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Abstract

Short-term hydro-generation management poses a non-convex or even non-continuous
optimization problem. For this reason, the problem of systematically obtaining feasible
and economically satisfying solutions has not yet been completely solved.

Two decomposition methods, which, as far as we know, have not been applied in
this field, are here proposed :

• the first is based on a decomposition by prediction method and the coordination
is a primal-dual relaxation algorithm,

• handling the dynamic constraints by duality, the second achieves a price decom-
position by an Augmented Lagrangian technique.

Numerical tests show the efficiency of these algorithms. They will enable the process
in use at Electricité de France to be improved.

Keywords
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1 Introduction

The optimization of a hydro-valley’s daily generation schedules poses a problem of an appre-
ciable size. For instance, a problem related to a valley of five or six reserves, with a half-hour
step has no less than 250 or 300 constraints.

Since the 1970’s, very efficient linear programming methods and softwares have been
designed to handle such optimization problems. The most commonly used algorithms take
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advantage of the network flow structure of the dynamic constraints [1] and succeed in being
about a hundred times faster than standard linear programming methods [2].

Over the last ten years, extensions to the nonlinear (but convex) case have been made.
Using Frank-Wolfe or projected reduced gradient techniques, efficient softwares have been
developed. Thanks to them, nonlinear efficiency curves, for example, can be coped with.

Nevertheless, the modelling of the hydro-problems which can be solved by these meth-
ods is not completely satisfactory. Downstream flow requirements or “spillage constraints”
cannot be handled. Moreover, the efficiency curves, which are generally non-convex, have to
be roughly approximated and no discontinuity in the generating domain can be dealt with.

The Electricité de France generation mix has over 150 thermal groups and 15 valleys.
The global optimization of the daily generation schedules is achieved by using a price decom-
position method. In this optimization, some reservoirs are aggregated and the generating
domain of the hydro-plants is assumed to be convex. Considering the number of local hydro-
problems which have to be solved during this optimization, such a simplifying hypothesis
can easily be understood.

Nevertheless, at regional level, a second optimization stage is necessary [3]. For each
valley, a schedule is computed independently :

• firstly, a linear problem is solved. It takes into account the dual variables that the global
optimization yields and handles a detailed but convex modelling of the constraints,

• secondly, in the neighborhood of this schedule, a heuristic “smoothing” software pro-
cesses a feasible solution with respect to the non-convex or even non-continuous con-
straints.

The study, whose results are here outlined, aims at improving this regional level two-
steps process. Two decomposition strategies have been tested in order to solve this problem
directly (in one stage). These algorithms only require small-sized nonconvex sub-problems
to be solved at each iteration. Therefore, an exact method, such as dynamic programming,
can be used to deal with this local problems.

The paper is organized as follows. In section 2, we formulate the considered optimization
problem. Then, in section 3, we outline the theoretical background of the prediction and
price decomposition strategy along with their application to the hydro-problem. Finally, in
section 4, we present the results of the numerical tests which have been realized.
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2 The Hydro Problem

As already emphasized, the “regional” problem we are considering consists in the schedule
optimization of one valley. It may be written as follows :

min
Ti(.)

∑
i∈I

∑
t∈[0,H[

−ci(Ti(t), t)− Cend
i (Vi(H), H) (1)

subject to :

• ∀i ∈ I , ∀t ∈ [0, H[ :

Vi(t+ 1) = Vi(t)−Di(t)− Ti(t) + A∗i (t)

+
∑
j∈ΓT

i

(Dj(ti←j) + Tj(ti←j)) (2)

(
Vi(t)− Vmax

i

)
Di(t) = 0 (3) Vi(t) ∈ [Vmin

i , Vmax
i ] ,

Ti(t) ∈ [Tmin
i , Tmax

i ] ,
Di(t) ∈ [0, Dmax

i ] ,

(4)

• ∀i ∈ I : Ti([0, H[) ∈ T ad
i (5)

where :

• I is the set of water reservoirs of the valley under consideration — each reservoir is
related to a plant having the same index —,

