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Abstract

In this paper, we discuss the passive modelocking of the Quantum
Cascade Laser (QCL) incorporating two thin absorbing layers over
the gain medium. Based on self-induced transparency (SIT) effect
in such structure, it has been demonstrated a potential modelock-
ing by interleaving gain and absorbing layers. We propose here a
simplified structure designed by a gain medium surrounded by two
thin absorbing layers. To bring out the modelocked stability, we solve
the Maxwell-Bloch equations for an open two-level system by the
Finite-Difference Time-Domain method (FDTD). As in the case of
the interleaved structure, we find similar physical effects on the SIT
modelocking in the presence of saturable absorber thin layers. The
intensity and the duration of the generated pulses depend strongly on
the saturable nonlinearity coefficient and also on the pumping ratio.

Keywords: Quantum Cascade Laser, self-induced transparency, modelocked
Laser, Maxwell-Bloch equations, Computational photonics, FDTD
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1 Introduction

Mid-infrared (MIR) pulsed laser has many important applications such as high-
speed free space communication, time-resolved spectroscopy, coherent control
and chemical sensing [1]. One of the most useful sources in the MIR region
is the Quantum Cascade Laser (QCL) where photons are generated through
intersubband transitions between two energy states located in the conduction
band or in the valence band. These transitions are achieved through the engi-
neering of the quantum well structures [2]. The generation of short pulses from
QCL in the mid-infrared band has been one of the great challenges since its
first demonstration and until today due to the fast gain recovery time of few
picoseconds compared to the cavity roundtrip time around 65 ps for a 3 mm
cavity length [3], [4]. The QCL modelocking evidence, demonstrating a single
pulse generation per roundtrip time, has been achieved experimentally near
the threshold pumping current by the active modelocking technique [5], [6].
Passive modelocking of MIR QCL with conventional techniques, such as using
saturable absorber or SEmiconductor Saturable Mirror (SESAM) structure [7]
are difficult to perform because of the fast gain recovery time. However, thanks
to self-induced transparency (SIT) or namely-called coherent phenomena, a
passive modelocking of such nonlinear structures of DCL has been proposed in
[8], [9]. SIT modelocking is a nonlinear effect demonstrated for the first time
by McCall and Hahn [10]. They observed that short pulses above a critical
energy, with a duration τp shorter than the coherence relaxation time T2, prop-
agate through an optical medium as if it was transparent. Otherwise, below
this critical energy, the pulses vanish. Such pulses are called 2π for which the
medium is inverted at the leading edge and the absorbed energy is returned
to the pulses at the trailing edge.

Among the various studies of the SIT phenomenon we can mention the
work of Kozlov [11] who demonstrate that the technique of coherent passive
modelocking may be successfully applied to the different class of media with
narrow gain linewidth. Thus, the QCL is suitable for such coherent modelock-
ing technique with specific laser configuration as providing a considerable gain
excess over linear interactivity loss. In [12], Talukder et al. propose a QCL
structure to obtain SIT modelocking by interleaving gain and absorbing lay-
ers along the growth axis. In the gain medium, the electrons are injected in
the upper-level energy state reaching the population inversion whereas in the
absorbing medium, electrons are injected into the lower energy state for a non-
inverted population in the resonant state. To reach modelocking, the dipole
moment in the absorbing layer should be approximately twice as high as the
dipole moment of the active region. In addition, with this structure composed
of mixed gain and absorber media, the absorption coefficient could be suffi-
ciently large making the laser not self-start. An auxiliary source is required to
initiate the pulse generation as for example by application of an RF signal in
a short section the time. Pulse self-starting has been theoretically investigated
in a short section laser [13] and in two sections cavity in [14]. The experimen-
tal demonstration has been realized with several intractivity designs [15]. In
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these experiments, the gain medium consists of Ti:Sapphire and the coherent
absorber consists in rubidium cell. Similar structure has been used for THz
QCL in which the intensity dependent saturation was implemented with quan-
tum coherent absorber [16]. The authors showed that a fast saturable absorber
with a very strong coupling to the optical filed is required accompanied by a
careful design of gain medium with a slowly recovering population inversion.

