
HAL Id: hal-03636299
https://hal.science/hal-03636299

Submitted on 9 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CPDE: A methodology for the transparent distribution
of centralized smart grid programs

Thi Thanh Quynh Nguyen, Christophe Bobineau, Vincent Debusschere,
Quang Huy Giap, Nouredine Hadjsaid

To cite this version:
Thi Thanh Quynh Nguyen, Christophe Bobineau, Vincent Debusschere, Quang Huy Giap, Noure-
dine Hadjsaid. CPDE: A methodology for the transparent distribution of centralized smart grid
programs. IEEE Transactions on Parallel and Distributed Systems, 2021, 32 (2), pp.342-354.
�10.1109/TPDS.2020.3019759�. �hal-03636299�

https://hal.science/hal-03636299
https://hal.archives-ouvertes.fr

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 1

CPDE: A methodology for the transparent
distribution of centralized smart grid programs

Thi Thanh Quynh Nguyen, Christophe Bobineau, Vincent Debusschere, Senior Member, IEEE,
Quang Huy Giap, and Nouredine Hadjsaid, Senior Member, IEEE

Abstract—Control and management in smart grids are facing many challenges such as scalability, heterogeneity and technology
innovation. This requires a transformation from the traditional centralised paradigm into a distributed one. In this paper, a new
distributed programming methodology, called Centralised Programming and Distributed Execution (CPDE), is proposed. CPDE relies
on (i) the abstraction of the whole system as a distributed database, (ii) the use of the Smartlog declarative and reactive rule based
language for expressing data manipulation, and (iii) the automatic Smartlog rule distribution according to data distribution. It thus
provides a simple and straightforward mean for distributed programming. A centralised algorithm of fair over-voltage regulation of PV
systems is used as a typical smart grids study case to validate the methodology and to compare it with centralized implementations.
The experiments are implemented in a real-time simulation platform with a network of Raspberry Pis. In addition to showing its
correctnes and ease of use, the performance of the CPDE implementation is studied, as well as its sensitivity to the increasing number
of computing units and the data distribution. Results are promising and show the clear benefits of this methodology compared to more
classical implementations.

Index Terms—Distributed programming, CPDE methodology, distributed database, declarative language, Smartlog, smart grid.

F

1 INTRODUCTION

THE integration of renewable energy and storage devices
into the traditional power systems requires immediate

response to manage intermittent resources, through bidirec-
tional energy flow controls and decentralized management
of the renewable energy generation. The power grid needs
a technology transformation to meet these challenges [1].

The cooperation of the electricity grid and the informa-
tion network promises to bring to life an innovative grid
[2]. Along with the development of smart devices such as
smart meters, micro-computers and the use of available
communication infrastructures (e.g., Wi-Fi [3], 3G, 4G, 5G,
power-line communication [4], etc.), the electrical system
could be better controlled and managed, up to real-time [5].

Nevertheless, the information network integrated into
the electrical grid poses many problems, especially regard-
ing the scalability of the infrastructure. The larger the system
is, the more powerful the computing servers must be. That
leads to a problem of costs, both from the investment and
operation point of view. Moreover, the huge amount of
data driven to servers in short time can cause a problem
of velocity in data processing, particularly in heterogeneous
and complex systems like smart grids. Thus, local process-
ing should be encouraged to limit overload and bottleneck
phenomenons in central servers [6], [7].

• Dr. Nguyen, Dr. Debusschere and Prof. Hadjsaid are with Univ. Grenoble
Alpes, CNRS, Grenoble INP∗, G2Elab, 38000 Grenoble, France.
E-mail: thi-thanh-quynh.nguyen@g2elab.grenoble-inp.fr.

• Dr. Bobineau is with Univ. Grenoble Alpes, CNRS, Grenoble INP∗, LIG,
38000 Grenoble, France.

• Dr. Giap is with the Department of Electrical Engineering, University of
Science and Technology, University of Danang.

∗Institute of Engineering Univ. Grenoble Alpes.

1.1 Implementing algorithms for smart grids

Numerous centralized algorithms have been developed to
ensure parameter control and management in power grids
(e.g. voltage or frequency control). However, with the devel-
opment and scale-up of smart grids, these algorithms may
no longer be sufficient. They show indeed many shortcom-
ings, such as very high computation and communication
costs, single points of failure, etc. [1].

Besides, along with the current development of the
infrastructures, computing devices can be found largely
scattered over the power grid. This huge available com-
puting resources can fully participate in the management
of the power system itself. Distributed algorithms in this
context seem to be more efficient than the centralized ones,
because they deal with the imminent problems of control
and management while ensuring the replacement of the
conventional centralized controller [8]. However, there are
still some drawbacks in distributed programming that re-
strains their deployment in reality.

For instance, using generic distributed algorithms to
achieve agreement on a common parameter value in power
grid control, such as consensus algorithms is possible (e.g
Metropolis [9], Finite-time Average Consensus algorithms
[10] and Maximum Degree Weight [11]). But this kind of
solution presents a convergence rate that depends on the
grid’s configuration and that is mostly not compatible with
near real-time needs of smart grid control.

Specific distributed algorithms for power grid manage-
ment, such as Dual Decomposition [12], Optimality Condi-
tion Decomposition (OCD) [13], Analytical Target Cascading
(ATC) [14], Auxilliary Problem Principle (APP) [15], Alter-
nating Direction of Multipliers Method (ADMM) algorithm
with Proximal Message Passing (PMM) [16] have been pro-

https://www.doi.org/10.1109/TPDS.2020.3019759 © 2021 IEEE Published by the IEEE Computer Society

mailto:thi-thanh-quynh.nguyen@g2elab.grenoble-inp.fr

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 2

posed for the optimal power flow problem (OPF). But they
need up to several thousand iterations to converge for nodal
OPF in a small grid [17]. Furthermore, the convergence rate
is shown to be linear with the number of power grid nodes
[18]. The ALADIN algorithm [19] was proposed to reduce
the number of iterations in comparison of the ADMM algo-
rithm, but this improvement is not proven in the case where
the number of nodes increases significantly. In addition to a
slow convergence rate, neglecting the communication delay
leads to non-reactive control and management of power
systems, incompatible with a their evolution towards smart
grids. Stability limits of the systems could be violated and
the quality of the energy would be difficult to ensure.

To summarize, programming with such distributed al-
gorithm is still challenging. A distributed program is a
set of cooperating local programs, and all data exchange
and process synchronization have to be taken into account.
These challenges increase with the number of participating
computing devices. A solution for reducing these challenges
is to use higher abstraction levels, for instance, abstract-
ing the whole system as a distributed database and using
declarative data manipulation languages. Control and man-
agement of power grids consist in reacting to changes in
the environment (i.e. change in the sensor data) to adjusts
parameters (i.e. acting on actuators). Declarative and reac-
tive languages are thus needed. Distributed datalog-based
languages such as Netlog [20], Nlog [21] or Smartlog [22],
the later one being dedicated to smart grid use, can be
advantageously exploited. But, even with the use of such
languages, data exchange among participating devices is
still to be managed.

In this paper, the architecture of distributed systems
such as multi-agent systems [23] as well as the protocols
used for data exchange are not presented as they do not
fit with the focus of the method presented in this paper.
Instead, we focus on solving issues related to data exchanges
management and processes synchronization.

