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response may not be an optimal solution [START_REF] Chakraborty | Sharing Storage in a Smart Grid: A Coalitional Game Approach[END_REF]. In this context, the aim of this work is to utilize distributed time-varying flexibility resources in the community grid to perform the fast-frequency control actions. Unlike the conventional power system, where a number of machines proportionally share the task of frequency control, the exploitable flexibility in distributed energy resources (DERs) can be time-varying and may or may not be suitable for providing fast frequency response [START_REF] Kundu | Approximating flexibility in distributed energy resources: A geometric approach[END_REF]. Hence, the main objective of this work is to develop a cooperative control strategy that can optimally control the frequency response within the constraints of the available flexibility in the system.

A. Literature Review

The research efforts in the area of primary frequency and inertia control of microgrids is vast, however relatively very few research efforts have been taken to exploit the controllability of droop and inertia in inverter-based DERs beyond proportional sharing of frequency support responsibilities. Dynamic variation and distribution of the droop and inertia parameters are shown to have an impact on the microgrid stiffness and the small signal stability [START_REF] Diaz | Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids[END_REF], [START_REF] Soni | Analysis of frequency transients in isolated microgrids[END_REF]. Solutions that decouple the droop parameter into a fixed steady state droop and an adaptive transient droop have been proposed to mitigate low-frequency oscillations [START_REF] Dehkordi | Robust tuning of transient droop gains based on Kharitonov's stability theorem in droopcontrolled microgrids[END_REF]. It is well-known that secondary frequency control strategies are proposed through distributed control following the conventional secondary frequency control concept in machines. It is interesting to note that a distributed primary frequency droop control has been proposed in [START_REF] Tegling | Improving performance of droop-controlled microgrids through distributed PI-control[END_REF] to optimize the transient power losses during the primary frequency control. In our work, the objective of loss reduction is complemented by minimizing a flexibility cost objective subject to the individual flexibility constraints of the heterogeneous DERs [START_REF] Oral | Performance of droop-controlled microgrids with heterogeneous inverter ratings[END_REF].

Dynamic inertia variation has been recently viewed as a solution to optimize the settling time and the peak overshoot of the frequency response characteristics [START_REF] Wang | An Adaptive Control Strategy for Virtual Synchronous Generator[END_REF], [START_REF] Markovic | LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration[END_REF]. Very recently, [START_REF] Sockeel | Virtual Inertia Emulator-based Model Predictive Control for Grid Frequency Regulation Considering High Penetration of Inverter-based Energy Storage System[END_REF] has implemented a model predictive strategy to optimize the energy storage rating to provide virtual inertia. In [START_REF] Moghaddam Arani | Cooperative control of wind power generator and electric vehicles for microgrid primary frequency regulation[END_REF], the authors explore a cooperative strategy [START_REF] Parisio | Cooperative MPC-Based Energy Management for Networked Microgrids[END_REF] to utilize heterogeneous flexibilties for the primary frequency regulation, while [START_REF] Im | Distributed virtual inertia based control of multiple photovoltaic systems in autonomous microgrid[END_REF] proposes a rule-base to coordinate distributed virtual inertia control. With respect to virtual inertia solutions, however, the existing literature mainly restricts itself to a centralized control requiring dedicated storage or dispatchable resources to perform the fast-frequency control.

While the inertia parameter is optimized by model predictive control in [START_REF] Kerdphol | Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration[END_REF], [START_REF] Sockeel | Virtual Inertia Emulator-based Model Predictive Control for Grid Frequency Regulation Considering High Penetration of Inverter-based Energy Storage System[END_REF], the authors of [START_REF] Markovic | LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration[END_REF] have optimized the frequency response dynamics by tuning the inertia and damping parameters simultaneously. Further, they have highlighted that the linearised model does not adequately capture the adaptability of the controller, the problem of simultaneously optimizing inertia and damping parameters. Hence, we attempt to approach this problem with a rate-based linearisation. The rate-based linearisation for fast-frequency control proposed in this work is inspired from [START_REF] Decastro | Rate-Based Model Predictive Control of Turbofan Engine Clearance[END_REF], [START_REF] Huang | Rate-Based Model Predictive Control of Diesel Engines[END_REF]. The idea of introducing the rate-based model is that the state derivatives are directly propagated through the prediction horizon rather than the states as in a regular Jacobian linearisation. In order to respect the over-shoot constraint for large step changes, integrator states need to be added to the conventional formulation. Ratebased modelling eliminates the need for explicit integrator states to tackle the steady-state error. The control increments of the rate-based controller is not dependent on the tracking error integral and therefore eliminates offset errors.