The simulation of such structures was performed by solving Maxwell-Bloch
equations with the rotating wave approximation by considering only forward-
propagating wave or with simultaneous forward- and backward-propagating
waves to consider spatial hole burning [17], [18]. In this paper, we propose a
complementary study by simplifying the interleaved structure by a structure
composed of multiple gain periods surrounded by two quantum absorbing lay-
ers. With this topology, the band-structure engineering complexity is reduced.
The light-matter interactions on this structure are analyzed with the two-
level approximation of Maxwell-Bloch equations. The simulations are carried
out using the Finite-Difference Time-Domain (FDTD) method which achieves
time and spatial resolutions of the differential equations based on the Yee’s
algorithm [19], [20]. This approach does not use any of the standard approxi-
mations such as the rotating wave approximation (RWA) or the slowly varying
envelope approximation (SVEA). Ziolkowski et al. [21] applied the FDTD
method to solve the laser dynamics based on Maxwell-Bloch equations for the
first time. Then, several works based on this method have been developed to
model nonlinear optical effects as for example the active modelocking of ter-
ahertz QCL by optical seeding pulse [22] and the dynamics of vertical-cavity
surface-emitting lasers [23].

The remainder of this paper is organized in three sections. In the section II,
we present the Maxwell-Bloch equations for the proposed structure. In the next
one, we discuss about the stability conditions to obtain SIT modelocking and
we present the simulation results as function of saturable absorber coefficient
values. In the last section, we give a brief conclusion of this work

2 Maxwell-Bloch equations

We have modeled the QCL dynamics with the well-known Maxwell-Bloch
equations for an open two-level energy system. These equations describe the
interaction between the propagating light and the gain/absorbing medium and
are given by [21]:

∂Hx

∂t
= − 1

µ0

∂Ez

∂y
(1a)
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∂Ez

∂t
= −1

ε

∂Hx

∂y
− ΓgNgµg

εT2,g
ρa,g +

Γgω0Ngµg

ε
ρb,g

−raNaµa

εT2,a
ρa,a +

Γaω0Naµa

ε
ρb,a −

(
l0 − γ|Ez|2

)
Ez

(1b)

∂ρa,i
∂t

= − 1

T2,i
ρa,i + ω0ρb,i (1c)

∂ρb,i
∂t

= −ω0ρa,i −
1

T2,i
ρb,i + 2

µiEz

ℏ
∆i (1d)

∂∆i

∂t
= −2

µiEz

ℏ
ρb,i −

∆i −∆i0

T1,i
+D

∂2∆i

∂2z
(1e)

where Ez is the electric field, Hx is the magnetic field, y is the light prop-
agation axis, the subscript i equals to g for the gain medium and a for the
saturable absorber medium, ρ(a,i) and ρ(b,i) represent respectively the disper-
sive and the absorptive components of the polarization, ∆i is the fractional
difference of the populations for the two energy levels a and b, ∆i0 is the
equilibrium population inversion away from the modelocked pulse, ω0 is the
atomic transition resonance frequency, µi is the electric dipole moment for a
two-energy levels atom, Ni is the density of the polarizable atoms, Γi is the
overlap factor, µ0 is the free-space permeability, ε is the medium dielectric
constant which is the same for the two mediums, l0 is the linear cavity loss
per unit length, γ is the saturable absorber coefficient depending on the active
region width [24], ℏ is the Planck constant divided by 2π, D is the dispersion
coefficient that models the group velocity dispersion, T(2,i) is the coherence
time and T(1,i) is the excited-energy state lifetime in the medium i. The inci-
dent electromagnetic field is a uniform plane wave propagating along y-axis
and whose electric field is polarized along z-axis.

The fast gain recovery process in QCL is faster than the carrier diffusion
leading to spatial hole burning (SHB) effect. This is caused by the standing
wave grating which introduces inhomogeneous gain saturation. The dynamic
of the QCL is then affected producing a fluctuation of the intensity along the
cavity length. Multiple pulse per roundtrip could be exist. The dispersion term
D is used here to consider SHB in this simplified structure. For the interleaved
structure, the effect of SHB is greatly reduced with the presence of coherent
absorption in the laser cavity as discussed in [18]. As for the group velocity
dispersion depicted by the coefficient β2, the intensity and the duration of the
pulse can be affected [9]. The modelocking remains stable over critical values of
saturable loss and dispersion coefficient. However, these limits depend on the
gain and coherent absorption coefficients and a rigorous analysis goes beyond
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the scope of the present study. We set the dispersion coefficient β2 to zero and
the complementary analysis will be reported on future work.