1.2 Objectives of the work

We aim at simplifying distributed programming in smart
grids by totally hiding data exchanges among computing
devices. We propose to use the Smartlog rule-based data
manipulation language to program centralized control and
management algorithms and then to automatically trans-
form these centralized programs into sets of cooperating
programs (i.e. to distribute the rules of the programs) in
order to transparently achieve a distributed execution. This
distributed programming methodology is named CPDE, for
Centralized Programming and Distributed Execution. The
CPDE method has been first mentioned in [24], focusing on
the basic principle of the method.

In this paper, we first recall the general structure and
behavior of Smartlog programs, and the corresponding sys-
tem architecture (section 2). We then detail our automatic
rule distribution algorithm according to the distribution of
data (Section 3). Section 4 and Section 5 present an ex-
perimental performance evaluation of distributed programs
obtained using CPDE compared to both Smartlog and Java
centralized implementations. This evaluation will show the
advantages of CPDE (simplicity, correctness and efficiency).

Node 1

Node �

Node 3
Node 4

Node 2

NETWORK

Sensor
interface

Rule Engine

Local Database

C
om

m
un

ic
at

io
n

in
te

rfa
ce

sensors &
actuator

Fig. 1: Structure of each node in the grid.

The experiments are realized with a real-life voltage control
algorithm (AAPC [25]) over real-time power grid simulation
and actual computing devices, in a power hardware in the
loop experimental validation. Section 7 concludes the paper
on the main advantages of the CPDE methodology.

2 SMARTLOG LANGUAGE AND SYSTEM

The major details of the architecture of the nodes in the
considered smart grid as well as the Smartlog language can
be found in [26]. The primary knowledge is reintroduced in
this section before addressing the CPDE methodology.

Note that the work was developed based on a con-
text in which internet of things components are more and
more participating in the power system’s infrastructure.
Reusing electrical legacy system was considered to decrease
investment, as cited in [26]. Besides, Smartlog is a high
level abstract language aiming to simplify the distributed
programming. Our first prototype is implemented based
on an executable machine language (PostgreSQL and Java
in our test-case) and as the rule distribution is performed
statically (off-line), rule triggering and execution can be
implemented in any language using code generation, on
very basic hardware platforms. In this case, a small and
cheap extension to any legacy component is possible, even
if most probably not considered, due to the actual number
of such components in traditional distribution grids

2.1 Architecture of a node in the network
Each computing node is an elementary cell in the network
that has the ability to store data, communicate and perform
computations. The architecture of each node is presented in
Fig. 1. The architecture of each node contains three parts:

• The local database stores the node’s information: Sens-
ing data, parameters, intermediate results and so on.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 3

• The rule engine decides which rules have to be trig-
gered in the Smartlog program and executes them.

• The sensor interface is in charge of the interaction with
the sensors and actuators.

• The communication interface manages data exchanges
with others nodes in the network.

2.2 Structure of the Smartlog program
The structure of a Smartlog program is proposed in Listing 1.

01 Program(NameOfProgram){
02 Data_types{//define the data types
03 A(Value1: int key, Value2: int, Value3: float).
04 H(Value1: int key, Value2: int, Value3: float).
05 }
06 Initial_data{//set up initial data
07 H(1, 0, 0).
08 }
09 Module(A){//rules
10 H(m, k, t) :- A(m, n, t),n >5, k:= t+n;
11 }
12 ...
13 }

Listing 1: The structure of a Smartlog program.

• The Data_types (lines 2 to 5) defines the scheme of
data stored in the local database.

• The Initial_data (lines 6 to 8) declares the data
initialization. These insertion will not activate any
rule in the Module blocks.

Smartlog programs contain sets of rules in the form
Head:-Body (line 10). When a rule is triggered, the vali-
dation of the body B leads to the generation of the head
H. Data generated by the head part of rules can be locally
stored (e.g. intermediate results or parameter activating an
actuator) or sent to another node to pursue distributed
computing. The body part of a rule is composed of one or
more terms that can be atoms aj (i.e. test of existence of data
items in the local database), conditions cj or assignment
of variables sj . All terms have to be satisfied in order to
produce the head. Rules are triggered by a modification or
insertion of data items corresponding to the first term of the
body. To optimize the execution, rules that must be triggered
by the same data_type are grouped in modules. Rules in
the same module can be exclusive or executed in sequence.

2.3 Network communication and cooperation
Each node in the network has its own IP address, which
helps identify the location of the node. Nodes communicate
using the TCP/IP protocol in which data packets are sent
and received as in sequential order. In Smartlog, the change
in a specific data_type activates the corresponding cal-
culations. Transferring data from one node to another can
trigger calculations elsewhere as well. That is notably why
Smartlog can fully support distributed programming.

As an illustration, let us consider two modules, A and
B, in two different sites, i and j. After executing the rule of
the module A in the site i, B is sent to the site j. Herein, it
triggers the next rule validation in the module B in the site
j.

SARD

Centralized	smartlog
program

Description of data
distribution

Fig. 2: Principle of Smartlog rule distribution with CPDE.

Module(A){
ˆB(i, t) : A(i, a, t),

C(i, @j); }

Listing 2: Module A, site i.

Module(B){
E(i, c) : B(i, t), D(a,

c), t>c; }

Listing 3: Module B, site j.

3 SEMI-AUTOMATIC RULE DISTRIBUTION (SARD)
We propose a new programming methodology, called Cen-
tralized Programming and Distributed Execution (CPDE), to
simplify the distributed programming in SmartLog by hiding
synchronization and data exchange aspects.

The CPDE methodology approaches the distributed
Smartlog programming based on the principle presented
in Fig. 2. A centralized program (that can be executed on
a single device) is transparently rewritten into multiples
cooperating Smartlog programs according to a given data
distribution schema. These programs will be instantiated on
the distributed devices and will perform equivalent compu-
tations. The rewriting process exploits a Semi-Automatic Rule
Distribution processor (SARD) developed to that purpose.

3.1 Principle
Based on the description of the data distribution, the SARD
processor analyzes the set of rules of a centralized Smart-
log program. It decomposes them (if necessary) into sub-
rules, corresponding to each location, while ensuring that
the distributed programs present the same behavior as the
centralized one. Some critical hypotheses should first be
satisfied in the input program.

• The centralized Smartlog program runs without error;
• The communication network is reliable.

In addition, the volume of communications and trans-
ferred data must be minimized, limiting the bandwidth
usage. In the following sections, we focus on two main
parts: the description of the data distribution and the rule
transformation process.

3.2 Description of the data distribution
A big part of the smart grid data is naturally scattered over
the network. For example, sensor data are stored where they
are produced and parameter data are stored where they are
exploited (actuators). The rest of the (intermediate) data can

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 4

be stored anywhere. The design of the distributed database
allows each dataset scheme to be fragmented horizontally
(groups of data items), vertically (groups of data attributes
from all data items), or in a hybrid manner. Each part of the
dataset is called a fragment.

For the horizontal fragmentation, each fragment holds
all the attributes of the original data_type, but it only
contains a part of the original data items, specified by a
predicate [27]. The original dataset can be recomposed by
the union of all horizontal fragments.

DT = ∪iDTi (1)

For the vertical fragmentation, each fragment holds
several attributes, mandatory including the key attributes,
extracted from all data items of the dataset. The original
dataset can be recomposed by joining all vertical fragments.

