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Abstract

Graph models are standard tools for representing mutual relationships between sets of entities. In most
scientific fields, graphs have been used to study the organisation of large groups of entities with a small
number of connections (e.g. social media relationships, infectious disease spread). A few years ago, the
Graphlet Correlation Distance (GCD) was proposed as a graph distance to assess the similarity between
graphs. This paper deals with two main gaps in the literature. First, we assess the performance of GCD
using a numerical experimental design to extend its domain of applicability in the small graph domain
characterised by small numbers of entities and high densities of connections. We study its discriminating
power with respect to the density and order of the graphs, but also with respect to the differences in
order and density between the compared graphs. Second, we develop a statistical test based on the GCD
to compare empirical graphs to three possible null models (Erdős-Rényi, Barbási-Albert scale-free, and
k -regular) for both small and large-size graphs. Finally, we illustrate the relevance of this approach by
using two fishing case studies to assess the independence of observed proximities between fishing vessels
modeled by graphs. The statistical test does not rule out independent behavior within one of the two
fleets studied.

Introduction 1

In ecology, the science of biological interactions, understanding the functioning of a group of individuals, 2

be it a group of humans, animals, cells, etc, requires understanding the interactions between them [1]. 3

For many years now, graphs and graph theory have been used to describe and study the organisation of 4

groups of individuals [2, 3]. The simplest graphs allow representing the presence of interactions within a 5

group of individuals. The interactions are then, graphically, the edges between the nodes of the graph 6

(one node = one individual). Mathematically, a graph is formalised by an adjacency matrix [4], with a 7

number of columns and rows equal to the number of individuals, and elements taking a value equal to 1 if 8

there is an interaction between the individuals and 0 otherwise. While such binary graphs are simplistic 9

representation of relational structure, they can provide an essential and formal representation of various 10

complex phenomena from diverse scientific fields such as protein-protein interaction [5] in biology or the 11

interaction between social animals [6] in ecology. Comparing graphs can therefore allow us to compare 12

groups with respect to the interactions they exhibit. There is an abundant literature in graph theory 13

aimed at comparing graphs [7–10]. 14

This comparison is often done in a descriptive and qualitative way by comparing synthetic indicators of 15

graph topology i.e the configuration by which the individuals of a graph are connected [11]. For example, 16

by comparing the distribution of the number of links that each individual has (degree distribution [12]) or 17

the occurrences of certain motifs of links (subgraph formed from a subset of nodes and edges [13]) between 18
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bundles of individuals (motif distribution [13]). These descriptive approaches were first performed in 19

domains such as sociology [14], chemistry [15] and physics in the 90’s, and more recently in neuroscience 20

to compare brain graphs [16], in genomics to compare molecular graphs from different species [17] and in 21

behavioral ecology [18–22]. 22

The shift to quantitative graph comparisons with the introduction of similarity or distance measures 23

is more recent [23] and has resulted in the development of plenty of distances (see [9] for a recent review). 24

Amongst these, the Graphlet Correlation Distance (GCD) was shown to not only outperform the others 25

but also to be robust to order (i.e. number of nodes [24]) and density (i.e. ratio of the number of edges 26

with respect to the maximum possible edges [25]) differences between the graphs compared [26, 27]. 27

Graphlets are small connected non-isomorphic (different number of nodes and/or connected in a different 28

way [28]) and induced subgraphs (formed from a subset of the vertices of the graph and all of the edges 29

in that subset) [29, 30] that extend the concept of motifs [13, 31] of a graph and emerged as an accurate 30

mining tool to provide topological information that is not exclusively local [32]. Graphlets generalise the 31

degree distribution of a graph to the distribution of subgraphs connected to a node which is assigned a 32

particular role (orbit) [8,33]. Yaveroğlu et al [27] showed that eleven orbits were sufficient to exhaustively 33

describe a graph, so that the topology of the graph, can be summarised by the correlation matrix between 34

these eleven vectors of orbits’ degrees, also called the Graphlet Correlation Matrix (GCM) [27]. The 35