Moreover, the current attempts on optimizing inertia and damping in [START_REF] Markovic | LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration[END_REF] and the attempts to tune droop parameters based on the required balancing support and power and energy capabilities of the corresponding DERs for loss reduction [START_REF] Tegling | Improving performance of droop-controlled microgrids through distributed PI-control[END_REF] are not mutually exclusive. The damping parameter and the droop characteristics constrain each other [START_REF] Zhang | Synchronous Power Controller with Flexible Droop Characteristics for Renewable Power Generation Systems[END_REF]. Hence, there is a trade-off between the local stability and the balancing support provided by the DERs.

B. Contribution

The principal contribution of this work is the proposed cooperative model predictive control (MPC) framework that can help realize a reliable frequency regulation in a 100% inverter-based microgrid without investing in dedicated storage reserves. To the best of our knowledge, this work is the first attempt to propose a rate-based linearization for MPC in microgrid control, with the aim of improving the control robustness by handling model mismatches. The optimized regulation parameters are actuated by DER inverter control simulated on a modified version of the CIGRE benchmark microgrid and validated on a power hardware-in-the-loop platform.

II. SYSTEM DESCRIPTION AND MODELING

In this section, we describe the 100% inverter-based islanded microgrid, which is a modified version of the CIGRE benchmark network [START_REF] Papathanassiou | A benchmark low voltage microgrid network[END_REF] and the DERs in the system. The flexible resources of the individual DERs will be modelled as parametric constraints to be used in the MPC frequency control problem.

A. System Description

The CIGRE benchmark system is a radial microgrid with multiple DERs of different energy mix and a maximum distance of 345m from the distribution substation. Hence, we consider it representative of self-consuming energy communities towards which this work is targeted. The microgrid is 1 based on their functionalities. The function of the dispatchable grid-forming DER is to maintain the scheduled power flow import/export from the grid with the PV and load variations in the grid-tied mode of operation. In the islanded mode, the same DER serves as the stable voltage reference generator for the microgrid. DER 1,3, and 6 are equipped with storage, they are controlled to provide a scheduled power to the microgrid despite the PV intermittency with the help of the storage facility. On the other hand, DER 4 and 5 are not equipped with bidirectional flexibility and act as less-smart PV inverters whose feeding-power can be curtailed in adverse high-frequency power fluctuation scenarios.

In this work, we consider mainly 2 scenarios with regard to the frequency support during the islanded operation of the microgrid. In the first scenario, the dispatchable DER 2 is responsible for providing the balancing and inertia support, for which we propose a centralized rate-based MPC controller. This requires that this DER is installed with sufficient fastcontrollable reserves or energy storage to perform the frequency support functions in the stand-alone mode. The storage or equivalent flexible reserve capacity required to provide the response is calculated using our previous work [START_REF] Subramanian | Design and Control of Storage Systems for Voltage Source Controlled Autonomous Microgrids[END_REF].

In the second scenario, we exploit the storage capacity of DER 1,3, and 6 to collectively serve as short-term inertia reserves and aid DER 2 in performing the balancing act. The proposed rate-based MPC is extended to a cooperative optimization problem to address this scenario. We thereby aim to show that it is possible to achieve an equivalent robust frequency control while evading the CAPEX of a dedicated storage reserve.