• [0, H] is the studied period,

• Vi(t) is the water content of the reservoir i at time t and Vmin
i , Vmax

i are respectively
the upper and the lower bounds of the reservoir i,

• Ti(t) is the discharge of plant i over [t, t + 1[ and Tmin
i et Tmax

i are respectively the
lower and the upper bounds of the discharge over the period,

• T ad
i is defined by the generating constraints of the plant i,

• Di(t) is the spillage of plant i over [t, t+1[ and Dmax
i its upper bound over the period,

• ΓT
i is the set of plants located upstream i — whose discharges are inflows of i —,

• av(i) is the reservoir located just downstream i,

• ti←j
def
= t−δi←j with δi←j denoting the delay for discharge of plant j to reach reservoir i,

• A∗i (t) is the natural inflows of the reservoir i during the period [t, t+ 1[. These inflows
are supposed to be known,
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• Cend
i (Vi(H), H) is the water value of the reservoir i at the end of the studied period,

• ci(Ti(t), t) is the “value” of the generation related to the discharge Ti(t) at time t.

It has already been pointed out that the generating constraints we consider define a non-
continuous domain T ad

i . We illustrate this in Figure 1. Moreover, as is shown in Figure 2
the constraints (3) also introduce nonconvexities.

Ti(t)

Forbidden areas

Plant output

Discharge

1

Figure 1: The generating domain of the plant i is non-continuous

V max Vi(t)

Di(t)

Spillage

Water content

1

Figure 2: The domain defined by the constraints (Vi(t)− Vmax
i )Di(t) = 0 is nonconvex

The numerical tests, hereafter outlined, use the current EDF regional modelling. Con-
cerning the generating constraints T ad

i :

• only a finite number of values is allowed for the discharge Ti(t) (See Figure 4),

• there is a minimum delay between two variations of the discharge. Moreover, these
variations have to be smooth.
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The cost function ci(., t) is a piecewiselinear function of the discharge and Cend
i (Vi(H), H)

is a linear function of the final content :

Cend
i (Vi(H), H) = cwat

i (Vi(H)− Vi(0)) .

This modelling allows us to compare decomposition methods to the current EDF process.
Nevertheless, the decomposition methods framework hereafter presented, could indeed be
applied to more general modelling

3 Resolution Methods

In order to present the coordination-decomposition methods we use, we will consider the
following problem:

min
u∈Uad

J(u) , subject to: Θ(u) = 0 , (6)

where Uad is a closed set of a vector space U , J : U → R and Θ : U → C an affine function
from U to the vectorial space C. To allow decomposition, we also assume :

U =
∏
i∈I

Ui , Uad =
∏
i∈I

Uad
i ,

∀u ∈ Uad : J(u) =
∑
i∈I

Ji(ui) ,

where I is a finite set, Uad
i ⊂ Ui and Ji : Ui → R.

3.1 Today’s resolution method

First of all, the convexified problem (problem (1), without constraints (3) and (5)) is solved
by linear programming. Secondly, following the course of the river, for every plant, a feasible
schedule is processed. In this aim, taking into account all the generating constraints1, dis-
charge is computed by minimizing a mean-square distance to the solution of the convexified
problem. These subproblems are solved by dynamic programming.

It may be noticed that this heuristic has a major drawback : it does not ensure that a
feasible solution will be found. The inflows being given, a subproblem may have no solution.

3.2 Price decomposition

3.2.1 Theoretical background

Provided that the cost function is separable, the Uzawa algorithm [4] is certainly the most
commonly used to achieve this type of decomposition. If we suppose Θ(u) =

∑
i∈I Θi(ui),then,

1The inflows are known : feasible discharges of the upstream plants have already been processed.
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applied to the problem (1), this algorithm may be outlined as follows (k iteration):

∀i ∈ I : min
ui∈Uad

i

Ji(ui) + 〈pk,Θi(ui)〉 ⇒ uk+1
i

pk+1 = pk + εkΘ(uk+1)

Therefore, at each iteration the i-subsystem minimizes a balance (the Lagrangian) which
takes into account its own cost function Ji and a “revenue” 〈pk,Θi(ui)〉, from its contribution
to the satisfaction of the constraint Θ(u) = 0.