In order to obtain SIT modelocking, the gain of the continuous waves
must be below threshold. To analyze this issue, we use the derived conditions
given in [9] and [12] obtained from Maxwell-Bloch equations with the slowly
varying envelope approximation. This is because as described in [19], Maxwell-
Bloch equations invoking standard approximations have been effectively used
to describe SIT. At threshold, the following relation is obtained [12]:

ΓgkNgµ
2
g T2,g

2ε0n2ℏ
∆g0 +

ΓakNaµ
2
a T2,a

2ε0n2ℏ
∆a0 − l0 = 0 (2)

which can be written as g∆g0 + a∆a0 − l0 = 0, where g and a represent
respectively the gain and the quantum coherent absorption per unit length
given by:

g =
ΓgkNgµ

2
gT2,g

2ε0n2ℏ
∆g0 (3a)

a =
ΓakNaµ

2
aT2,a

2ε0n2ℏ
∆a0 (3b)

with k the wave number, n the refraction index, ∆g0 and ∆a0 are the
equilibrium population inversion at the gain and absorption medium respec-
tively. Expression (2) can be normalized with respect to the internal losses and
becomes:

ḡ∆g0 + ā∆a0 − 1 = 0 (4)

with ḡ = g
l0

and ā = a
l0
. Simulation of this structure is analyzed following

the parameter ḡ and with the condition for which the gain is linear below
threshold. This means that the left-side of expression (4) stays below zero.
Fig. 1 shows the stability limits for an ideal case where the gain layer is fully
inverted (∆g0 = 1) and the coherent absorbing layer is fully non-inverted
(∆a0 = −1). The first limit condition for continuous waves is written from
(4) as ∆g − ∆a − 1 = 0. It is represented by the square points line below
which continuous waves grow. The second limit condition, referred by the circle
points line, indicates the high limit values for ā for which the initial pulse is
not absorbed. This condition is given by the higher limit of the expression (5)
once T2a = T2g [12]. Depending upon the initial conditions ∆g0 and ∆a0, these
limit curves vary and are associated to different stability conditions.

ḡ − 1 < ā <
(3ḡ − 2)2

12
(5)

To obtain stable modelocking, it is necessary to ensure that the ratio εa
εg

>

1 where the parameters εg and εa are respectively the nonlinear saturation
parameters of the gain medium and the absorbing medium given by expression
6. This condition ensures that the effect of the absorber is greater than the
amplification effect of the gain medium.
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ϵ(a,g) =
( ω0

2πℏ

)2

(T1T2)(a, g) (6)

Fig. 1 Stability limit of the normalized coherent absorption as function of the normalized
gain

3 Numerical solution for Maxwell-Bloch
equations

The one-dimensional FDTD method is used here to solve Maxwell-Bloch
equations as a function of time and space [19]. This method is well known for
the simulation of many complex cases from RF-structures to light-matter non-
linear interactions [25]. The FDTD method solves the differential equations
using the Yee algorithm to calculate the time/spatial derivatives of Maxwell-
Bloch equations (1a)-(1e). Time derivatives are replaced by finite differences
involving a fixed spatial location at two different times for each variable while
the spatial derivatives are replaced by finite differences involving a fixed time
at two different spatial locations for each variable. Then, space and time are
both discretized with respectively a spatial step ∆y and a time step ∆t. The
resolution of the discretized equations can be performed following different
algorithms. For instance, in [21], the predictor-corrector iterative scheme algo-
rithm has been used. The discretized numerical equations for the typical FDTD
leap-frog algorithm, in which the electric field Ez and magnetic field Hx prop-
agate along the y-axis, are spatially separated by ∆y

2 and timely separated by
∆t
2 , and are given by:

Hx
n+ 1

2

m+ 1
2

= Hx
n− 1

2

m+ 1
2

− ∆t

µ0∆y

(
Ez

n
m+1 − Ez

n
m

)
(7a)
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Ez
n+1
m = Ez

n
m − ∆t

ε∆y

[
Hx

n+ 1
2

m+ 1
2

−Hx
n+ 1

2

m− 1
2

]
− ΓgNgµg∆t

εT2,g
ρ
n+ 1

2
a,gm

+
ΓgNgµgω0∆t

ε
ρ
n+ 1

2

b,gm
− ΓaNaµa∆t

εT2,a
ρ
n+ 1

2
a,am +

ΓaNaµaω0∆t

ε
ρ
n+ 1

2

b,am

−∆t l0

(
Ex

n+1
m + Ez

n
m

2

)
+∆t γ

(
Ez

n+1
m + Ez

n
m

2

)3

(7b)

ρa,i
n+ 1

2
m = ρ

a,i
n− 1

2
m

− ∆t

2T2i

[
ρ
n+ 1

2
a,i + ρa,in−1

m

]
+

∆tω0

2

[
ρ
b,i

n+1
2

m

+ ρ
n− 1

2

b,i

]
(7c)

ρb,i
n+ 1

2
m = ρb,i

n− 1
2

m − ∆t ω0

2

[
ρa,i

n+ 1
2

m + ρa,i
n− 1

2
m

]
− ∆t

2T2,i

[
ρb,i

n+ 1
2

m + ρb,i
n− 1

2
m

]
+

∆tµi

ℏ
Ez

n
m

[
∆i

n+ 1
2

m +∆i
n− 1

2
m

] (7d)

∆i
n+ 1

2
m = ∆i

n− 1
2

m − ∆tµi

ℏ
En

zm

[
ρb,i

n+ 1
2

m + ρb,i
n− 1

2
m

]
+∆t

∆i0

T1,i

− ∆t

2T1,i

[
∆i

n+ 1
2

m +∆i
n− 1

2
m

]
+

∆t

(∆y)2
D

[
∆i

n− 1
2

m+1 − 2∆i
n− 1

2
m +∆i

n− 1
2

m−1

] (7e)

where the index m corresponds to the spatial step and the index n cor-
responds to the time step. Compared to the discretized equations of the
Ziolkowski et al. [21], the coupling method between Maxwell and Bloch
equations is different. We use here a simple method that disconnects the
Ampere and Bloch equations for which the Bloch equations are discretized
at time (n+ 1/2)∆t and the Maxwell-Ampere equation is discretized at time
n∆t [26]. This approach yields a more efficient computation that permits a
straightforward parallelization and especially for two-dimensional configura-
tion. However, the expression (7b) cannot be directly used to compute next
time step of the electric field because of its third order term. In fact, the
FDTD algorithm combines future and past values which requires to use spe-
cific methods to solve the expression (7b). This kind of equation is well-suited
to a predictor-corrector scheme as detail in [21] and [25]. It has been found
that the process converges within 3-4 iterations to give a relative difference
of 10−5 between previous and new values. In this work, we use the Newton-
Raphson method to solve the unknown electric field Ez

n+1
m [27]. This method

is an iterative implementation to predict the root of any function and it is
based on the function slop to predict the location of the root. The function to
solve is derived from expression (7b) in the form:

f(x) =
γ∆t

8
x3 +

3γ∆t

8
x2En

zm −Ax+B = 0 (8)
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where x = Ez
n+1
m is here a variable, Ez

n
m is a constant value, A and B are

defined as:

A = 1 +
∆t

2
l0 −

3γ∆t

8
(Ez

n
m)

2

B =

(
1− ∆t l0

2

)
Ez

n
m − ∆t

ε∆y

[
Hx

n+ 1
2

m+ 1
2

−Hx
n+ 1

2

m− 1
2

]
−ΓgNgµg∆t

εT2,g
ρa,g

n+ 1
2

m +
ΓgNgµgω0∆t

ε
ρb,g

n+ 1
2

m

−ΓaNaµa∆t

εT2,a
ρa,a

n+ 1
2

m +
ΓaNaµaω0∆t

ε
ρb,a

n+ 1
2

m

(9)

The root of (8) is determined from the iterative process given by (10) until
the convergence is reached. We fixed a target difference of 10−8 between the
two successive calculated points which is obtained within 3-4 iterations.

xj+1 = xj −
f (xj)

f ′ (xj)
(10)

where f ′ is the derivative function of f , xj+1 and xj are two consecutive
values of the electric field.