DT =oni DTi (2)

The hybrid fragmentation of a dataset is a horizontal
fragmentation followed by a vertical fragmentation of all
horizontal fragments. The original dataset can be recom-
posed with (3).

DT = ∪i(onj DTij) (3)

In the power grid, measurement and control data are
normally fragmented horizontally according to the identi-
fier of the corresponding sensor/actuator and located near
them. Meanwhile, the intermediate data allocation depends
on the optimal data placement process. The design of the
optimal data placement is not the focus of this paper, as-
suming that it has been correctly specified beforehand. Each
data fragment is allocated to one device in the network.

To describe the data distribution in the network, we
propose to combine fragmentation aspects (horizontal and
vertical) and allocation aspects. The proposed syntax is
conceived as an extension of the syntax of the Smartlog
data_type block (D). Each data_type definition contains
the original data_type (Di|Di ⊂ D) with its attributes (Ai)
and its data fragments(Fi|Di = {Ai, Fi}).

In each fragment definition (Fij |Fij ⊂ Fi), we define
three parts: (i) the filtering condition in the key attributes
Cij (for the horizontal fragmentation); (ii) the set of at-
tributes Aij (for the vertical fragmentation) and (iii) the
location in which the data items are stored Lij , Fij =
{Cij , Aij , Lij}. The location part is mandatory, while the
condition and attributes parts are optional. As an illustra-
tion, the data_type A, horizontally fragmented is pre-
sented in Listing 4, lines 2 to 13.

01 Data_types{
02 A(Value1: int key, Value2: int, Value3: int){
03 Fragment(A1){
04 Condition: a>2;
05 -- Attributes:
06 Location: 'S1';
07 }
08 Fragment(A2){
09 Condition: a<=2;
10 -- Attributes:
11 Location: 'S2';
12 }
13 }

14 }
15 IPmap{
16 S1: 192.168.1.100;
17 S2: 192.168.1.101;
18 }

Listing 4: A sample data type block.

Since all devices of the network should be known by
name, locations are thus expressed as names. The correspon-
dence between device names and IP addresses are defined
in the IPmap block of the data distribution description, as
shown in listing 4, lines 15 to 18.

the SARD processor follows three main steps: (i) rule
rewriting, to take datasets fragmentation into account; (ii)
rule distribution, to manage data exchanges and processes
synchronization and (iii) the distributed program genera-
tion.

3.3 Rules transformations

Rule transformations are the first two steps (rewriting and
distribution) of the SARD processor, presented below.

3.3.1 Rule rewriting

The original rule is developed based on the description of
the data distribution. The idea is to first replace atoms in
the body part of rules by their reconstruction from frag-
ments, and then duplicate rules for each head fragment as
described by Algorithm 1.

Algorithm 1 Rule rewriting.

procedure RULEREWRITING(rule R)
for Bi in B do

if Bi instantOf Atom then
get Di from Bi

Dik ← Di, aik ← {Dik, Bi}
if Di is not horizontal fragmentation then

Group of juncture Dik of Di

Replace Bi by set of juncture aik (SA|aik ⊂
SA)

else Replace Bi by aik(aik ∈ SA)
if i == 0 then

for aik in SA do
Create a new Rule Rr , add aik to Rr

add Rr to list of Rule (LR|Rr ⊂ LR)
else

for aik in SA do
for Rr in LR do

if Caik
∩ CRr

6= ∅ then
add aik into Rr

else
for Rr in LR do

if CBi ∩ CRr 6= ∅ then
add Bi into Rr

for Fi in H do
Di ← Fi, ai ← {Di,H}
if ∃ci ∈ Fi then

add ci into Rr

Add ai to Rr

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 5

The body rewriting depends on the type of fragmenta-
tion (horizontal or vertical). Atoms vertically fragmented are
simply replaced by the conjunction of fragments (join). For
example, the rule R, presented in (4), where the data_type
B is fragmented as B(x, y, z) = B1(x, y) on B2(x, z), is
rewritten as rule R1 in (5).

R : H(m, k, t) :- A(m,n, t), B(m, , k). (4)
 R1 : H(m, k, t) :- A(m,n, t), B1(m,), B2(m, k); (5)

The horizontal fragmentation implies to duplicate the
rule for each fragment. For example, if B is horizontally
fragmented into B3 holding B items where x > 10 and B4

holding B items where x ≤ 10, B can be recomposed with
B(x, y, z) = B3(x, y, z) ∪ B4(x, y, z). The rule R from (4)
will be then rewritten as rules R21 and R22 in (6).{

R21 : H(m, k, t):-A(m,n, t), B3(m, , k);

R22 : H(m, k, t):-A(m,n, t), B4(m, , k);
(6)

After rewriting the body part, the fragmentation of the
head has to be considered. The resulting rules of the previ-
ous step will be duplicated for each fragment of the head.
Horizontal fragments imply adding the fragment condition
to the body part. If H in rule R is vertically fragmented into
H1(x, y) and H2(x, z) then the rule R1 is finally rewritten
into rules R11 and R12 as presented in (7).{

R11 : H(m, k) :- A(m,n, t), B1(m,), B2(m, k);

R12 : H(m, t) :- A(m,n, t), B1(m,), B2(m, k);
(7)

If H is horizontally fragmented into H3 and H4 with
conditions x > 12 and x ≤ 12 respectively, then the same
rule R1 is rewritten into rules R13 and R14, (8).

R13 : H(m, k, t) :- A(m,n, t),

B1(m,), B2(m, k),m > 12;

R14 : H(m, k, t) :- A(m,n, t),

B1(m,), B2(m, k),m <= 12;

(8)

Aggregate functions (COUNT, MIN, MAX, SUM and AVG)
are supposed to be computed over the whole original
dataset. There is no problem in case of a vertical fragmen-
tation as the aggregation concerns only one attribute, but
the case of a horizontal fragmentation is more tricky. The
solution consists in computing (sub-)aggregates for each
horizontal fragment and store the results in intermediate
datasets which then contribute to compute the final aggre-
gated values.

For example, the rule R, defined in (9), where B is
horizontally fragmented into B1 and B2, is first rewritten
into rules R1 and R2, as in (10), according to the dataset
fragmentation.

R : H(m, k, t) :- A(m,n, t), B(m, , l), k := sum(l); (9)

R11 : H(m, k, t):-A(m,n, t),

B1(m, , l), k := sum(l);

R12 : H(m, k, t):-A(m,n, t),

B2(m, , l), k := sum(l);

(10)

Then, each resulting rules are rewritten to compute the
aggregates (SUM) over the fragments. The final rules are
shown in (11) whereR21 andR22 partially compute the sum

H

B1 B2A

m
, t

m

m
, k

m

m

m

m

Fig. 3: Intial cyclic graph of Rule R1, expressed in (5).

over the fragments B1 and B2 respectively, and the rules
R23 recompose the final value of the sum while deleting
now useless intermediate results. As the first atom in the
rule’s body triggers the rule, R23 is itself decomposed in
two rules to ensure the final SUM computation whatever the
order of intermediate results production is.

R21 : Tmp1(m, k1, t):-A(m,n, t),

B1(m, , l), k1 := sum(l);

R22 : Tmp2(m, k2, t):-A(m,n, t),

B2(m, , l), k2 := sum(l);
R231 : H(m, k, t):-!Tmp1(m, k1, t),

!Tmp2(m, k2, t), k := k1 + k2;

R232 : H(m, k, t):-!Tmp2(m, k2, t),

!Tmp1(m, k1, t), k := k1 + k2;

(11)

3.3.2 Rules distribution

After determining which rules can be incurred from the
original rule R, the next step is to analyze the rewritten
rules Rr according to the data allocation and to decide the
data transferred among locations. Each rule is considered
one after the other in the set of Rr.