More formally, the Lagrangian related to (6) is defined over U × C as follows :

∀(u, p) : L(u, p)
def
= J(u) + 〈p,Θ(u)〉 . (7)

The above mentioned algorithm may be understood as maximizing the dual function:

Ψ : p 7→ min
u∈Uad

L(u, p)

by a gradient type algorithm.
If the function J is not strictly convex, as in the hydro-problem we are dealing with, this

dual function is not differentiable. Consequently, to ensure the convergence, a sub-gradient
algorithm must be used to maximize Ψ. The sequence (εk)k∈N must then be chosen as a

sequence of type σ (i.e.
∑k=+∞

k=0 εk = +∞ and
∑k=+∞

k=0

(
εk
)2
< +∞). The convergence is

necessarily slow.
Nevertheless, the non-differentiability of the dual function is not the main difficulty. In

this case, to find a price p∗ which maximizes the dual function Ψ is not enough : for p = p∗,
the primal minimization of the Lagrangian will not necessarily give a solution of (6) [5]. In
practise, a “small” variation of the “prices” leads to a large variation of the primal variables.
The primal variables “switch” from one value to another and never satisfy the coupling
constraints. To our mind, these theoretical difficulties explain to a large extent the bad
reputation that these dual methods have in terms of convergence.

However, Augmented Lagrangian can be used to reduce these difficulties. The Augmented
Lagrangian Lc related to the problem (6) is defined over U × C as follows :

∀(u, p) : Lc(u, p)
def
= L(u, p) +

c

2
‖Θ(u)‖2 (8)

In the convex case, the saddle-points of this Lagrangian are the same as those of L [6]. Then,
the dual function Ψc related to Lc is differentiable [7]. Furthermore, solving min

u∈Uad Lc(u, p
∗)

where p∗ is a maximum of the dual function necessarily yields a solution of (6).
At first sight, this Augmented Lagrangian technique has a major drawback with regards

to decomposition : it introduces non-separable terms c
2
‖Θ(u)‖2. But, this difficulty can be

overcome by linearizing the non-separable terms at each iteration [6]. This strategy leads to
considering the following algorithm (algorithm A) (iteration k + 1):

6



• for all i ∈ I, uk+1
i is computed by solving :

min
ui∈Uad

i

(
Ji(ui) +

〈
πk,Θi(ui)

〉
+
b

2
‖ui − uki ‖2

)
,

• pk+1 = pk + εΘ(uk+1),

with b ∈ R+∗ and πk = pk + cΘ(uk).
In the convex case, even if the cost function J is not strictly convex, the convergence of

this algorithm towards a saddle point of L has been proven provided that 0 < ε < 2c and
cτ 2 < b, where τ is the Lipschitz constant of Θ [6].

This algorithm has been shown to be particularly efficient in dealing with classical hydro-
thermal generation scheduling problems [8], [5].

3.2.2 Application to the hydro-scheduling

problem In the problem (1), two types of constraints have to be handled:

• state constraints — the volumes bounds: Vi(t) ∈ [Vmin
i , Vmax

i ] —,

• logical constraints concerning the controls which can be rather complex — T ∈ T ad — .

Suppose that dynamic constraints (2) do not have to be dealt with. It would not be necessary
to handle these two types of constraints simultaneously and the decomposition of (1) in simple
subproblems would be allowed.

This remark led us to dualize dynamic constraints (2). Then, the application of the
Algorithm A to (1) results, at the k + 1 iteration, in the following steps2:

• for all i ∈ I, resolution of:

min
Ti([0,H[)

∑
t∈[0,H[

{
−ci(Ti(t), t) +

b

2
(Ti(t)− T k

i (t))2

+
(
πk,k
i (t)− πk,k

av(i)(t+ δav(i)←i)
)
Ti(t)