GCD between two graphs is defined as the Euclidean distance between the GCM of the graphs [27]. 36

To go beyond the comparison of simple descriptors of interactions between individuals, it is appealing to 37

test functional hypotheses about these interactions [23]. One possible approach is to test whether a graph 38

can be considered as an outcome of a specific random graph (null model). For example, Erdös-Rényi [34] 39

is a graph model where the links between individuals are mutually independent. It can therefore be used 40

as a null model to test the absence of correlation between the interactions of individuals. Some studies 41

based on different graph comparison methods identified the similarities between empirical graphs and the 42

outcomes of some random graph models [33,35]. However, to the best of our knowledge, none of these 43

approaches exploits the strong potential of GCD. 44

Most of the studies available in the literature focus on graphs with large numbers of nodes (several 45

hundreds or thousands) and very low edge densities (≤ 0.1) [36]. However, these are not the only 46

real-world graphs. In sociology, for example, the classical examples of Zachary’s (1997) karate club 47

network [37] and Sampson’s (1968) monks’ network [38] contain 34 and 18 nodes respectively. In ecology, 48

food webs can be studied at the level of trophic groups rather than at the level of species or individuals [39] 49

with a number of entities from 25 to 172. In fisheries, fleets may consist of only ten or a few dozen 50

interacting actors [40]. Thus, there are multiple cases of small-size graphs applications that deserve 51

dedicated methodological developments. 52

This paper deals with two main gaps in the literature. First, we assess the performance of GCD in the 53

small graph domain to extend its domain of applicability. Second, we develop a statistical test based on 54

the GCD to compare empirical graphs to three possible null models for both small and large-size graphs. 55

In the first part of this paper, we present the method to assess the ability of GCD to correctly distinguish 56

small simulated graphs from known model types (Erdős-Rényi [34], Barbási-Albert scale-free [41] and 57

k -regular [42]) by a clustering approach [27,43] using a numerical experimental design. In these numerical 58

experiments, the orders of the graph fluctuate from 5 to 50 to mimic the range encountered in some 59

real small graphs, while the density is completely covered from 0 to 1. We specifically address the 60

problem of the family of k-regular graphs which are difficult graphs to solve with the GCD. We study its 61

discriminating power with respect to the density and order of the graphs, but also with respect to the 62

differences in order and density between the compared graphs. We then propose a statistical test based 63

on the GCD to evaluate whether an empirical graph can be considered as an outcome of a particular 64

random graph. Finally, we illustrate the relevance of this approach by using two fishing case studies to 65

assess the independence of observed proximity between fishing vessels modelled by graphs. The statistical 66

test does not rule out independent behaviour within one of the two studied fleets. 67
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Materials and methods 68

Graphlet Correlation Distance (GCD) 69

Yaveroğlu et al [27] recently proposed to compare graphs on the basis of the first eleven non-redundant 70

orbits graphlets of up to 4-nodes. Considering a graph G of order N, they first consider the N × 11 71

matrix which contains for each node their orbits’ degree i.e the number of times the node is presented 72

in each of the eleven orbits. Columns are called Graphlet Degree Distributions (GDD) [33] and the 73

first column is the standard vector of degree values. Then, the Spearman’s Correlation coefficient [44] 74

is computed between all columns of the GDD matrix to build an 11 × 11 matrix called the Graphlet 75

Correlation Matrix (GCM). In this framework, the topology of a given graph G is summarised by its 76

Graphlet Correlation Matrix denoted GCMG. The GCD11 between two graphs G1 and G2 is defined as 77

the Euclidean distance between the upper triangular parts of their respective GCM : 78

GCD11(G1, G2) =

√√√√ 11∑
i=1

11∑
j=i+1

(
GCMG1(i, j)−GCMG2(i, j)

)2
(1)

Qualifying GCD11 on small synthetic graphs 79

The performance of the GCD11 to identify similarities between small graphs is assessed with an experi- 80

mental design using three different models of random graphs, namely the Erdős-Rényi (ER) [34], the 81