B. Modeling Resource Flexibility

It is challenging to model the DER capabilities as they are diverse and time-varying in a mix of heterogeneous resources in a microgrid [START_REF] Kundu | Approximating flexibility in distributed energy resources: A geometric approach[END_REF]. For the fast-frequency control problem, we model the flexibility of the DER i by the available power capacity Pi , energy capacity Ēi , response time of the DER on the occurrence of a contingency event T r i and the corresponding flexibility cost C i based on the logistical difficulty in signing up to provide fast-frequency response. These parameters of the individual DERs hold for every 15 minutes time-slot as long as the DER signs-up to provide fast-frequency response. The DER may be a solar farm, wind farm, or a demand response aggregator, electric vehicle parking lot, or a smaller self-consuming entity such as an apartment or commercial building nanogrid. Hence, these parameters can serve as a generic flexibility model for frequency control. It is to be noted that one bidding DER entity can have multiple entries of ( Pi , Ēi ) for a different T r i and a corresponding cost.

For a DER i to participate in the inertia and damping response (IR), T r i must be typically within 15 seconds. Hence, DERs equipped with very fast responding reserves such as supercapacitors, fly-wheels, short-term very fast responding interruptible demand response programs are some typical options. Other DERs with relatively slower but with T r i less than 30-40 seconds can contribute to primary frequency response (PFR). The energy capacity requirement is calculated based on the assessment that the IR service providers can be released at t ir = t d = 30s when the PFR takes over, while the PFR must last for at least t pf r = 15mins [START_REF] Knap | Sizing of an energy storage system for grid inertial response and primary frequency reserve[END_REF]. Typically, the frequency deviation limit (|∆f | max ) and rate-of-change-offrequency ROCOF limit (|df /dt| max ) are 0.2 Hz and 0.5 Hz/s, and the PFR dead-band (|∆f | db ) is 0.02 Hz.

The relation between the power and energy capacity required by an individual unit or the system to actuate frequency control for a given set of inertia H i , droop R i , and damping ζ i parameters is given by ( 1) and ( 2), f 0 represents the steady state frequency in per unit, η c , η d are the charging and discharging efficiencies respectively. All quantities are expressed in per unit unless specified. The damping coefficient ζ i is represented as an equivalent droop Rd i [START_REF] Zhang | Synchronous Power Controller with Flexible Droop Characteristics for Renewable Power Generation Systems[END_REF], where X pu represents the inverter virtual reactance. It should be noted that the expressions below assume that the frequency controllers in the individual DERs are designed to provide the rated power, at the frequency limits. If the limits are exceeded, then the DERs power output will be limited to its rated power [START_REF] Knap | Sizing of an energy storage system for grid inertial response and primary frequency reserve[END_REF].

              
Pi ≥ max (P pf r , P ir , P d )

P pf r = (|∆f | max -|∆f | db ) /(R i f 0 ) P ir = (2H i )/(f 0 (|df /dt| max ) P d = (|∆f | max -|∆f | db ) /(Rd i f 0 ) Rd i = 2ζ i 4πf 0 H i /X pu (1)            Ēi ≥ E pf r + E ir + E d E pf r = t pf r P pf r ηc 60 + t pf r P pf r 60η d E ir = tirPirηc 3600 + tirPir 3600η d E d = t d P d ηc 3600 + t d P d 3600η d (2) 

C. Microgrid Model

In this work, we have chosen a model predictive control so that the trajectory information allows the controller to optimize over a time horizon close to the constraint violation limits. The model predictive control heavily relies on the plant model for projecting the state variables over the prediction horizon. Hence, higher the accuracy of the model, the better is the performance. With a non-linear system, accurate non-linear models such as deep neural network models could be used for their high accuracy. However, in the context of fast-frequency control, the control computation time is clearly crucial than the control accuracy. Hence, a simple linear state-space model and a simple optimization is practical. The parameters in ( 1) and ( 2) are representative of the grid-supporting DERs that participate in the cooperative frequency response. However, the system may include machines, as well as DERs that may be incapable of providing fast frequency or inertia response. This section models the microgrid comprising different types of energy resources: droop converters, the fast-frequency response units (response delay can be neglected), and inertial-response units represented by G d (s), G f f (s), G vic (s) respectively. The general microgrid model in this way can readily incorporate any type of frequency-responsive DER as well as machines in the system.