}
(9)

s.t. : Ti([0, H[) ∈ T ad
i

yields T k+1
i ([0, H[),

2For the sake of completeness, it must be emphasized that this algorithm is not exactly the algorithm
(A). The discharges which solve (9) are used to define the cost function of the “volume” problems (10) which
are solved at the same iteration. In practise, this sequential version turns out to be more efficient.
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• for all i ∈ I and t ∈ [0, H[, resolution of:

min
Di(t),Vi(t)

{
−Cend

i (Vi(t), t) (10)

+
(
πk,k+1
i (t)− πk,k+1

av(i) (t+ δav(i)←i)
)
Di(t)

+
b

2
(Di(t)−Dk

i (t))2 +
b

2
(Vi(t)− V k

i (t))2

+
(
πk,k+1
i (t− 1)− πk,k+1

i (t)
)
Vi(t)

}
subject to:

Vi(t) ∈ [Vmin
i , Vmax

i ] , Di(t) ∈ [0, Dmax
i ] ,(

Vi(t)− Vmax
i

)
Di(t) = 0 ,

yields (V k+1
i (t), Dk+1

i (t)),

• for all i ∈ I and for all t ∈ [0, H[ the dual variables pi(t) are updated as follows:

pk+1
i (t) = pki (t) + cHk+1,k+1

i (t)

where:

• c > 0 and b > 0,

• ∀i ∈ I ∀t ∈ [0, H[ :

Hk1,k2
i (t)

def
= V k1

i (t+ 1)− V k1
i (t) +Dk1

i (t)

+ T k2
i (t)− A∗i (t)−

∑
j∈ΓT

i

[Dk1
j + T k2

j ](ti←j) ,

πk1,k2
i (t)

def
= pk1i (t) + cHk1,k2

i (t) ,

• ∀t ∈ [0, H[ : Cend
i (Vi(t), t) = 0.

At each iteration, a dynamic subproblem related to each plant (9) is solved. This subproblem
handles mixed integer constraints concerning the plant discharge but no state constraints.
It is solved by dynamic programming.

The problems (10) are very small and do not present any difficulties: only two real
variables are optimized. Therefore, the subproblem resolutions that this algorithm requires,
turn out to be quite simple.

Nevertheless, this is explained by the dualization of the most important constraints of the
problem (1): the dynamic constraints. It may seem dubious, considering the mixed-integer
constraints which have to be handled, that this dual method should achieve a feasible solution
of (1).

To explain the numerical result which will be outlined further, it may be emphasized that
this algorithm has been implemented in the following way:
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• First of all, the “convexified” problem is solved using the price decomposition algo-
rithm we have already described. In this case, the convexity assumptions being met,
convergence is theoretically ensured and is obtained in practise. This first step yields
a very good initial value of the dual variables pi(t).

• Then, every hundred iterations, until a feasible solution is reached, parameters are
modified as follows:

– the minimal bounds on the volumes V min
i are slightly increased,

– the value of parameter c of the Augmented Lagrangian is multiplied (by 3).

Even if it has not been explained theoretically, this progressive increasing of parameter
c turns out to be a very efficient method for obtaining feasible solutions.

3.3 Interaction Prediction Principle

The second decomposition technique we consider lies on a simultaneous partitioning of vari-
ables and constraints. Every subproblem updates a set of variables handling a part of the
constraints. Prices remunerate the sharing in the satisfaction of the constraints which are
not coped with. Hence, this approach may be considered as mixing the price and resources
decomposition techniques.

3.3.1 Theoretical Background

Takahara algorithm: Consider problem (6). Suppose that Θ =
∏n

i=1 Θi where: for
all i ∈ I : Θi : U → Ci and C =

∏n
i=1 Ci.

At the iteration k, Takahara algorithm [9], [10] substitutes to (1) a sequence of subprob-
lems (11):

min
ui∈Uad

i

Ji(ui) +
∑
j 6=i

〈pkj ,Θj(ui, u
k
−i)〉

Θi(ui, u
k
−i) = 0

(11)

where (ui, u
k
−i) denotes the vector whose components are equal to those of uk except ui.