Barbási-Albert scale-free (SF-BA) [45] and the k -regular (REG) [42] models. 82

The Erdős-Rényi random model is the simplest and most common uncorrelated random graph model. 83

An Erdős-Rényi graph ER(N, d) of order N and edge density d = 2m/
(
N(N − 1)

)
gets m edges that 84

are randomly and uniformly chosen among the
(
N
2

)
possible edges [34]. This simple configuration 85

results in an uncorrelated graph i.e, with a zero assortativity [46] meaning that there is no preferential 86

attachment among nodes. In other words, the Erdős-Rényi random model generates graphs where 87

edges are statistically independent of each other (which should not be confused with the notion of an 88

independent set of nodes [47]). 89

The Barbási-Albert scale-free model accounts for some preferential connectivity as observed (or 90

supposedly observed [48]) in some real-world graphs [45]. In fact, in many graphs, the node degree 91

distribution seems to follow a power law whose power γ is comprised between 2 and 3 [49]. A Barbási- 92

Albert scale-free graph SF-BA(N, d, γ) of order N can be viewed as a graph where each of the N nodes 93

and a subset of m edges are added sequentially by an iterative process. The preferential attachment 94

means that the more connected a node is, the more likely it is to receive new edges. This “rich-get-richer” 95

phenomenon [41] results in a graph with particular components called hubs (that is, nodes with a degree 96

that greatly exceeds the average degree). 97

A graph REG(N, k, d) of order N is said to be k -regular if each node has a degree k, i.e, if they 98

all have the same number of neighbours [42]. Given the characteristics of fleet 1, we only considered 99

1-regular graphs (k = 1). This particular k -regular graph only allows for even orders for graphs. Because 100

of this characteristic, the outputs of the REG(N, k, d) model are totally deterministic. For any even 101

number, an N -nodes 1-regular graph REG(N, 1, d), contains a set of m = N/2 disconnected edges. The 102

edge density of 1-regular graphs is thus d = 1/(N − 1). 103

For each model M ∈ {ER,SF -BA,REG} and for a given order N and edge density d we generate 100 104

graphs Gi
M (N, d) with i = 1, ..., 100. If M ∈ {ER,SF -BA} we define orders and edge density sequences 105

as N = (4, 5, ..., 50) and d = (0, 0.01, ..., 1), else if M = {REG} we define N = (4, 6, 8, ..., 50) and the 106

resultant edge density d = 1/(N − 1) which corresponds to an edge density range from 0.16 to 0.02. 107

Comparing graphs with the same order and edge density 108

For a given order N and a given edge density d, for each couple (M1,M2) ∈ {ER,SF -BA ,REG}2 109

with M1 ̸= M2, we compute all the pairwise GCD11 between their 100 respective generated graphs to 110
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construct a 200× 200 distance matrix D =

[
D1,1 D1,2

D2,1 D2,2

]
. The discriminating power of GCD11 is assessed 111

by the Area Under the Precision-Recall (AUPR) curve [43] computed on the above distance matrix D. 112

The Precision-Recall curve is obtained by varying a distance threshold ϵ over the whole range of the 113

computed distance value in the matrix distance D. We defined 100 regularly spaced distance thresholds 114

from min(D) to max (D). For each threshold ϵk, k = 1, ..., 100, four features are computed: 115

• the true positives TP, as the number of pairwise distances between graphs from the same model 116

smaller than ϵk; 117

• the true negatives TN, as the number of pairwise distances between graphs from two different 118

models greater or equal to ϵk; 119

• the false negatives FN, as the number of pairwise distances between graphs from the same model 120

greater or equal to ϵk; 121

• and the false positives, FP, as the number of pairwise distances between graphs from two different 122

models smaller than ϵk. 123

Precision (P) and recall (R) are then defined as : 124

P (ϵ) = TP (ϵ)
TP (ϵ)+FP (ϵ) (2)

R(ϵ) = TP (ϵ)
TP (ϵ)+FN(ϵ) (3)