The overall microgrid frequency response can be represented by [START_REF] Diaz | Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids[END_REF], where G d (s) represents droop responsive converters with parameter R i and a response time delay T d while G f f (s) represents fast frequency response converters with parameter R i and time delay T f f , where [START_REF] Soni | Analysis of frequency transients in isolated microgrids[END_REF] is true. G vic (s) represents the grid-supporting converters discussed in the this work with controllable inertia M i = 2H i /ω 0 and damping response D i = D n + 1/R i , where D n is the natural damping due to DER characteristics and R i is the controllable droop parameter.

G di (s) = k i R i 1 (1 + sT d ) (3) 
G f f i (s) = k i R i 1 (1 + sT f f ) (4) 
G vici (s) = sM i + D i (1 + sT vic ) (5) 
By neglecting the fast-frequency and inertia control time constants as in [START_REF] Soni | Analysis of frequency transients in isolated microgrids[END_REF] as in [START_REF] Markovic | LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration[END_REF], the overall plant transfer function is reduced to [START_REF] Dehkordi | Robust tuning of transient droop gains based on Kharitonov's stability theorem in droopcontrolled microgrids[END_REF].

G(s) = ω(s) ∆P e (s) =   i N d G di (s) + i N f f G f f i (s) + i Nvic G vici (s)   -1 (6) T p >> T f f , T vic ≈ 0 (7) G(s) = 1 + sT d M T d s 2 + (M + (D -R d ) T d ) s + D (8) 
The overall frequency response transfer function may be simplified as shown in [START_REF] Dehkordi | Robust tuning of transient droop gains based on Kharitonov's stability theorem in droopcontrolled microgrids[END_REF] where, the aggregated system inertia M given by ( 9) and the aggregated system droop characteristic D given by ( 13) form the control parameters. In the cooperative control, the overall system parameters can be altered by collectively utilizing the distributed resources, subject to their individual constraints modelled in the previous subsection.

M = i Nvic M i P i P b
where

M i = 2H i /ω 0 ( 9 
)
D vic = i Nvic D i P i P b (10) R f f = i N f f k i R i P i P b (11) R d = i N d k i R i P i P b ( 12 
)
D = D vic + R f f + R d ( 13 
)
On applying a disturbance of ∆P dist in ( 8), the plant characteristic equation can be written as a general second order differential equation as shown in ( 14). This differential equation is representative of the frequency response characteristic of the plant.

∆P dist M T d = ω + 2ζω n ω + ω 2 n ω (14) 
By linearizing the differential equation in [START_REF] Moghaddam Arani | Cooperative control of wind power generator and electric vehicles for microgrid primary frequency regulation[END_REF], the state space model ( 15) of the plant is given by ( 16), where the state vector is given by [START_REF] Decastro | Rate-Based Model Predictive Control of Turbofan Engine Clearance[END_REF], ∆P is the disturbance signal d, f = ω/(2π) is the output y, and the reference output r = f 0 is the system frequency reference, 50 Hz in this case.

Ẋ = AX + BU (15) 
∆ ω ∆ω = 0 I -D M T d -1 T d + D-R d M ∆ω ∆ ω + 0 ∆P M T d (16) 
X = ∆ω ∆ ω (17) 
The parameters in the linear model, M and D can be controlled by the local MPC controller. In the initial stage of the response until t < t f f before the droop response can act, the inertia parameter U = ∆M is the control variable maintaining the system damping D as constant D * as shown in [START_REF] Huang | Rate-Based Model Predictive Control of Diesel Engines[END_REF], while the t >= t f f , the inertia parameter is retained constant M * and U = ∆D is controlled as shown in (19) [START_REF] Markovic | LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration[END_REF]. In the presence of slower droop-based DERs, D is additionally controlled by their corresponding droop parameter when t >= t d . The main objective of this work is to develop a robust fast-frequency control strategy for 100% inverter-based power systems. A predictive control projects the states of the plant over the prediction horizon and can enhance the control performance, as we are optimizing the frequency response over the prediction horizon.