3.3.2.1 Rule in the form of a cyclic graph
We use a directed (cyclic) graph G(V, E), where (V, E)

is a set of vertices, corresponding to terms of the rule, and
labeled edges, representing links among terms, respectively.
For example, in Fig. 3, the edge between A and B1 repre-
sents the passing of the variable m from A to B1, meaning
that the term B1 is evaluated after A.

The first term of the body part of a rule (A in Fig. 3) is
the only one that possesses values assigned to all variables.
Thus all paths in the graph start with this term and end
with the head part of the rule. We analyze all variables
of the terms in the rule in the reverse order (from H to
a0) to constitute the edges. Each term that can create new
variables (except the condition one) can be a vertex of the
graph G(V, E).

As the body of a Smartlog rule is a conjunction of terms,
all these terms are commutative, the commutativity of terms
possibly leads to produce cycles in the graph. The whole
graph G represents all possible execution orders of the terms

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 6

H

B1 B2A

m
, t

m

m
, k

mm

m

(a) First acyclic graph.

H

B1 B2A

m
, t

m

m
, k

m

m

m

(b) Second acyclic graph.

Fig. 4: Possible acyclic graphs of Rule R1.

of a rule. As an illustration, the initial directed cyclic graph
constituted for Rule R1, expressed in (5), is shown in Fig. 3.

3.3.2.2 Covering minimum acyclic directed graph
To select the best evaluation order of the rule, we have

first to enumerate all covering minimum acyclic graphs
representing actual possible evaluation orders (each vertice
is attained only one time). This enumeration is performed
in two steps: (i) eliminating edges participating in cycles to
avoid infinite loops, and (ii) eliminating redundant edges to
avoid unnecessary communications and computations. For
example, by deleting one of the edges in cycles (B1 → B2 or
B2 → B1 in the cyclic graph presented in Fig. 3, we generate
two acyclic graphs (Fig. 4a and Fig. 4b respectively).

If there are two different paths between two vertices (A
and B2 in Fig. 4a), one direct and one passing through other
vertice(s) (B1 in the same figure), the direct one is then
redundant and should be eliminated. The resulting covering
minimum acyclic graphs are shown in Fig. 5.

3.3.2.3 Variable rerouting
By eliminating redundant edges, the transportation of

some variables may be forgotten and has to be compensated.
For example, in Fig. 5a the transfer of variable t from vertex
A to vertex H has been lost. This variable has to be rerouted
using the retained path betweenA andH as shown in Fig. 6.

3.3.2.4 Data location and transfer
The location of each vertex (fragment data_type) of

the minimum acyclic graph has to be considered. Location
of atom vertices is known from the description of the data
distribution. These locations allow constituting sub-graphs
where all data_types are co-localized and thus identify-
ing needed communications between locations. Non-atom

H

B1 B2A

(1)

(2)

(3)

(4)(5)

(6)

(a) First covering acyclic graph.

H

B1 B2A

(1)

(2)

(3)

(4)

(5)

(6)

(b) Second covering acyclic graph.

Fig. 5: Covering minimum acyclic graphs of Rule R1.

H

B1 B2A

m
, t

m

m
, k
, t

m, tm, t

m

(a) Rerouting data items of Fig 4a.

H

B1 B2A

m
, t

m
,k

,t

m
, k

m, k, t

m

m, t

(b) Rerouting data items of Fig 4b.

Fig. 6: Rerouting variables of acyclic graphs of Rule R1.

vertices (assignments or conditions), as they may filter out
communications, have to be evaluated as soon as possible

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 7

H

B1 B2A

m
, t

m

m
, k
, t

m, tm, t

m

S3

S1 S2

(a) Data location in Fig. 4a.

H

B2 B1A

m
, t

m
, k
, t

m
,k

m, k, t

m

m, t

S3

S2 S1S1

(b) Data location in Fig. 4b.

Fig. 7: Data location in acyclic graphs of Rule R1.

A

B

C

H

m
,n

m

m, t

m, k

S1
S2

A

B

C

H

m
,n

m
m, k, t

S1
S2

H(m,k,t) :- A(m, n), B(n, t), C(m, k);

Fig. 8: Simplify connections between two locations in a rule.

on locations where all needed variables have known values.
For instance, in Rule R1, from (5), we assume that A and

B1 are co-localized in site S1, B2 is in site S2 and H in site
S3, as illustrated by red dashed rectangles in Fig. 7a and
Fig. 7b (communcations are represented as red edges).

Messages between two locations are generated by local
rules and include all data to be transferred. For example in
Fig. 8, where two sets of data have to be transferred from
S1 to S2 ((m, t) from B1 to H , and (m, k) from B2 to H
respectively), only one message is transmitted, including the
variables (m, t, k).

3.3.2.5 Process synchronization
It is always possible to build a minimal acyclic directed

graph for a global rule comprising only one input (the
first term of the body) and only one output (the head of
the rule), and to partition according to the data locations.
Each location evaluate the local rules that are supposed
to be independent. These cooperating locations have thus
to be synchronized to achieve equivalent evaluations as
the original global rule. The synchronize locations ensure
that messages contain sufficient information to match data
included in messages coming from different locations.

A B

C

D

m
1

S1

S2

S3 S4

S5

m
5

m4

m
3

m2

Fig. 9: An illustrated graph for synchronization process.

For example, in Fig. 9, S5 receives two messages from
S2 and S4 (m2 and m5 respectively). These two messages
must be synchronized, so we need to find the location at the
origin of m2 and m5 (here S1). More precisely, we need to
identify the term in S1 at the origin of these two messages.
m2 is a consequence of m1, generated from terms A, B, C
and D. m5 is a consequence of m4 and m3, the latest one is
generated from terms A and B. The term causing the need
of synchronization is thus B. So the key of B has to be
propagated in all outgoing messages from location S1 until
location S5.

The communication cost of each candidate minimum
acyclic graph must now be computed in order to select the
most efficient one.

3.3.2.6 Selection of the optimal graph
This step is critical to properly optimize the distributed

computation. Each graph is examined and only the one
minimizing the communication cost is retained. With the
hardware architecture hypotheses of [22], the communica-
tion decision is subject to optimization with the objective
functions defined as follows:

1) Minimize the number of communications;
2) Minimize the number of transferred data-items.

In fact, to determine precisely the influence of each
variable on the objective function (F), all the characteristics
of the considered network such as bandwidth, error rate,
communication costs, etc. must be taken into account. In
this paper, we do not focus on the cost model and we use a
simple one, for illustration, as shown in (12).

minF = x ∗ y (12)

Where x represents the number of communications and
y the total number of transferred data-items.

The optimal evaluation graph is the one offering the
minimum cost. The optimal minimum acyclic graph allows
determining the optimal rule execution order in which the
behavior of a rule is still transformed in the same way as
in the distributed system. The transferred data items must
be started from the root of the graph (the vertex holds the
first term of the body part) and end at the destination which
holds the head part of the rule.

The rule distribution complies with the optimal graph.
The direction of communication between two vertices re-
spects the direction of the edge, and the transferred data
items are the label of the edge.

