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Introduction

The physical world is characterized by an impressive diversity of structures and dynamics. Among the several possible organizations to be found, hierarchies represent a particularly interesting type of structure, being directly related to trees, the latter corresponding to connected graphs starting at a single node (the rood) and then branching successively without loops along hierarchical levels, as illustrated in Figure 1.

Hierarchical organizations and trees play a particularly important role in scientific modeling because several real-world entities involve or even are completely determined by a respective hierarchical structure. Examples of intrinsically hierarchical physical structures include but are by no means limited to roots and branches of trees, vascularization, neuronal cells, among many other possibilities. At the same time, several abstractions underlying modeling also present hierarchical organization, including phylogenetics, taxonomies, classifications, etc. Hierarchy plats such an important role in the modeling and understanding real-world and abstract systems that even non-hierarchical systems are often summarized in hierarchical manner, such as in terms of minimum spanning trees (e.g. [START_REF] Dussert | Minimal spanning tree: A new approach for studying order and disorder[END_REF]).

It is thus hardly surprising that substantial attention has been dedicated to the study of hierarchies, including several developments aimed at characterizing, studying, modeling, and generating hierarchical structures (e.g. [START_REF] Yang | Similarity evaluation on tree-structured data[END_REF][START_REF] Emmert-Streib | Classification of large graphs by a local tree decomposition[END_REF][START_REF] Pelillo | Matching hierarchical structures using association graphs[END_REF][START_REF] Robson | The structure and behaviour of hierarchical infrastructure networks[END_REF][START_REF] Onnela | Clustering and information in correlation based financial networks[END_REF]). In particular, research aimed at understanding how hierarchical structures can be generated can provide important basic subsidies for better understanding existing hierarchies. For instance, the branched structure of a given type of plant root can be better understood provided we know how it typically arises in nature. Additional examples of real-world related problems include ontologies, phylogenetic structures, as well as semantic structures.

Hierarchical structures can be generated in several manners, including the situation in which new entities are sampled in a given order and progressively incorporated into a respective reconstruction, e.g. while considering the overlap or similarity between the properties of the new entity and those already incorporated into the current hierarchical structure.

Figure 2 illustrates the progressive reconstruction of an original reference hierarchy (a) by incorporation of successively sampled new entities (gray node). The properties of a newly sampled node (b) are compared to those of all the nodes already available in the current tree, and the maximum pairwise similarity is identified. The new entity is then respectively linked (c).

A related question of critical interest and importance concerns to which extent different orders of sampling an original hierarchy, characterized by their various respective characteristics, can influence the respectively reconstructed trees. In our study, it is assumed that the existing tree is never reorganized other than by the inclusion of incoming nodes.

It is important to keep in mind that hierarchy retrieval depends not only on the order in which the new nodes are sampled, but also on the original hierarchy, the features that characterize the nodes, as well as the adopted similarity metric. In the present approach, the sampling procedure considers two related errors: (a) the probability of changing the order of the currently sampled node; and (b) the extent of this error, which involves swapping the node order with an extent (or distance) δ.

The present work aims at studying this interesting and relevant problem, using the recently proposed coincidence methodology [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Coincidence complex networks[END_REF]. In addition, we resource to a simple but effective method for generating trees with diverse properties (e.g. number of levels and number of nodes per level) which involves a single parameter γ controlling the branching tendency.

We start by presenting a review, in a non-exhaustive manner, some works related to hierarchical structures, and then follow by presenting the concepts of coincidence similarity, a simple but versatile model for generating hierarchies, and the problem of reconstructing hierarchies by sampling. The results are then presented and discussed, including several interesting findings such as the relatively independence of the average reconstruction accuracy respec-tively to the type of trees and error extent.

Related Works

Many works have been dedicated to hierarchical models and their applications. In order to develop a solution to the two-tree matching problem, in [START_REF] Pelillo | Matching hierarchical structures using association graphs[END_REF] the authors report a formal approach to matching hierarchical structures by constructing an association graph.