Ẋ = 0 I -D * M T d -1 T d + D * -R d M X + 0 ∆P M 2 T d ∆M (18) 
Ẋ = 0 I -D * M * T d -1 T d + D-R d M * X + 0 ∆P M * T d ∆D (19) 

A. Proposed MPC Controller

Figure 2 represents an inverter-coupled DER with it's frequency responsive inverter control. The inverter controller involves the droop, damping, and inertia parameters which affect the evolution of the frequency response. Hence, we propose an MPC tuner that predictively optimizes the frequency response of the microgrid with the limited flexibility resources.

1) Local MPC: Each DER controller comprises of a local model predictive controller that optimizes the frequency control parameters of the DER, inertia M and damping D using the MPC scheme that will be discussed in III-B.

The local MPC chooses a set of optimal parameters based on the resource constraints of the DER and the required frequency response characteristics. The local MPC may be a centralized control if a dedicated DER is responsible for frequency control or a part of the distributed framework if multiple DERs cooperate to provide the frequency response. Using the control parameters from the local MPC, the inverter control of the DER has been implemented as follows.

2) Power calculation: The power calculation block measures the averaged values of real and reactive power given by ( 20) and ( 21) respectively. The active and reactive power measurements P and Q are computed from the inverter output current i o and voltage v o . The measured voltages and currents are represented in the d -q reference frame as (v od , v oq ) and (i od , i oq ) respectively. In order to avoid the harmonics in the measurements from propagating to the control, a low pass filter (LPF) with corner frequency ω c has been provided.

3) Droop and Inertia Equations: Based on the swing equation, the updated frequency is obtained by applying the inverse Laplace of the transfer function FREQ, while the voltage is updated using the reactive power-voltage droop parameter n q and the nominal reactive power Q nom in [START_REF] Knap | Sizing of an energy storage system for grid inertial response and primary frequency reserve[END_REF]. The updated frequency and voltage are used to obtain the reference inverter voltage V abc .

P = ω c s + ω c (v od i od + v oq i oq ) (20) 
Q = ω c s + ω c (v od i oq -v oq i od ) (21) 
ω(s) = ∆P (s) M s + D ; v * od = V n -n q (Q -Q nom ) (22) 
4) Predictor: The function of the predictor is to predict the next possible output states of the inverter using the model. The inverter may be represented by a discrete non-linear model using its switching states (S a , S b , and S c ), where a, b, and c represent the IGBT leg of each phase, with 2 states each based on which IGBT is on. The inverter output voltage V i determined by the switching state vector S is given by ( 23).

S = 2

3 S a + S b e j(2π/3) + S c e j(4π/3)

V i = V dc S (23) 
The L f C f filter dynamics are modelled in [START_REF] Dunham | Distributed model predictive control for more electric aircraft subsystems operating at multiple time scales[END_REF], I f and V c are the filter current and the capacitor voltage respectively.

L f dIi dt = V i -V c -I i R C f dVc dt = I i -I inv ⇒ ẋ = Ax + By With x(k) = I i (k) V c (k) ; y(k) = V i (k) I o (k) ; A = - R f L f -1 L f 1 C f 0 ; B = 1 L f 0 0 -1 C f (24)
Representing the model [START_REF] Dunham | Distributed model predictive control for more electric aircraft subsystems operating at multiple time scales[END_REF] in the discrete form with sample time t s and solving the equation, the inverter predictor voltage equation is then derived as given in [START_REF] Stewart | Cooperative distributed model predictive control[END_REF].