As an illustration, let us consider the objective function
of the two labeled graphs presented in Fig. 7a and Fig. 7b,
F1 and F2, respectively. For Rule R1, expressed in (5), the
optimal graph is shown in Fig. 7a withF1. Indeed, in Fig. 7b,

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 8

there are three communications and eight transferred data
items, but in Fig. 7a only two communications and five
transferred data items, thus F1 = 2 ∗ 5 < F2 = 3 ∗ 8.

3.4 Generating the programs

The last step of the SARD processor is to construct the
distributed Smartlog programs for each location. Firstly, the
data communication is taken into account to create new
communication rules and temporary data_type triggering
the next evaluation in a different location.

3.4.1 Performing communication
Data are packed in the form of a temporary data_type
and sent to another location by message passing. The
name of the temporary data_type, which is generated
automatically, allows triggering the next actions in another
location. The new temporary data_types are added to the
data_types block in both locations (the sender and the
receiver). The Data_type IPMap is declared and added
at the end of the body part to indicate the mapping IP of
the target address. For example, data sent with the optimal
graph of Fig. 7a is expressed by the rules declared in
Listing 5 and Listing 6.

Module(A1){
ˆTmp1(x,t) :- A1(x,y,t), B1(x,_), IPMap('S2',@ip); }

Listing 5: Sub-rules generated in the site S1.

Module(Tmp1){
ˆB1(x,k,t) :- Tmp1(x,t), B2(x,k), IPMap('S3',@ip); }

Listing 6: Sub-rules generated in the site S2.

After transforming the original rule into sub-rules in
which all the term of the body part have the same location,
each rule is assigned corresponding to its location.

3.4.2 Generating distributed Smartlog programs
A distributed Smartlog program is constructed in each lo-
cation with the set of data_types, initial_data, and
the assigned rules. In each program, rules are grouped
by module, a set of data_types and initial_data are
rewritten for the data_type block and initial_data
block, respectively.

A Smartlog program comprises possibly many modules,
and each one may contain many rules. The process of rule
transformation into sub-rules can cause rule duplication in
each location. In that case, the simplification of the program
is performed.

4 EXPERIMENTAL EVALUATION

In this section, we apply the SARD processor over a
reference Smartlog program implementing an over-voltage
protection for a photovoltaic power generation. We then
compare the behavior of both implementations in order to
highlight the correctness and performance of the resulting
distributed programs. We then study the influence of the
number of nodes and the data distribution design on the
performance.

��1

()�
�

�0 (�)�
�

(�)�
�

W

()�
�

�0

()�
�

�0 (�)�
�

(�)�
�

W'

��2

A A'

()�
�

�1

+ 0.5 %��1

()�
�

�1

()�
�

�1

x
x

()�
�

�
�1 ()�

�

�
�1

� ′

�2

Δ�
�

Δ�
�

pu pu

W W

Fig. 10: Adaptive Active Power Capping method [25].

Note that the presented method has been successfully
applied to other reference smart grids regulation processes
like the frequency containment reserve for instance [22],
[26]. Those results are not presented in this paper because
the comparison of the implemented regulations is not rele-
vant for the comprehension of the method and also not to
extend the length of the paper.

4.1 AAPC: over-voltage control for smart grid
The rise of renewable energy, especially Photovoltaic (PV)
sources, in traditional distribution grids causes risks of
power unbalance as well as a decrease of the quality of the
energy. One of the most notable issues, when this energy
is injected to the grid, is over-voltage. There are many
solutions approaching this problem, and one of the most
effective methods with a centralized control is the Adaptive
Active Power Capping (AAPC) [25]. The principle of the
method is presented in Fig. 10.

The purpose of the AAPC method is to determine the
limit of the produced active power of each PV source so
that the nodes’ voltage in the whole grid do not exceed the
bound of over-voltage and ensure the fair sharing of active
power for all participating sources. The AAPC method
assumes that a small change in voltage is approximated with
the power variation in a small period of time span (t1-t2),
with VC1

and VC2
the two concerned bounds of the voltage.

Vc2 is the bound of over-voltage, in which the source is
disconnected from the grid, [VC1

− VC2
] = [1.042 − 1.058]

(pu). The over-voltage occurs in one or several nodes of
the grid, called critical nodes (Cri). In the AAPC method,
V

′

c2 corresponds to the voltage of other nodes j (not critical
ones), and is estimated based on the ratio PROV .

PROV =
Vc2 − V k(t1)

V k(t1)− Vc1
=

V
′

c2 − V
j(t1)

V j(t1)− V j(t0)
(13)

In principle, AAPC uses the linear regressive method
for each photovoltaic source to predict the upper power
limitation (Plim) expressed in (14).

P j
l (t1) = P j(t0) + (V

′

c2 − V j(to))/ξj (14)

With ξ the linear coefficient (Slope) calculated by the
ratio of voltage variation (Vvar) and power variation (Pvar).

ξj =
V j(t1)− V j(t0)

P j(t1)− P j(t0)
(15)

The photovoltaic power production within its thresh-
old prevents over-voltages in the grid. P j

ref , the generated
power of the jth PV node in the next step, is its limit power

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 9

Fig. 11: PREDIS Test network configuration [28].

(Plim) or maximal produced power (Pmax) predicted by a
maximum power point tracking calculation, expressed in (16).

P j
ref (t1) = min(P j

l (t1), P j
m(t2)) (16)

Each photovoltaic node has the same responsibility to
participate in the stable operation of the grid. Thus, the
curtailment of each PV panel must be identical. The power
production of each node at next time t2, called P j

a (t2), is
expressed in (17).

P j
a (t2) = η ∗ P j

m(t2) (17)

With η the power curtailment (Pcur), defined as:

η =

j=n∑
j=1

P j
ref (t1)/

j=n∑
j=1

P j
m(t2) (18)

4.2 Experimental setup

The distribution grid PREDIS [28] is used as a test object.
This grid has 14 nodes, with five distributed sources, three
asynchronous machines and multiple static loads. The grid
configuration is shown in Fig. 11. This grid is simulated
in MATLAB/SIMULINK and executed in OPAL/RT for
real-time simulation. Raspberry Pis play the role of local
computing units installed at the nodes with distributed
sources (PV), and are named following the node order.

The centralized Smartlog program has data_types de-
clared as follows (identifiers are underlined):

• Measure(ID, Timestamp, VOLT, POW,
Pmax): Instantaneous measure at node ID of
the voltage, active power and maximal produced
power;

• Warning(ID, Timestamp): Keeps the timestamp
at which the node ID attains the warning status;

• WarningMeasure(WarningID, ID, VOLT,
POW): Measure the data of all nodes when the grid
enters warning status;

• Alert(ID, Timestamp, PROV): Stores the times-
tamp at which the critical node attains the alert
status, and the corresponding value of the PROV
ratio;

• Slope(Cri-ID, ID, Slope, Vvar): Slope coef-
ficient and Vvar for the linear regression;

Fig. 12: The PV generation curve for 10 minutes.

• Plimit(Cri-ID, ID, Pref): Computed injected
power limit for each node;

• Curtail(ID, Pcur): Computed power curtail-
ment percentage of each Photovoltaic node;

• Actuator(ID, Yield): Output curtailment val-
ues for each Photovoltaic node.

The dataset is generated automatically during the real-
time simulation. The measured data at each distributed PV
source is sent to each corresponding Raspberry Pi .