Once the mathematical formulations are established, the QCL structure of
interest in this study is represented in Fig.2. The difference with the struc-
ture proposed in [12] concerns the coherent saturable absorbing layers which
surround the active region instead of the interleaved gain/absorbing regions.
The thickness of absorbing layer is twice that of the gain period to satisfy the
dipole moment condition µa = 2 µg. As the thickness of the quantum layers is
different, the relaxation times may differ slightly. However, it is reasonable to
assume the same value as mentioned in [28] if the gain and absorbing layers
are grown from the same material, so then, T1g = T1a=T1 and T2g = T2a = T2.
The simulated structure is a 3 mm-length laser cavity ended at its two sides by
a 7.5 µm-length air region. An absorbing boundary condition (ABC) is added
to the limit of the air regions to emulate the free space operation by imple-
menting a small reflection coefficient at extremities. The initial electric field
excitation is applied at the air/QCL interface on the left side, and the propa-
gating electric field can be visualized at any time step and any spatial location
along y-axis. It is important to notice that the condition on the dipole moment
is not required in the case of two sections laser [14].
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Fig. 2 Laser cavity with coherent absorbing layers. ABC, absorbing boundary layer.

4 Set of physical simulation parameters

The different parameter values of the gain and absorbing regions used in the
simulation setup are summarized in Table 1. The same parameters as those
given in [29] are selected except for the relaxation time T1 fixed here at 1ps. As
for the saturable coefficient γ, Gordon et al. [24] stated the dependence of this
parameter on the width of the QCL active region. Thus, we determine here its
impact on the SIT modelocking. As mentioned above, the diffusion coefficient
β2 is set to zero. For the FDTD method, we fix the spatial step ∆y = 124 nm
and the time step ∆t = 41.61 fs, so that the Courant-Friedrichs-Lewy stability
condition ∆t ≤ n∆y

c is satisfied.

Table 1 Simulation parameters

Parameters Symbol Gain region Absorbing region

Refractive index n 3.2
Gain recovery time Tl (ps) 1
Dephasing time T2 (fs) 100
Wavelength λ (µm) 6.2

Atom density N
(
m−3

)
6 1023 1.7 1022

Dipole moment µ (nm× e) 2.54 5.08

Diffusion coefficient D
(

cm2

s

)
46

Linear attenuation l0
(
cm−1

)
10

Overlap factor Γ 0.96 0.04

Saturable coefficient γ
(

m
V 2

)
1.9 10−11 ... 0

The initial pulse is a hyperbolic secant given by the expression (11) where
τp is the time constant set to 50fs and E0 the pulse magnitude set to a value
giving a π pulse in the gain area and a 2π pulse in the absorbing regions. The
calculated value is E0 = 5.18 MV

m .
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E(t) = E0 sech

(
t

τp

)
sin(ωt) (11)

where ω is the optical carrier frequency taken to be equal to the two-level
transition frequency.

5 Simulation results

First, we implemented the developed FDTD method to resolve the Maxwell-
Bloch equations. The obtained results in the presence of saturable nonlinearity
agree well with those obtained in [9] for the interleaved structure. Thereafter,
our analysis starts by setting the normalized gain ḡ = 2.5 and the quan-
tum absorption coherence at the middle of stability limits represented in Fig.
1, namely ā = 2.01. The saturable absorption coefficient is initially fixed to
1.9 10−11 m/V 2. The simulation results after 600 roundtrip are represented in
Fig. 3. The generated pulse trains in the inset figure show a single pulse per
roundtrip with a period of 64 ps which is consistent with the cavity length
of the structure. The pulse exhibits a maximum electric field amplitude of
13.4 MV

m . The simulation runs 99 ps to allow the output pulses to reach the
steady state. From the isolated and normalized pulse, the duration is estimated
at 42.6 fs.

Fig. 3 Normalized electric field pulses for ḡ = 2.5, ā = 2.01 and γ = 1.9 10−11 m
V2 . The

inset figure show the last three generated pulses.