x(k + 1) = e Ats x(k) + ts 0 e Aτ Bdτ y(k) V c (k + 1) = e Ats x(k) + A -1 (e Ats -I)By(k) With e Ats =   -e R f ts L f -e ts L f e ts C f 1   (25)

5) Finite Control Set (FCS) Optimizer:

The FCS optimizer minimizes the error between the calculated reference based on the frequency control equations and the predicted output. The inverter is operated at a switching frequency of 10 kHz. Normally, a pulse width modulation may be applied to obtain the gate pulses using the reference voltage signal, however, for an effective MPC in this case we use the finite control set (FCS) technique that computes the predictive optimization based on all possible switching states of the converter. This method relies on the non-linear discrete model of the converter and the min

N -1 k=1 1 V * (k) (V * (k + 1) -V (k + 1)) s.t.|I i (k + 1)| ≤ I lim (26) 

B. Local Model Predictive Controller

In this section, the function and method of local MPC block in 2 is elaborated. MPC is a receding horizon control that anticipates the possible evolution of the system and is hence chosen as the desired method. An MPC primarily comprises of the following components and can be incorporated in the centralised, decentralised or distributed control architectures.

1) System Model-The system has to be represented as a discrete time linear or non-linear model to predict the system states X for a given set of input trajectories U for a chosen number of samples N , known as the prediction horizon. The accuracy of the MPC control is determined by the model accuracy. 2) Objective function-The objective to be optimized may comprise of the performance indices to be optimized over a finite horizon and constraint violation penalty functions subject to the input and state variable bounds and rate constraints. 3) Receding horizon-Unlike a fixed horizon control, the receding horizon control accounts for the current as well as future constraints in the control optimization problem. Figure 3 presents the workflow of the MPC block, whose function is to provide the optimal frequency control parameters for the inverter control of the respective DER. The linearized microgrid model in II-C allows the prediction of the evolution of the state variables over the prediction horizon using the measured output, i.e. the system frequency.

The power disturbance is measured and projected to the prediction horizon by a disturbance predictor. The disturbance prediction used in this work assumes that the disturbance remains constant for the next sample time. We consider this method, as the prediction is on a very short time step and complex disturbance forecast can deteriorate the control performance as we target the fast-frequency control problem.

The objective function considered in this study is shown in (27), which minimizes the frequency deviation and the ROCOF over the prediction horizon, while minimizing the overall cost on procuring the fast-frequency reserves C i , subject to the DER resource constraints described in section II-B.

The frequency deviation constraint ∆ω ≤ ∆ω max and RO-COF constraint ∆ ω ≤ rocof max are added as soft constraints whose, penalty vector S is minimized in the optimization. The soft constraint representation enhances the feasibility of the optimization problem. The optimization has been solved by a gradient algorithm, where the coefficients are obtained by Q, R 1 , and R 2 are the normalized weights of the corresponding optimization variables.

J = k+N p-1 i=k+1 X T i QX i + U T i R 1 U i + S T R 2 S + j DER C j (27) 

C. Rate-based Linearisation of the Model

The MPCs rely on a linear discrete state space model to perform the predictive optimization around specific operation points [START_REF] Mueller | An efficient method of determining operating points of droop-controlled microgrids[END_REF]. In this work we modify the conventional linearised state space equations (28) [START_REF] Mueller | A model modification process for grid-connected inverters used in islanded microgrids[END_REF] into that of the RB domain (29), where, x k , u k , d k , y k , and r k indicate the state, control, disturbance, output, and output reference vector respectively at the k th sample time from II-C. s k represents the soft-constraint violation penalty vector at k th sample time.

     x k+1 = Ax k + B 1 u k + B 2 d k y k = Cx k + D 1 u k + D 2 d k e k = y k -r k (28)                          ξ k+1 = Āξ k + B1 ∆u k + B2 ∆d k y k = Cx k + D 1 (u k-1 + ∆u k ) + D 2 (d k-1 + ∆d k ) e k = y k -r k ξ = x k -x k-1 e k Ā = A 0 C I ; B1 = B 1 D 1 ; B2 = B 2 D 2 (29) 
The RB-MPC optimization objective is to minimize (30), subject to the state update equation of (29) and input bound constraints. RB-MPC is targeted towards reducing the impact of model mismatch, i.e. modeling errors between the linear model and the non-linear system, which is of concern in MPC controllers. [START_REF] Dunham | Distributed model predictive control for more electric aircraft subsystems operating at multiple time scales[END_REF]. It therefore extends the range of linear control design for non-linear systems by removing offset errors in control tracking. However, no theoretical proof is available currently to justify this statement. 