In another work [START_REF] Mones | Hierarchy measure for complex networks[END_REF], a measurement was proposed to convey the essential characteristics of the structure and hierarchy-related properties in a complex network. This measurement is based on the generalization of the concept of centrality, ranking nodes according to their impact on the whole network. In this same work, a visualization procedure was proposed for large complex networks, used to obtain a global qualitative image of the hierarchical nature of the network.

Several studies have suggested methods for building networks, trees, and hierarchical structures (e.g. [START_REF] Onnela | Clustering and information in correlation based financial networks[END_REF][START_REF] Bryant | Constructing optimal trees from quartets[END_REF][START_REF] Banderier | Generating functions for generating trees[END_REF]) for purposes such as studying its characteristics. Other studies have been dedicated to the classification and characterization of hierarchical structures (e.g. [START_REF] Yang | Similarity evaluation on tree-structured data[END_REF][START_REF] Emmert-Streib | Classification of large graphs by a local tree decomposition[END_REF][START_REF] Banderier | Generating functions for generating trees[END_REF][START_REF] Stadler | On the statistical analysis of single cell lineage trees[END_REF]).

Similarity concepts have also been considered while studying hierarchical structures. In [START_REF] Lakkaraju | Document similarity based on concept tree distance[END_REF] the authors propose a method to identify the similarity between documents based on a conceptual tree of these documents. In [START_REF] Liu | Approximate tree matching and shape similarity[END_REF], an approach for comparing shapes is described, intended to find the best match between a pair of contours.

Works studying hierarchical network models have also been reported. As an example, [START_REF] Robson | The structure and behaviour of hierarchical infrastructure networks[END_REF], identify measurements that can be used to distinguish between hierarchical and non-hierarchical networks. It was described that the lack of robustness and the hierarchical structure tend to be correlated.

Basic Concepts

Similarity measures are widely used in science and technology (e.g. [START_REF] Mirkin | Mathematical Classification and Clustering[END_REF][START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF][START_REF] Cem Emre Akbas | L1 norm based multiplication-free cosine similarity measures for big data analysis[END_REF][START_REF] Da | On similarity[END_REF]), being employed to determine how much two mathematical objects are related or similar. For example, the similarity between strings can be estimated based on the characters that make up each string [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]. Similarity between sets of objects is also often considered as the means for data classification and clustering (e.g. [START_REF] Da | Shape Classification and Analysis: Theory and Practice[END_REF][START_REF] Mirkin | Mathematical Classification and Clustering[END_REF]).

There are several alternative approaches to defining similarity, one of the most common and widely used in data analysis being the cosine distance [START_REF] Cem Emre Akbas | L1 norm based multiplication-free cosine similarity measures for big data analysis[END_REF][START_REF] Xia | Learning similarity with cosine similarity ensemble[END_REF][START_REF] Luo | Cosine normalization: Using cosine similarity instead of dot product in neural networks[END_REF]. This measure is defined as the cosine of the smallest angle between two vectors divided by the norms of these vectors. The Jaccard index (e.g. [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF][START_REF] Leydesdorff | On the normalization and visualization of author cocitation data: Salton's cosine versus the jaccard index[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF]) is frequently adopted for quantification of the similarity between sets, based on the concept of set cardinality.

The Coincidence Index [START_REF] Da | On similarity[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Coincidence complex networks[END_REF] has been described as a means to calculate the similarity between virtually any type of mathematical entities while taking into account both the Jaccard as well as the interiority (or overlap [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]) indices. This approach is motivated by the relative interiority between the compared sets not being captured by the Jaccard index [START_REF] Da | Further generalizations of the Jaccard index[END_REF], as well as by the need to generalize the Jaccard index to real-valued structures, including possibly negative values.