To analyze the effect of the absorber nonlinearity on the generated pulses,
we performed several simulations with different values of γ. Two simulation
results are given in Fig. 4. When γ is reduced until 10−11 m/V 2, the maximum
amplitude of the electric field decreases by about 20% and below 10−12 m/V 2

the reduction on the peak field amplitude is limited at 38%. This change in γ
induces an increase of the pulse width until 54.3fs. Thus, stable modelocked
pulses become less intense and broader as γ decreases.
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Fig. 4 The maximum optical field and the duration of the stable modelocking pulse versus
the saturable nonlinearity coefficient for ḡ = 2.5 and ā = 2.01.

We now set ḡ = 3.5 and ā = 4.2 for which the stability is still satisfied.
In Fig. 5, we represent the variation of the maximum pulse field and the
duration of the generated pulses for different values of γ. We can see the same
behavior for the maximum electric field which increases with γ. In comparison
to the previous condition, the pulse becomes unstable for nonlinear coefficient
γ = 1.9 10−11 m/V 2. In [30] and [9], this limit for the same ḡ and ā is about
2.8 10−12 m/V 2. Also, the increase in γ from 0 to 0.9 10−11 m/V 2 induces
a decrease in pulse duration but beyond 0.9 10−11 m/V 2 the pulse duration
increase. The total change is relatively short, only 3 fs over the range of γ
values. We can notice a higher maximum intensity and a lower pulse duration
once ḡ increase.

Fig. 5 The maximum optical field and the duration of the stable modelocking pulse versus
the saturable nonlinearity coefficient for ḡ = 3.5 and ā = 4.2
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The relaxation time T1,a of the coherent absorber can have an effect on
the modelocking stability. To analyze this point, we change the value of T1,a

for a fixed gain and coherent absorption coefficients. We use ḡ = 2.5 and
ā = 2.01 inside the stability region, the nonlinear absorption coefficient γ is
set to 1.9 10−11 m/V 2 and the unchanged dipole moment νa. As shown in
Fig. 6, the maximum intensity and the pulse duration remain stable for T1,a

beyond 1 ps but an important variation is observed when T1,a decreases. When
T1a < 0.25 ps, the pulse is completely absorbed because the upper stability
boundary is slightly lowered. This can be also understanding from expression
6 where ϵ is lower than 1. The modelocking fails when T1,a > 2 ps and random
pulses appear.

Fig. 6 Effect of T1,a on the generated pulses, ḡ = 2.5, ā = 2 and γ = 1.9 10−11 m
V 2 .

For parameter values for which the stability condition is not fulfilled as for
ḡ = 3.5 and when ḡ is lower than 2.4 corresponding to the limit condition of the
stability, the laser dynamics become unstable. Fig.7 shows the establishment
of continuous waves instead of stable modelocking. If ḡ is set to a value higher
than the upper limit, the optical field is totally absorbed. As for example, the
simulation with ḡ = 6.1 has been showed a total absorption of the initial pulse.
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Fig. 7 Output field after 600 round-trip for ḡ = 3.5, ā = 2.4 and γ = 1.4 10−11 m
V 2 .

6 Conclusion

We have presented in this study a numerical simulation using FDTD method
for SIT modelocking of MIR QCL. The FDTD algorithm of Maxwell-Bloch
equations have been developed with the weakly coupling method due to its
implementation simplicity and parallelization purpose. We showed that with
two thin coherent absorbing layers surrounding the multiple gain periods of
the QCL cavity, a single pulse per roundtrip can be generated. This configu-
ration is very suitable for modelocking using the SIT effect in the presence of
nonlinearity but according to particular stability conditions.

The simulation results for a couple of normalized gain ḡ = 2.5 and absorp-
tion ā = 2.01 have demonstrated a stable modelocking of MIR QCL for
different saturable absorber coefficient values. The performances in terms of
maximum pulse field and pulse duration are better with a higher value of the
saturable absorber coefficient because a higher field amplitude and shorter
pulses are obtained. The stability limit for these fixed ḡ and ā values is reached
for γ = 1.9 10−11 m/V 2 for which the amplitude of the electric field is 13.4 MV

m
and the pulse duration of 42.6 fs. The change in ḡ and ā modifies the inten-
sity and the duration of the generated pulses where the stability depends on
the chosen values. We conclude that the stable SIT modelocking is strongly
affected by the presence of saturable absorber nonlinearity compared to the
structure with the interleaved gain/absorbing layers.
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