Resolution of each (11) yields a primal solution uk+1
i and dual variables (pk+1

i ) related to
the local constraint Θi(ui, u

k
−i) = 0. (pkj )j 6=i denote the dual variables that have been “pre-

dicted” by the other subproblems at step k. They are used to remunerate the participation
of problem i to the other constraints.

A primal-dual relaxation algorithm: To explain the nature of this algorithm, let us
assume that J is differentiable and Uad = U . Then, Kuhn and Tucker necessary optimality
conditions related to (1) may be written as follows:{

∀i ∈ I : J
′
i (ui) +

(
Θ′ui

)∗
p = 0 ,

Θ(u) = 0 .
(12)
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Furthermore, if (uk+1
i , pk+1

i ) is a (primal-dual) solution of (11) then:{
J

′
i (u

k+1
i ) +

∑
j 6=i

(
Θ′j,ui

)∗
pkj +

(
Θ′i,ui

)∗
pk+1
i = 0 ,

Θi(u
k+1
i , uk−i) = 0 .

Consequently, the Takahara algorithm appears to be a primal-dual relaxation algorithm
applied to the resolution of (12).

Find a saddle-point of the Augmented Lagrangian: The algorithm we apply to
the hydro-problem is built up in this way. However, this primal-dual relaxation framework
is not used to find a saddle-point of L but a saddle-point of the Augmented Lagrangian Lc

(8).
With the notation introduced above, at iteration k, it leads to solving the following

subproblems:

min
ui∈Uad

i

(
Ji(ui) +

∑
j 6=i 〈pkj ,Θj(ui, u

k
−i)〉

+ c
2
‖Θ(ui, u

k
−i)‖2

)
Θi(ui, u

k
−i) = 0

(13)

Although we will not present hereafter a comparative test on this purpose, it may be pointed
out that, applied to the hydro-problem, (13) turns out to be more efficient than (11).

3.3.2 Application to the hydro-problem

In order to apply this algorithm, we first reformulate the hydro-problem (6). Variables A+
i (t)

representing the global inflows of each reservoir are introduced:

A+
i (t)− A∗i (t)−

∑
j∈ΓT

i

[Dj + Tj](ti←j) = 0 . (14)

With this definition, the constraint

Vi(t+ 1) = Vi(t) + A+
i (t)−Di(t)− Ti(t) , (15)

appears to be equivalent to the dynamic constraints (2).
To split (1) into a sequence of subproblems, each related to a plant, algorithm (13) is

then applied in the following way:

• vector
(
A+

i (t), Ti(t), Di(t)
)
t∈[0,H[

is ui,

• constraints (14) are considered as being the coupling constraints Θ,

• constraints (15), (3), (4) and (5) define the domain Uad of (6),

• Ji(ui) =
∑

t∈[0,H[

−ci(Ti(t), t)− Cend
i (Vi(H), H).
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With these choices, the algorithm (13) leads to solving, at iteration k + 1, the following
subproblems (Algorithm B):

min
Ti∈T ad

i

∑
t∈[0,H[

{
−ci(Ti(t), t)− Cend

i (Vi(H), H)

− pkav(i)(t) [Ti +Di](tav(i)←i)

+
c

2
‖DT k

i (t)− [Di + Ti](tav(i)←i)‖2
}

s.t.: Vi(t+ 1) = Vi(t)−Di(t)− Ti(t) + A∗i (t)

+
∑
j∈ΓT

i

[
Dk

j + T k
j

]
(ti←j)

(3), (4) and (5) .

with: DT k
i (t) = A+

av(i)(t)
k − A∗av(i)(t)

k

−
∑

j∈ΓT
av(i)

−{i}

[Dk
j + T k

j ](tav(i)←j) .

A sequential version of this algorithm has been implemented. Following the course of the
river, each subproblem is solved taking into account the results of the current iteration
(for the upstream informations) and of the preceding iteration (for the downstream). In
this context, DT k

i (t) is necessarily equal to [Dk
i + T k

i ](tav(i)←i) and at iteration k + 1, the
subproblem related to the plant i may be written as follows:

min
Ti∈T ad

i

∑
t∈[0,H[

{
−ci(Ti(t), t)− Cend

i (Vi(H), H) (16)

− pkav(i)(t)[Ti +Di](tav(i)←i)

+
c

2
‖[Di + Ti]

k(tav(i)←i)− [Di + Ti](tav(i)←i)‖
2
}

s.t.: Vi(t+ 1) = Vi(t)−Di(t)− Ti(t) + A∗i (t)

+
∑
j∈ΓT

i

[Dk+1
j + T k+1

j ](ti←j)

(3), (4) and (5) .

