has achieved herd immunity if more than 1 − γ+ρ

αβ of its susceptible population
is already immune to the virus. Note that we assume here that individuals who recovered from the infection
will develop permanent immunity and that vaccination will be given only to the susceptible individuals.

Considering that νp is the dominant factor among the vaccine-related parameters, we pair it with the
other vaccine-related parameters to produce the heatmaps in Figures 4, 5, and 6, showing the day when the
country will have reached the herd immunity threshold.
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Figure 4: A heatmap showing the days after Day 0 (Jan. 30, 2020) when the country reaches the herd immunity threshold, con-
sidering the combination of values of νp and 1/η. The parameters νe and τ are �xed at 0.9 and 56 days, respectively. Black
boxes mean herd immunity is not achieved at the end of simulation (Dec. 31, 2022).

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
p

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

e

1045 953 884 830 787

991 907 843 794 755

1055 946 868 809 764 727

1008 907 834 780 738 704

968 873 805 755 715 684

1065 932 843 780 732 695 666

1026 901 817 758 713 678 650

991 873 794 738 695 663 637

960 848 773 720 680 649 624

932 826 755 704 666 637 613

0

200

400

600

800

1000

Da
ys

 to
 h

er
d 

im
m

un
ity

 th
re

sh
ol

d

Figure 5: A heatmap showing the days after Day 0 (Jan. 30, 2020) when the country reaches the herd immunity threshold, con-
sidering the combination of values of νp and νe. The parameters τ and η are �xed at 56 days and 0, respectively. Black boxes
mean herd immunity is not achieved at the end of simulation (Dec. 31, 2022).
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Figure 6: A heatmap showing the days after Day 0 (Jan. 30, 2020) when the country reaches the herd immunity threshold, con-
sidering the combination of values of νp and τ. The parameters νe and η are �xed at 0.9 and 0, respectively. Black boxes mean
herd immunity is not achieved at the end of simulation (Dec. 31, 2022).

4.4 Comparing the di�erent vaccines

We consider the di�erent available vaccines distinguish by vaccine e�ectiveness and vaccine-induced immu-
nity delay. We �xed νp = 100000 and η = 0. The parameters νe and τ corresponding to the di�erent vaccines
are given in Table 2. We wanted to see the e�ect of the di�erent vaccines to the number of susceptible, the
fully immune individuals through vaccination, and the total number of infections. The results are shown in
Figures 7, 8, and 9. The values at the end of simulation are tabulated in Table 2.

Table 2: Comparing the di�erent vaccines. S(tf ), V(tf ), and Icum(tf ) are the number of susceptible, fully immune individuals
through vaccination, and cumulative infections, respectively, at the �nal time of simulation, which is Day 1066 (Dec. 31, 2022).

Vaccine νe τ S(tf ) V(tf ) Icum(tf )
P�zer-BioNTech 0.95 42 58,589,579 45,498,723 4,030,627

Moderna 0.94 56 59,126,976 44,705,577 4,286,529
Johnson 0.66 28 69,501,815 34,244,861 4,372,459

Astrazeneca 0.7 56 68,238,781 35,081,867 4,798,741
Sputnik 0.91 42 60,036,593 43,992,393 4,089,979
Sinovac 0.51 28 75,746,331 27,434,886 4,938,258
Bharat 0.78 56 65,107,767 38,419,780 4,591,718

5 Discussion
Even though various non-pharmaceutical interventions have been implemented worldwide, it is widely be-
lieved that vaccination is the main tool to end the COVID-19 pandemic and bring back normalcy to the world.
Every country’s vaccination campaign aims at achieving herd immunity. This immunity could be achieved by
being infected of the virus (natural immunity) or being vaccinated (vaccine-induced). Natural immunity thus
has a positive e�ect on the outlook of herd immunity in a country. In Figure 2, the calibratedmodel estimated
that the naturally-immune individuals in the Philippines could be around four times the recorded cases. A
test before vaccination could reveal these individuals and the vaccines intended for them could instead be
used to the completely susceptible individuals. Figure 3 shows us that the number of vaccines given per day
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Figure 7: Comparing the di�erent vaccines by the decrease in susceptible.
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Figure 8: Comparing the di�erent vaccines by the number of fully immune individuals through vaccination.
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is the dominant determining factor in using vaccination to curb the disease. It also shows that the greater the
delay in having vaccine-induced immunity the worse it will be with respect to the number of infections.

Assuming 90% vaccine e�ectiveness, unlimited vaccine-induced immunity duration, and 56 days
vaccine-induced immunity delay, Figures 4, 5, and 6 show that per day vaccination of 150,000 individuals
may not be enough for the country to achieve herd immunity by Dec. 31, 2022. This stresses again the need
for the country to strengthen its vaccine procurement strategy.

A dark horse in this vaccination campaign is the vaccine-induced immunity duration. Figure 4 shows
its impact to herd immunity. Natural immunity could cause herd immunity. However, due to the various
non-pharmaceutical interventions to control infections, it is clear that vaccine-induced immunity will be the
dominant factor in achieving herd immunity. Figure 10 shows a scenario where the country will have already
eliminated the disease but still could not achieve herd immunity evenwith a sustained constant vaccination.
This is due to the system going to a disease-free equilibrium where the number of susceptible is still above
the herd immunity threshold. Thus, studies determining the immunity duration cause by the di�erent avail-
able vaccines is very important so that countries could design e�ective vaccination strategies now and for
the next years. For example, if achieving herd immunity seems impossible with the current rate, then the
vaccination campaign should focus on protecting the vulnerable - minimizing deaths and hospitalization,
instead of aiming for herd immunity.

Finally, from Figures 7, 8, and 9, we see that Sinovac has the worst e�ect among the vaccines. Due to its
low vaccine e�ectiveness, in the simulations it only achieved a little more than half of what P�zer-BioNTech
has achieved with respect to the number of fully immune individuals through vaccination, as can be seen in
Table 2. P�zer-BioNTech is the best vaccine for decreasing the number of susceptible and infections, while
increasing the fully immune individuals. It is followed closely by Moderna and Sputnik. The other vaccines
are in between.
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Figure 10: Simulation with P�zer-BioNTech with 300,000 vaccinations per day, but with vaccine-induced immunity for only
9 months. At the end of simulation (Day 1797 or Dec. 31, 2024), S = 61, 286, 308, I = C = 0, Icum = 3, 219, 785, V =
43, 615, 996, and R = 3, 218, 590.
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