Regarding the scenario of voltage control, we consider
the change of injected power at each node. To verify the
methodology, the injected power has to change with time
and sometimes cause over-voltage in the grid. We carry out
the simulation for 10 minutes. During this time we keep
the load constant and change the PV irradiation. In reality,
the change of solar power depends mainly on climate and
cloud conditions. The curve presented in Fig. 12 is used to
evaluate the method as well as to assess the response time
for this case study.

5 EXERIMENTATION AND ANALYSIS

According to the objectives of the experimentation, we focus
on evaluating the behavior of the algorithm implementa-
tions rather than the algorithm itself.

5.1 Correctness of the distributed execution

5.1.1 Description

To demonstrate the correctness of our method, we imple-
ment the centralized algorithm from [25] in Java (which
represents the reference implementation in our work) and
in Smartlog. The results of these two implementations are
compared with the results of the distributed implementation
using the CPDE methodology and the SARD processor.

Regarding the data distribution, there are eight
data_types in the centralized Smartlog program. They are
assumed to be fragmented horizontally and distributed over
five Raspberry Pis, except three intermediate data_type
(Warning, Alert, and Curtail), only located in two rasp-
berry Pis at node No7 and No9, respectively.

In the Predis grid, the 7th node, corresponding to Rasp-
berry Pi No7, is designed as the critical node during the
simulation (this node has the highest voltage in the grid).
Therefore, we will discuss the result mainly for this node in
the following sections.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 10

0 1 2 3 4 5 6 7 8 9 10
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Times(min)

V
ol

ta
ge

(p
u)

No voltage−controlled
Voltage−controlled with distributed Smartlog
Voltage−controlled with centralised Smartlog
Voltage−controlled with centralised Java

Fig. 13: 7th node’s voltages for all implementations.

TABLE 1: Response times for the major implementations.

Tcomp Tcomm

Centralized
∑

j∈N
∑

i∈Rj
ti 0

Distributed max(
∑

i∈RNo7
ti,

∑
j∈RNo9

tj) Ntc

5.1.2 Results and discussion

Fig. 13 shows the voltage response at the 7th node for both
implementations (centralized and distributed). The voltage
in all implementations is controlled and does not exceed
the upper bound (1.058 pu). The results are identical, which
confirms the correctness of the SARD algorithm.

At the second minute of the simulation, the active power
of the PV increases linearly and causes an over-voltage in
the grid. The AAPC algorithm is activated to restrain the
percentage of power production. In continuous time, the
curtailment is almost inversely proportional to the increase
in active power. This means that the curtailment decreases
linearly when the power production increases and exceeds
the upper bound of power. In practice, the response time
is defined as the interval between two consecutive updates
of the power curtailment when the grid operates in over-
voltage. We thus estimate the response time of each deploy-
ment in the experiment based on this definition.

We call ti the local processing time of each rule, tc the
average delay time for each communication and N the
number of computing units in the network. The response
time of a node is estimated with (19).

Tres = Tcomp + Tcomm (19)

With Rj the number of fired rules at the jth node. The
analysis of the response time is shown in Table 1.

The average response time of the three implementation
(centralized Smartlog program, centralized java program
and distributed Smartlog program) are shown in Fig. 14.

The response time of the distributed program is
smaller than the response time of the centralized program:
max(

∑
i∈RNo7

ti,
∑

j∈RNo9
tj) + Ntc <

∑
j∈N

∑
i∈Rj

ti. In-
deed, in the real-time platform, the time delay tc is not
significant in comparison to the processing time. Besides,
the data sharing over the network speeds up the query
time. Moreover, computing units operate in parallel and the

x
x

x

Fig. 14: Average response time for all implementations.

0

50

100

150

200

250

300

350

Nodes = 3 Nodes = 5 Nodes = 10
R

es
p

o
n

se
 t

im
e

(m
s)

Centralized Java program with Database Centralized Smartlog program Distributed Smartlog program

Fig. 15: Impact of the number of nodes on the response
times.

sharing of computing load will apparently reduce the total
computing time.

Note that, the way the distributed programming is de-
signed, in a reactive manner, will ensure the correctness
of the method even when the network presents a bad
communication delays.

5.2 Impact of the number of computing units

5.2.1 Description

In order to evaluate the influence of the number of comput-
ing units, we scale up the number of PV generator nodes
as well as the number of computing units in the network.
Since the experimental infrastructure is limited, the number
of Raspberry Pis used is 3, 5 and 10 (the maximum number
of Raspberry Pi on our real-time platform).

5.2.2 Results and discussion

The results of the experiment are proposed in Fig. 15. The
average response time is considered in this case.

In all situations (3, 5 and 10 computing nodes), the re-
sponse time of the distributed Smartlog execution is smaller
than the two centralized ones. The gain in response time
increases with the number of computing nodes. Also, as
the number of nodes increases, the difference between the
response times of the three implementations increases as
well. The performance of the distributed Smartlog execution
can be justified using the following arguments.

Calling t̄i the average time needed to execute a
rule, and R̄j the average number of rules processed
by a node. When N is big enough, so that Ntc �

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 11

(max(
∑

i∈RNo7
ti,

∑
j∈RNo9

tj), the limit of the response
time of the distributed programming is:

lim
N

max

 ∑
i∈RNo7

ti;
∑

j∈RNo9

tj

 +Ntc

 = Ntc (20)

Meanwhile, the limit of the response time of the central-
ized program is:

lim
N

∑
j∈N

∑
i∈Rj

ti

 = NR̄j t̄i (21)

With the same experiment architecture, tc < R̄j t̄i, when
the number of nodes in the network increases (N →∞), the
response time of the centralized program increases much
faster than the one of the distributed program.

5.3 Impact of the distributed data configuration

5.3.1 Description
The sensing data are naturally scattered, usually close to the
sensors in smart grids. To show the impact of the distributed
data configuration on the performance, we focus mainly
on the impact of the fragmentation and allocation of the
intermediate data_types that are used to perform the
aggregate computation over the network. If all the interme-
diate data_types are stored on the same node, this one is
in charge of the computation of aggregate functions. Other-
wise, if we distribute these intermediate data_types, the
aggregate computation is carried out in parallel by multiple
nodes of the network. The data distribution schemes of the
intermediate data_types are expressed below:

Case 1: The intermediate data_types are stored in
only one of the five Raspberry Pis (7th node in
our case).

Case 2: Two intermediate data_types (Warning and
Alert) are stored in the Raspberry Pi No7 and
Curtail in the No9.

Case 3: We add a new Raspberry Pi at the 6th node of
the grid to store the intermediate data_types.

Case 4: Similar to Case 2, but Alert is fragmented
vertically and stored in the Raspberry Pis No7
and No9.

The first activation of the voltage regulation is consid-
ered to analyze the impact of data configurations on the
performances. We use again (19) to assess the response time
of each data distribution configuration. Note that Cases 1, 2
and 4 present five computing units, while Case 3 six.

5.3.2 Results and discussion
The four presented configurations are tested on the same
application. The two main purposes of this test-case are
to show the impact of using multiple data distribution
configurations on the performances of the implementation
as well as the adaptation of the methodology to multiple
data distribution designs.