ξ T k Q 1 ξ k + e T k Q 2 e k + u T k R 1 u k + s T k R 2 s k + j DER C j (30) 
IV. COOPERATIVE CONTROL FRAMEWORK

The proposed parallel C-DMPC architecture, shown in Fig. 4, is based on a centralised cost function. All the local MPCs simultaneously optimize the same global objective, subject to system constraints and operational constraints of each DER, in an iterative manner. Each local MPC therefore receives all state measurements, control trajectories of the other MPCs, and is aware of the dynamics of the entire system. The optimization problem is solved by individual MPCs assuming that all other MPCs retain the same input trajectories as defined in the last iteration. Using the new optimized input trajectories of each MPC, a combined final optimal trajectory is obtained by Gauss-Jacobi transformation [START_REF] Stewart | Cooperative distributed model predictive control[END_REF].

The proposed parallel C-DMPC control is based on a centralised cost function, i.e. all the local MPCs simultaneously optimize for the same global objective f obj subject to the system constraints C sys and the operational constraints of the particular DER C i in an iterative manner. Each local MPC would therefore receive the full state measurement, the control trajectories of other MPCs, and is aware of the dynamics of the entire system. The optimization is performed by the individual MPCs assuming that all the other MPCs retain the same input trajectories as the last iteration. With the new optimized input trajectories U i (k + 1) * of each MPC a combined final optimal trajectory U i (k+1) GJ is obtained by the Gauss-Jacobi weighted sum transformation as shown in (31) at he end of the c th iteration of predictive optimization for the k th sampling time of the i th local MPC, where α is the weight of each participating DER [START_REF] Stewart | Cooperative distributed model predictive control[END_REF]. The steps followed in the cooperative predictive control is represented as a flowchart as in figure 5.

U i (k + 1) GJ = α i U i (k + 1) c-1 + (1 -α i ) U i (k + 1) * (31)
In [START_REF] Stewart | Cooperative distributed model predictive control[END_REF], the cooperative predictive algorithm is based on the exact model of a linear system and therefore the stability of the distributed control is guaranteed by information sharing. In comparison, the system considered in this work is nonlinear, and the control model is an approximate linear model. The rate-based model simplifies the handling of this model mismatch, which in turn improves the applicability of the control design. However, the stability of the controller still cannot be guaranteed due to model approximation.

In this work the C-DMPC algorithm is stable and converges to equilibrium. In order to ensure stability, termination constraint and penalty cost are included as explained in Section V-A.

V. RESULTS AND DISCUSSION

The presented fast-frequency control strategy and the realtime optimization of droop, inertia, and damping parameters are tested using time-domain simulations on the CIGRE benchmark network described in section II-A.

Droop, damping, and inertia parameters are tuned by the model predictive strategy. Although inertia and droop parameters can be tuned optimally within the time-varying flexibility of the DERs, the damping ratio and the droop slope constrain each other. Hence, there is a trade off between the system dynamics and the shared balancing power. The effect of damping variation on droop parameter is shown in figure 6.