Therefore, handling its generating constraints and taking into account the discharge the
upstream plants have computed, each plant optimizes its schedule. The dual variable pkav(i)

may be understood as being the price the downstream reservoir “would pay” its water inflows.
Quadratic terms introduced by the Augmented Lagrangian appear to be a type of “brake”
avoiding the oscillations of the algorithm.

It may also be noticed the subproblems (16) turn out to have exactly the same structure as
the local problems of the heuristic process currently in use (See Today’s methods). Therefore,
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from a practical point of view, Algorithm B appears to be an extension of this heuristic
method. Moreover, providing there is no pumping unit, this sequential version generally3

yields a feasible solution at the first iteration.

4 Numerical Tests

4.1 A hydraulic valleys sample

A sample of hydraulic valleys has been chosen so as to point out, as well as possible, the
main resolution difficulties.

Size and topology: The hydraulic valley is illustrated in Figure 3. It contains six
reservoirs and to each reservoir Ri is related a plant Ui.

R5

R4

R1 R2

U1

U5

U4

U3

U2

R3

R6

U6

1

Figure 3: Hydraulic test valley

Volume bounds: The upstream reservoirs 1 and 2 are supposed to have a large storage
capacity: on a daily scale, no volume constraints have to be coped with. The other reservoirs
are characterized by the ratio of their storage and hourly-discharge capacities. Three sets of
storage/discharge ratios are considered:

V1 1 h 30 for reservoirs 2 and 4, 5h for reservoirs 5 and 6,

V2 0 h 30 for reservoirs 2 and 4, 3h for reservoirs 5 and 6,

V3 5 h for reservoirs 2 and 4, 15h for reservoirs 5 and 6.

3generally but not always
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There are no natural inflows.
Cost function: The generation “revenue” ci(Ti(t), t) is assumed to be a linear function of

the discharge (i.e. ci(Ti(t), t) = pgen(t)Ti(t)). Three sequences (pgen(t))t∈[0,H[ are considered
(in Francs per MWh):

P1 The first ranges from 99 to 101. It “switches” from one value to another every 4 hours.
This price vector enables the numerical accuracy of the algorithms to be tested.

P2 The second remains at 100 over the whole period except four hours during which it
rises up to 500. Such a choice enables the spinning reserve over a four hour period
to be computed. The ability to optimize feasible controls in real-time and in case of
emergency is also measured in this way. From a numerical point of view, it is in this
case that constraints (3) and (4) are actually active.

P3 Every four hours, the third switches between 80 and 120.

Discharge Constraints: For each plant Ui, the discharge belongs to a discrete set of values
(See Figure 4).

The minimum delay between two discharge variations may be 0 (D1), 1 (D2) or 4 (D3)
hours.

The (D4), (D5) and (D6) are deduced from (D1), (D2) or (D3) by supposing the plants
3 and 4 are out-of-order (have no discharge capacity).

Crossing these factors, it is a 56 valleys sample which is built up. It may be noticed the
non-continuities in the discharge domain are actually sizeable. For the V2 storage/discharge
ratio, the choice of a discharge level rather than another modify the hourly discharge by about
half the storage capacity !

4.2 Numerical results

The two decomposition algorithms and the process currently in use at EDF have been com-
pared over this sample of valleys.

The “scores” are computed in the following way. For each tested algorithm and each
sample of valley, the maximum gain

∑
t∈[0,H[ ci(Ti(t), t) + Cend

i (Vi(H), H) obtained by a
feasible solution along the iterations is recorded. If no feasible solution is found, this gain
is considered to be zero: because there are no natural inflows, a zero discharge solution is
possible and its gain is zero.