The response of the four cases are presented in Fig. 16.
For all cases, the objective of voltage regulation is reached:
the voltage is controlled around the upper limit (1.058 pu)

2 3
1.05

1.058

Times(min)

V
ol

ta
ge

(p
u)

No voltage−controlled
Voltage−controlled with case 1
Voltage−controlled with case 2
Voltage−controlled with case 3
Voltage−controlled with case 4

Fig. 16: 7th node’s voltages for all data distributions.

TABLE 2: Response times for all data distributions.

Case Tcomp Tcomm

1
∑

i∈RNo7
ti (2N − 2)tc

2 max(
∑

i∈RNo7
ti,

∑
j∈RNo9

tj) Ntc
3 max(

∑
i∈Rj(j<>No6) ti,

∑
i∈RNo6

ti) 2Ntc

4 max(
∑

i∈RNo7
ti,

∑
j∈RNo9

tj) Ntc

when the PV production is over the limit, causing an over-
voltage in the grid. The implementation can manage various
designs of data distribution, even with data_types that
are fragmented horizontally or vertically: The centralized
algorithm is exactly transformed in the distributed one.

Table 2 presents the comparison of the four cases and the
related response times expressions.

The communication times of Cases 2 and 4 are equal, but
the number of fired rules in a node is not the same in each
case. Case 4 presents a longer computing time than case
2 because it must deal with data integrity by regrouping
vertical fragments. For Case 3, the aggregate function is
dispersed on another node bus, which needs more commu-
nications than in Case 1. In fact, the comparison of their
performance depends on the deviation of the average time
delay of communications and the required time to execute a
rule.

This analysis reinforces the results shown in Fig. 17. The
response time in the experiment is collected based on the
interval of consecutive changes of the power curtailment
values, once the power production increases linearly and
causes over-voltage. We proceed with a statistic study of the
four cases for the first moments of the simulation, when the
voltage regulation is activated during the experimentation.
The results are placed next to the value of the centralized
implementations for comparison.

As seen, Case 2 is the best one. That can be explained as
follow. In Case 1, similar to the centralized implementation,
all the intermediate data are stored on the same node, com-
mon computations are performed in only one node, which
is why the response time is larger than in the other cases.
In Cases 2, 3, and 4, the intermediate data are allocated in
multiple nodes. For Case 3, another Raspberry Pi (No6) is
in charge of the aggregated computation, but it takes more
time than in Case 2 because it requires more communication
to request data from/to the various locations. The vertical
data fragmentation in Case 4 is also good for the average
response time, which is smaller than Cases 1, 3 and equal

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 12

x x x x x
x

Fig. 17: Responses times of all considered study cases.

to Case 2 in the distributed implementation. However, the
vertical fragmentation in Case 4 seems to not fit with this
application as it present a deviation compared to Case 2.

The configuration of the data distribution has a strong
influence on the performances of the execution. Thus, the
problem of the optimal data distribution must be addressed
in the future to reach the best performances with the up-
coming Smartlog implementations.

6 DISCUSSION

Applying the proposed method in distributed management
for smart grids shows promising results. However, the ap-
proach of distributed programming by using the Smartlog
language is still in early stages. A few drawbacks can
be highlighted in this paper, in a form of prospective re-
searches:

• The distributed execution can not be automatically
configured once a node is disconnect from the net-
work as the rules are currently statically distributed;

• The SARD processor is based on a semi-automatic
rule distribution principle. The data fragments
should be predefined;

• The data location is supposed to be unique in the net-
work, but in fact, the data are usually replicated, so
that the decision of communication can be optimized
if the data replication is taken into account;

• The communication cost model is simplified in this
paper. A more accurate model should be used for
each studied network.

7 CONCLUSION

In this paper, a new distributed programming methodol-
ogy is proposed, called Centralized Programming and Dis-
tributed Execution (CPDE). This methodology is developed
to facilitate distributed programming by first implement-
ing centralized algorithms with Smartlog (Smartlog being
a declarative and reactive rule-based data manipulation
language dedicated to smart grid management needs). This
centralized program is then translated into a distributed
one using a Semi-Automatic Rule Distribution (SARD) pro-
cessor according to a given data distribution description.
This methodology totally hides the difficulties of distributed
programming (i.e. data transfer and process synchronization
are now transparent).

An experimentation has been conducted to validate our
approach and highlight its performances and scalability
compared to traditional centralized implementations (in
Smartlog and Java). We also studied the influence of the
number of participating nodes and data distributions alter-
natives on the performances. All these experiments have
been realized in real-time simulation environment with
hardware in the loop (computing devices) using a real-
world application of over-voltage control with Photovoltaic
power sources.

Future work will include: (i) the optimization of the data
distribution, regarding its strong influence on performance;
(ii) a more precice communication cost model; and (iii) the
improvement of the prototype, for example using dedicated
software instead of PostgreSQL as data storage and rule
execution engine.

ACKNOWLEDGMENTS

The authors would like to thank the French Embassy in
Vietnam and the Foundation Grenoble INP for funding the
PhD leading to the presented results.

REFERENCES

[1] A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of
technologies, key drivers, and outstanding issues,” Renewable and
sustainable Energy reviews, Elsevier, vol. 90, pp. 402–411, 2018.

[2] H.-P. Schwefel, Y.-J. Zhang, C. Wietfeld, and H. Mohsenian-Rad,
“Emerging technologies initiative smart grid communications:
Information technology for smart utility grids,” in 2018 IEEE
International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), 2018.

[3] J. Zhang, A. Hasandka, J. Wei, S. Alam, T. Elgindy, A. Florita,
and B.-M. Hodge, “Hybrid communication architectures for dis-
tributed smart grid applications,” Energies, vol. 11, no. 4, p. 871,
2018.

[4] F. Passerini and A. M. Tonello, “Smart grid monitoring using
power line modems: Anomaly detection and localization,” IEEE
Transactions on Smart Grid, 2019.

[5] K. Sayed and H. Gabbar, “Chapter 18 - scada and smart
energy grid control automation,” in Smart Energy Grid
Engineering, H. A. Gabbar, Ed. Academic Press, 2017, pp. 481–
514. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/B9780128053430000188

[6] M. Ma, L. Fan, and Z. Miao, “Consensus ADMM and Proximal
ADMM for economic dispatch and AC OPF with SOCP relax-
ation,” in 2016 North American Power Symposium (NAPS), Sep. 2016.

[7] W. Liu, W. Gu, Y. Xu, Y. Wang, and K. Zhang, “General dis-
tributed secondary control for multi-microgrids with both pq-
controlled and droop-controlled distributed generators,” IET Gen-
eration, Transmission & Distribution, vol. 11, no. 3, pp. 707–718, 2017.

[8] P. Lin, C. Jin, J. Xiao, X. Li, D. Shi, Y. Tang, and P. Wang, “A
distributed control architecture for global system economic oper-
ation in autonomous hybrid ac/dc microgrids,” IEEE Transactions
on Smart Grid, vol. 10, no. 3, pp. 2603–2617, Oct. 2018.

[9] Y. Hanqing, Y. Liangzhen, L. Qi, C. Weirong, and Z. Lijun,
“Multiagent-based coordination consensus algorithm for state-of-
charge balance of energy storage unit,” Computing in Science &
Engineering, vol. 20, no. 2, p. 64, 2018.

[10] F. Guo, C. Wen, J. Mao, J. Chen, and Y.-D. Song, “Distributed coop-
erative secondary control for voltage unbalance compensation in
an islanded microgrid,” IEEE Transactions on Industrial Informatics,
vol. 11, no. 5, pp. 1078–1088, 2015.