Time domain simulations are carried out with the help of MATLAB Simulink, on the CIGRE benchmark microgrid. Between the inverter-based grid supporting DERs, we present in figure 7 the primary frequency and inertia response of the DERs equipped with battery energy storage systems providing the inertia response and the fast-acting super-capacitors providing the inertia control. Super-capacitors have a higher power rating As the proposed fast-frequency optimal controller is meant for real-time optimization and control, we have used a power hardware-in-the-loop (PHIL) platform to validate the robustness of the real-time control. The PHIL setup shown in figure 8 comprises of a 10W inverter supplied by a controllable DC voltage source. The inverter is controlled as a grid-forming voltage source and is connected to the power amplifier. The output of the power amplifier is manipulated by the OPAL-RT real time simulation target in which the rest of the microgrid is simulated.

Since this work involves the complete model of each DER with its inverter control and DC-side components, it is highly difficult to model the entire CIGRE benchmark microgrid and each of its DERs due to the limitation of the computation facility causing overrun during the real-time simulation. Hence, we have simulated 2 inverters, one grid forming which is the hardware inverter and another DER which is simulated in the OPAL-RT. The inverter is connected to local load for the purpose of experiment. The inverter control is programmed in the d-Space controller to command the inverter switches.

Centralized -Figure 9a shows a centralized hardware grid-Fig. 8: PHIL Experimental Setup forming inverter is controlled by a centralized MPC to perform the fast-frequency control. In each scenario the disturbance is emulated to observe the frequency response. Further, the same grid-former serves as the dedicated frequency reserve, which the other DER operates in a fixed power mode, with zero inertia and droop parameters. Grid-supporting DERs -Figure 9c shows the real time variation of the DER responses in the event of disturbances in the system. The frequency response is seen to be robust. Finally, in the event of a failure in the gridformer, the other grid-supporting DERs provides a frequency response limited to its capacity constraints, which causes a higher frequency deviation.

A. Discussion:

MPC Accuracy and Stability -The control objective in this application is a fast frequency and inertia response of the microgrid, which in time scale has to control in the milli second -seconds. Since the objective of the control relies on fast action, model accuracy has to be traded off. Despite the trade off on the model accuracy, the MPC strategy allows a predictive correction method which gives the desirable performance. As such the different DERs have been represented by the inverter model with a parametric description of individual flexibility. The DERs may be of various types of flexibilities such as flexible demand, energy storage systems, curtailable or dispatchable generation resource. However, the model is reduced to an inverter where the flexibilities are represented by parametric constraints. Further, the stability of the controller cannot be guaranteed with MPC. In this case, we do apply a termination constraint in the formulation and a robust control loop is pre-designed and switched to if a pre-specified state constraint-violation margin is identified. For the allowable state violation range, a cost penalty has been accounted for in the problem formulation to ensure control stability.

Applications -The cooperative MPC strategy proposed in this work can be interesting to different applications such as peak shaving or price arbitrage using distributed flexibility in the grid-connected scenario. However, in this work we have demonstrated the method for frequency control application in islanded microgrid. Hence, the difference is the objective function, and the type of control, i.e. grid-forming control that has to provide the voltage reference in the islanded mode, Professor. His research interests include renewable energy integration, modeling of flexibility levels for smart grids, multi-criteria assessment, artificial intelligence and optimal design of complex systems.
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L.

VI. CONCLUSION

In this work, we have studied the microgrid fast-frequency control problem targeting self-consuming in energy communities. The heterogeneous DERs in the microgrid were modelled by generic flexibility model for the fast-frequency control problem. A model-predictive approach has been used for the optimization of inertia, droop, and damping parameters with a novel rate-based linearisation. Unlike the conventional Jacobian linearisation, the rate-based linearisation handles model mismatches between the approximate linear model and the non-linear system Further, we have proposed a simple extension to the proposed rate-based MPC as a cooperative distributed MPC to collectively utilize the distributed flexibility resources; thus bypassing the capital investment on dedicated storage reserves for grid-support functions. Nouredine Hadjsaid is a Professor at Grenoble Institute of Technology, Director of the Laboratory of Electrical Engineering of Grenoble (G2ELAB). He is also a visiting professor at Virginia Tech (USA) and NTU (Singapore). His research interests are in smart grids, which include distributed generation and power grids, information and communication technologies in power grids, and power grid safety, among others.