In the present work, we apply the coincidence index to determine the similarity between two trees (or hierarchies) X and Y. Thus index can be defined as corresponding to the product between the Jaccard and interiority indices, i.e.:

C(X, Y ) = J (X, Y ) I(X, Y ), (1) 
where J (X, Y ) and I(X, Y ) are the Jaccard and Interiority indices, respectively.

The Interiority Index [START_REF] Da | On similarity[END_REF] is aimed at expressing how much one of the two sets is contained in the other set, and vice versa. The Interiority Index between two multisets (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF]) X and Y can be written [START_REF] Da | On similarity[END_REF] as:

I(X, Y ) = i min{|x i |, |y i |} min{ i |x i |, i |y i |} , (2) 
where x i and y i are the elements (taken as multiset multiplicities) of the trees X and Y , understood to correspond to the vector-stacking of the respective adjacency matrices representing the two trees to be compared.

The Jaccard index as a measurement of similarity between two multisets (e.g. [START_REF]Jaccard index[END_REF]) X and Y can be expressed as:

J (X, Y ) = i min{|x i |, |y i |} i max{|x i |, |y i |} . (3) 
The coincidence similarity index has been found to implement a particularly strict quantification of the similarity between any two mathematical structures [START_REF] Da | On similarity[END_REF][START_REF] Da | Comparing cross correlation-based similarities[END_REF], being successfully applied for translating datasets into respective networks (e.g. [START_REF] Da | Coincidence complex networks[END_REF][START_REF] Domingues | City motifs as revealed by similarity between hierarchical features[END_REF][START_REF] Costa | A similarity approach to cities and features[END_REF])

Methodology

In this section we present the simple method for generating hierarchies as well as characterize the problem of reconstructing hierarchies as developed in the current work.

A Simple Model for Generating Hierarchies

In order to synthesize trees having N nodes with varying properties, we developed a mathematic-computational model that requires just one parameter γ, which controls how branched the trees.

After setting N and γ, new elements are incorporated in a specific order, and each new element i connects to only one of the nodes already in the hierarchy tree. The connection of the new element with some of the existing nodes in the tree will be done randomly with connecting probability specified as:

p i = (h i + 1)k γ i j (h j + 1)k γ j , (4) 
where k i is the number of links of the element i and h i is its level in the hierarchy (with the hierarchical level starting in 0).

Figure 3 shows examples of hierarchical structures generated by the proposed model for N = 20 and different values of γ between -3 and 3. Observe the progression from more linear trees obtained for the smaller values of γ to more intensely branching observed for the larger values of γ. After the hierarchy has been obtained by using the method described above, it is necessary to associate respective features to each node, so that it becomes possible to link nodes based on the similarity between these features. In order to do so, we start with a set A with m features: A = [a 1 , a 2 . . . a m ], where a i are integer values. Each element will receive n (with n < m) aleatory features, with nβ of them coming from set A and n(1 -β) coming from its father in the hierarchy tree. The rate β (with 0 ≤ β ≤ 1) determines the mix of features between the elements in this model.

Figure 4 depicts three important topological properties of trees generated by the proposed method respectively to several values of γ. The total number of nodes is henceforth kept fixed as N = 15.

Regarding the number of hierarchical levels H -Figure 4 (a), which is among the most important property of a tree, a gaussian-like distribution can be observed respectively to each of the considered parameter configurations. The most frequent value of H (abscissa of the density peaks) de-creases steadily with γ. This is a direct consequence of the fact that, as more branches per level are favored by larger values of γ, the number of levels tends to decrease so as to keep N constant (see Figure 3). At the same time, and for similar reasons, the width of the obtained densities also tend to decrease.

The average number of nodes per hierarchical level ⟨n h ⟩, shown in Figure 4 (b), also presents a gaussian-like profile respectively to each value of γ. Contrariwise to the number of hierarchical levels, the most frequent values of ⟨n h ⟩, as well as the respective width, tend to increase with γ. This tendency is accounted by the fact that more nodes are incorporated at each level for larger values of γ, while N is kept fixed.