[11] Y. Xu and Z. Li, “Distributed optimal resource management based
on the consensus algorithm in a microgrid,” IEEE Transactions on
Industrial Electronics, vol. 62, no. 4, pp. 2584–2592, April 2015.

[12] A. Soares, O. De Somer, D. Ectors, F. Aben, J. Goyvaerts, M. Broek-
mans, F. Spiessens, D. van Goch, and K. Vanthournout, “Dis-
tributed optimization algorithm for residential flexibility activa-
tionresults from a field test,” IEEE Transactions on Power Systems,
vol. 34, no. 5, pp. 4119–4127, 2019.

http://www.sciencedirect.com/science/article/pii/B9780128053430000188
http://www.sciencedirect.com/science/article/pii/B9780128053430000188

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, AUGUST 2020 13

[13] A. Kargarian, J. Mohammadi, J. Guo, S. Chakrabarti, M. Barati,
G. Hug, S. Kar, and R. Baldick, “Toward distributed/decentralized
dc optimal power flow implementation in future electric power
systems,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2574–
2594, 2018.

[14] A. R. Malekpour, A. Pahwa, and B. Natarajan, “Hierarchical
architecture for integration of rooftop pv in smart distribution
systems,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2019–
2029, 2018.

[15] B. Korte and J. Vygen, “Spanning trees and arborescences,” in
Combinatorial Optimization, Springer, Ed. Springer, 2018, pp. 133
– 157.

[16] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei, “A survey of distributed optimization
and control algorithms for electric power systems,” IEEE Transac-
tions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.

[17] S. Mhanna, G. Verbič, and A. C. Chapman, “Adaptive admm for
distributed ac optimal power flow,” IEEE Transactions on Power
Systems, vol. 34, no. 3, pp. 2025–2035, 2018.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends® in Ma-
chine learning, vol. 3, no. 1, pp. 1–122, 2011.

[19] A. Engelmann, T. Mühlpfordt, Y. Jiang, B. Houska, and
T. Faulwasser, “Distributed ac optimal power flow using aladin,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 5536–5541, 2017.

[20] S. Grumbach and F. Wang, “Netlog, a Rule-Based Language
for Distributed Programming,” in Practical Aspects of Declarative
Languages, ser. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, Jan. 2010, pp. 88–103. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-11503-5 9

[21] T. Li, J. Ma, Q. Pei, C. Ma, D. Wei, and C. Sun, “Privacy-preserving
verification and root-cause tracing towards uav social networks,”
in ICC 2019-2019 IEEE International Conference on Communications
(ICC). IEEE, 2019, pp. 1–6.

[22] T. T. Q. Nguyen, C. Bobineau, V. Debusschere, Q. H. Giap, and
N. Hadjsaid, “Using declarative programming for network data
management in smart grids,” in International Database Engineering
& Applications Symposium. ACM, 2018, pp. 292–296.

[23] Y. Wang, T. L. Nguyen, M. H. Syed, Y. Xu, V. H. Nguyen, E. Guillo-
Sansano, G. Burt, Q. T. Tran, and R. Caire, “A distributed control
scheme of microgrids in energy internet and its multi-site im-
plementation,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2020.

[24] T. T. Q. Nguyen, V. Debusschere, C. Bobineau, A. Labonne,
C. Boudinet, Q.-H. Giap, and N. Hadjsaid, “A new approach
for the distributed deployment of centralized algorithms in smart
grids,” in IEEE PES Innovative Smart Grid Technologies Europe (ISGT-
Europe), 2019, pp. 1–5.

[25] S. Alyami, Y. Wang, C. Wang, J. Zhao, and B. Zhao, “Adaptive
real power capping method for fair overvoltage regulation of
distribution networks with high penetration of pv systems,” IEEE
Transactions on Smart Grid, vol. 5, no. 6, pp. 2729–2738, 2014.

[26] T. T. Q. NGuyen, V. Debusschere, C. Bobineau, Q. H. Giap, and
N. Hadjsaid, “Smartlog–a declarative language for distributed
programming in smart grids,” Computers & Electrical Engineering,
vol. 80, p. 106499, 2019.

[27] M. T. Özsu and P. Valduriez, Principles of distributed database
systems. Springer Science & Business Media, 2011.

[28] M. C. Alvarez-Herault, A. Labonne, S. Toure, T. Braconnier, V. De-
busschere, R. Caire, and N. Hadjsaid, “An original smart-grids test
bed to teach feeder automation functions in a distribution grid,”
IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 373–385,
2017.

Thi-Thanh-Quynh Nguyen is currently a PhD
student of Grenoble Institute of Technology. Her
thesis is rolling in the collaboration of two labo-
ratories: Grenoble Electrical Engineering Labo-
ratory (G2Elab) and Grenoble Informatics Labo-
ratory (LIG). Her research interests include Big
data, distributed data management for smart
grids and distributed control and management in
microgrid.

Christophe Bobineau has obtain his PhD in
computer science from the University of Ver-
sailles Saint-Quentin in 2002. He is working
since then at the Grenoble Informatics Labora-
tory (Grenoble Institute of Technology). His top-
ics cover transaction management, distributed
query optimization and data storage from em-
bedded systems to Big Data.

Vincent Debusschere has obtained his Ph.D. in
ecodesign of electrical machines from the Ecole
Normale Superieure de Cachan in 2009. He
joined the Electrical Engineering Laboratory of
the Grenoble Institute of Technology, in 2010 as
an Associated Professor. His research interests
include renewable energy integration, modeling
of flexibility levers for smart grids, multi-criteria
assessment, artificial intelligence and optimal
design of complex systems.

Quang Huy Giap is a Lecturer-researcher at
the University of Science and Technology, The
University of Danang. He received his PhD in
Automation-Production in 2011 from Grenoble
INP, France. His research is situated in the field
of Automation, with a special focus on fault de-
tection and diagnostics technologies, renewable
energies and energy management.

Nouredine Hadjsaid is a Professor at Greno-
ble Institute of Technology, Director of the Lab-
oratory of Electrical Engineering of Grenoble
(G2ELAB). He is also a visiting professor at Vir-
ginia Tech (USA) and NTU (Singapore). His re-
search interests are in smart grids, which include
distributed generation and power grids, informa-
tion and communication technologies in power
grids, and power grid safety, among others.

https://link.springer.com/chapter/10.1007/978-3-642-11503-5_9

	Introduction
	Implementing algorithms for smart grids
	Objectives of the work

	Smartlog language and system
	Architecture of a node in the network
	Structure of the Smartlog program
	Network communication and cooperation

	Semi-automatic rule distribution (SARD)
	Principle
	Description of the data distribution
	Rules transformations
	Rule rewriting
	Rules distribution

	Generating the programs
	Performing communication
	Generating distributed Smartlog programs

	Experimental evaluation
	AAPC: over-voltage control for smart grid
	Experimental setup

	Exerimentation and analysis
	Correctness of the distributed execution
	Description
	Results and discussion

	Impact of the number of computing units
	Description
	Results and discussion

	Impact of the distributed data configuration
	Description
	Results and discussion

	Discussion
	Conclusion
	References
	Biographies
	Thi-Thanh-Quynh Nguyen
	Christophe Bobineau
	Vincent Debusschere
	Quang Huy Giap
	Nouredine Hadjsaid