Then, relative gains (or “scores”) are computed by dividing these gains by those of the
best solutions achieved by one of the three processes.

Table 1 gives mean scores (m.s.) and feasibility average rates (f.a.) for the three types
of “generation prices” which have been considered (P1, P2, P3) and for the whole sample
(M). In every case, the two decomposition methods yield feasible solutions. Considering
how significant the non-continuities are it is a remarkable achievement.

In spite of the efficiency of the heuristic process which is currently in use at EDF (Al-
gorithm C) — in more than 90 percent of the (difficult) cases we have selected, feasible
solutions are reached — these methods thus represent a real improvement.
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Figure 4: The generation is a piecewise linear function of the discharge
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Alg. Alg. Alg. Alg.
A B C L

P1 (m.s.) 83.2
%

83.8
%

62.3
%

186 %

P1 (a.f.) 100
%

100% 72 % 0 %

P2 (m.s.) 99.4
%

99.9
%

99.7
%

100 %

P2 (a.f.) 100
%

100% 100
%

0 %

P3 (m.s.) 97.1% 90.4
%

90.8
%

109.2
%

P3 (a.f.) 100% 100
%

100
%

0 %

M (m.s.) 93.2
%

91.4
%

84.3
%

131.8
%

M (a.f.) 100% 100
%

91 % 0 %

Table 1: Mean scores (m.s.) and average feasibility (a.f.) for each “prices system” (P1, P2,
P3) and for the whole sample M.
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Furthermore, if constraints (5) and (3) are not handled, problem (1) is convex. It can be
solved by linear programming. The mean “score” of the non feasible solutions obtained in
this way are also indicated in Table 1 (Algorithm L). One may consider that about twenty
percents of the current cost of the nonconvexities in the (1) modelling are saved thanks to
these decomposition methods.

What CPU time ? For the valley of six reservoirs we consider, the heuristic resolution
today in use at EDF takes about 10 seconds on a SUN 4/404. One half of this time is
dedicated to the linear optimization the other is used by the six dynamic programming
resolution which are necessary to find a solution.

For the prediction strategy, the results presented above correspond to 25 iterations. Each
of these having the same complexity as the heuristic research of a feasible solution, the CPU
time required is more or less 2 minutes.

Our implementation of the price decomposition method uses about 1200 iterations. This
number may seem important. Nevertheless, the subproblems are particularly simple and,
for the six reservoirs valleys, CPU time does not exceed 2 minutes.

If these times are not huge, they multiply by ten CPU times of the current process.
Therefore, work is currently undertaken to reduce these CPU times. To our mind, on average,
they should be divided by about 5 in the final implementation by:

• improving the software design,

• avoiding to solve each subproblem at each iteration.

What is the best method ? We have already noticed the average “score” (M) of the
price decomposition is 93.2%, the prediction one being 91.4%. Should the prediction method
be rejected ? We have not made such a choice for two reasons:

• contrary to the price decomposition strategy, the relaxation algorithm generally yields,
from the first iterations, a feasible solution,

• if, on average, price decomposition method reaches the best solutions, it does not in
every case. Furthermore, if one choose the best of the two solutions these methods
yield, it would not be 93.2% or 91.4% but a score of 100% which would be reached. In
fact, the tools we are currently developing, on the basis of these first tests, will try to
take advantage of each of these methods. By experimentations, we aim at establishing
rules which, after considering the characteristics of the valley, choose the best of the
two algorithms.

5 Conclusion

Over the 56 numerical tests which have been carried out, in spite of the mixed-integer con-
straints which are handled, the decomposition methods considered allow a feasible solution

4All the CPU time here mentioned have been measured on this computer
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to be systematically found. Moreover, compared to the two-step process currently in use at
EDF, those methods yield sizeable savings.

For these reasons, these methods will be used to design new regional level software at
Electricité de France.

Furthermore, by proving the robustness of these decomposition approaches, these tests
open up new fields of research. A global optimization of generation schedules of several
hydraulic valleys, handling coupling constraints (demand constraints), could be achieved in
this way.
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