The distribution of number of nodes per level, shown in Figure 4 (c), resembles log normal-like profiles, with the peak abscissa positions and the distribution widths both decreasing with γ.

Reconstruction of Hierarchies

In this work, we study how the accuracy in the reconstruction of the hierarchical trees varies for different sampling orders. In this process, we considered the coincidence index between the adjacency matrices of the original and reconstructed trees in order to quantify the reconstruction accuracy.

Figure 2 illustrates the adopted procedure for reconstructing the hierarchies considering diverse sampling orders of the elements. The tree is reconstructed, one element at a time, defining its position in the hierarchy by connecting to the most similar element already existing in the network.

In order to sample the nodes from the original tree, we select a fraction p of the elements to be dislocated by δ positions around its initial positions.

After these reconstructions have been obtained, we can compare it with the original hierarchy tree by using the coincidence similarity index between the adjacency matrices respective to those two graphs.

Results and Discussion

Figure 5 presents the relative frequency of the coincidence similarities obtained for several configurations of the parameters p and γ. It is interesting to observe that only the similarity values corresponding to the discrete points marked along the curves were experimentally obtained, being interpolated only for the sake of enhanced visualization and comparison between the obtained profiles.

For the smallest value of p, i.e. p = 0.1, we observe high values of similarity for every adopted δ and γ. This means that accurate reconstructions of the original hierarchies were often obtained for this probability error, with a peak near 100%. However, it is important to keep in mind that relatively large reconstruction errors (i.e. small coincidence similarity values) can be obtained, though less likely, even for this small probability error. Interestingly, the curves obtained for the different values of δ are mostly similar, except for that respective to δ = 1.

For the other considered probability values p, the peaks of the curves obtained for δ = 1, 2, 3, 4 tend to shift from the left to right, indicating monotonic decrease of the tree reconstruction accuracy. At the same time, for each fixed value of δ, the coincidence curve also tends to shift from right to left as p is increased, or γ is decreased. Figure 6 presents the average coincidence values ⟨C⟩ obtained for reconstructions considering N = 15 and δ = 3 respectively to γ = -1, 0, 1 and p = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. Similar curves, though with slightly different decay constants, have been observed for the other considered values of δ (not shown), indicating that the quality of the reconstruction is not particularly dependent on that parameter. Interestingly, the largest decrease of the reconstruction accuracy, as gauged by ⟨C⟩, takes place when moving from p = 0.0 to p = 0.1. This decrease becomes successively smaller for larger values of p.

As could be expected, the reconstruction accuracy quantified by ⟨C⟩ decreases monotonically with the values of the error probability p. However, markedly similar curves have been obtained for the three distinct values of γ, indicating that this parameter tends to have minor influence on the reconstruction accuracy. Another interesting result concerns the fact that the largest decrease of average coincidence is observed, in all considered cases, when the scale of the error probability p increases from 0.0 to 0.1, tending to become smaller for larger values of p.

The sensitivity of average reconstruction accuracy can be more objectively quantified in terms of the absolute value of the derivative of the average coincidence similarity with respect to p. Figure 7 depicts this sensitivity with respect to γ = -1 and δ = 3. This result corroborates the above observation that relatively larger variations of the average reconstruction accuracy are obtained for the smallest values of p, decreasing as the latter parameter is increased.

Concluding Remarks

Several real-world structures and phenomena are characterized by respective hierarchical organization, to the point of being typically represented by respective trees. Examples of these situations include vascularization, neuronal cells, and philogenetics, among many other possibilities. Even in structures not corresponding directly to trees, methods have been proposed to derived a respective hierarchical summarization, such as the minimal spanning tree (e.g. [START_REF] Dussert | Minimal spanning tree: A new approach for studying order and disorder[END_REF]).

In practice, the acquisition of these structures often proceeds by sampling the tree nodes in a given order. The sampled nodes are often appended to the currently available nodes while considering the similarity of their respective properties or features. Given that the sampling order may not correspond to that originally characterizing the hierarchy, substantial errors can be verified in the respectively reconstructed structures. The present work focused at characterizing and studying the effect of the sampling order of hierarchical structures and phenomena respectively to several involved parameters, including the probability of error (p), the error extent (δ), as well as the branching level of the respectively reconstructed structures (γ).

In order to allow a systematic experimental investigation of the effect of these parameters on the obtained reconstruction errors, we developed a simple model for generating trees with varying branching levels, which are controlled by the parameter γ. The trees generated by this tree generating model were characterized with respective properties including the distributions of number of hierarchical levels and number of nodes per level. It has been verified that quite diverse types of trees can be obtained by the proposed model by varying its single parameter γ. In addition to enabling the present study, this same model can be employed in several other applications.

The comparison between the original and reconstructed trees was quantified in terms of the coincidence similarity, which tends to provide a particularly strict quantification of the similarity between generic mathematical structures including the adjacency matrices used to represent the trees.

Several interesting results have been obtained and discussed. These include the fact that, at least for the adopted parameter configurations and types of hierarchies, the reconstruction average accuracy varied little with respect to both δ and γ, but decreased monotonically with p. In addition, the relative variation of the accuracy was found to be substantially larger for smaller values of p, decreasing substantially for larger respective values.

The reported concepts, methods and results, paved the way to several related developments. To begin with, the proposed simple method for generating hierarchies with varying properties by using a single parameter can be adopted in several alternative problems and studies. Concerning the study of the reconstruction of hierarchies by sampling nodes, it would be interesting to study other types of sampling schemes and respective errors, as well as adopting other approaches for defining the respective features.
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 1 Figure 1: Example of a tree with 7 levels, also indicating the respective number of hierarchical levels (H) and the number of branches per level (n h ).

Figure 2 :

 2 Figure 2: Illustration of reconstruction of an original reference hierarchy (a) by progressive incorporation of new sampled entities (nodes). A newly sampled entity, shown as the gray node in (b), has its properties compared to those of all the nodes in the current network, being linked to the node yielding the largest similarity (c). The dashed arrows indicate the similarities between the new and already existing nodes.

Figure 3 :

 3 Figure 3: Examples of generated hierarchies as a function of γ, with N = 20 nodes. More chained trees are obtained for smaller values of γ, with the number of branches increasing with that parameter. Given that N has been fixed, trees with larger number of branches will tend to have fewer hierarchical levels.

Figure 4 :

 4 Figure 4: Properties of the trees generated by the proposed methodology in terms of γ: (a) relative frequency histogram of the number of resulting hierarchical levels H; (b) relative frequency of the average number of nodes per level ⟨n h ⟩; and (c) average ± standard deviation of the number of nodes per level. These results were obtained from 10,000 realizations for each value of γ.

Figure 5 :

 5 Figure 5: Relative frequency histograms of the coincidence similarity values respective to several combinations of the parameters p and γ, with N = 15 in all cases. For each of these configurations, 20 trees were generated by using the adopted model, and 2,000 different sampling orders were randomly considered, leading to the values shown in this figure. Five curves are shown respectively to each of the considered γ values, corresponding to δ = 1, 2, 3, and 4.

Figure 6 :

 6 Figure 6: The average coincidence values ⟨C⟩ obtained for reconstructions of trees with N = 15 nodes and parameters γ = -1, -, 1 in terms of p = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. Little difference can be observed between the curves obtained for the three values of γ.Interestingly, the largest decrease of the reconstruction accuracy, as gauged by ⟨C⟩, takes place when moving from p = 0.0 to p = 0.1. This decrease becomes successively smaller for larger values of p.

Figure 7 :

 7 Figure7: The sensitivity of the variation of the average reconstruction accuracy for γ = -1 and δ = 3 in terms of the error probability p, as quantified by the absolute value of the derivative of the average coincidence values with respect to the error probability p is substantially higher for small values of p, decreasing markedly as p is increased.
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