The diagonals of D1,1 and D2,2 are trivial and thus excluded from these calculations (null distance 125

between a graph and itself). To insure relevant computations of precision and recall, the diagonals of D2,1 126

and D1,2 are also removed. Given the symmetry of the GCD11, D1,1 and D2,2 are also symmetrical and, 127

D1,2 = t(D2,1), where t means transpose. All counts are then twice larger than expected, which, however, 128

simplifies when computing precision and recall. From the precision-recall curve, that is, precision P (ϵ) as 129

a function of recall R(ϵ), the AUPR is defined as: 130

AUPR =

100∑
k=2

P (ϵk)∆R(ϵk) (4)

where ∆R(ϵk) is the change in recall from rank k − 1 to k. For each combination of order and edge 131

density, the resultant AUPR is used to complete an |N | × |d| matrix of AUPR. 132

An AUPR score of 1 means a perfect distinction whereas an AUPR score of 0.5 represents a baseline 133

that corresponds to the expected score of a random classifier. An AUPR score of 0 occurs when 134

graph topologies are all identical. We arbitrarily consider that an AUPR larger than 0.9 ensures clear 135

discrimination between two models and we use this criterion to define a domain of applicability and 136

a domain of uncertainty. In the domain within which AUPR ≥ 0.9, the domain of applicability, the 137

GCD11 is able to attribute small distances between graphs coming from the same model and large 138

distances between graphs coming from different models. The complementary domain, called the domain 139

of uncertainty, corresponds to orders and edge densities for which the GCD11 lacks efficiency. 140

Comparing graphs with different order and edge density 141

In this second case, only ER and SF -BA comparisons are considered to test the ability of the GCD11 142

to assign smaller distances to pairs of graphs coming from the same models than to those coming from 143

different models. We do not include REG in this approach because the topology of graphs coming from 144

REG remains identical regardless of the order. 145

For all possible pairs of combinations of orders and densities (N1, d1)× (N2, d2) we build the three 146
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100× 100 following GCD11 matrices using the already simulated graphs: 147

DER,ER(N1, d1, N2, d2) =
(
GCD11

(
Gi

ER(N1, d1), G
j
ER(N2, d2)

))
i,j=1,...,100

(5)

DSF -BA,SF -BA(N1, d1, N2, d2) =
(
GCD11

(
Gi

SF -BA(N1, d1), G
j
SF -BA(N2, d2)

))
i,j

(6)

DER,SF -BA(N1, d1, N2, d2) =
(
GCD11

(
Gi

ER(N1, d1), G
j
SF -BA(N2, d2)

))
i,j

(7)

We then compute the percentage of cases where the inter-model distance DER,SF -BA(N1, d1, N2, d2) 148

is larger than either of the two intra-model distances DER,ER(N1, d1, N2, d2) and 149

DSF -BA,SF -BA(N1, d1, N2, d2). This percentage is used to complete an (N1 × d1) × (N2 × d2) 150

asymmetric matrix of probability. To limit the computing time and because the outputs change 151

slowly with the order values, the number of possible values for the order are reduced so that 152

(N1, N2) ∈ {5, 10, ..., 50}2 and (d1, d2) ∈ {0, 0.01, ..., 1}2. We arbitrarily consider that a probability of at 153

least 0.9 is sufficient to ensure clear discrimination between two models and thus use it as the threshold 154

that bounds the domain of applicability of the GCD11. 155

Statistical test 156

In order to test if an empirical graph G(N, d) is an outcome of an ER(N, d) or an SF -BA(N, d) random
graph model (H0), the following randomised statistical test is built. First, we simulate independent
outcomes Mk with k = 1, ...,K = 1000 of each possible reference model M = ER(N, d) or SF -BA(N, d)
random graph model. Second, we compute their Graphlet Correlation Matrices GCM(Mk) and their
average:

GCMM =
1

K

K∑
k=1

GCM(Mk) (8)

Where GCMM denotes the average Graphlet Correlation Matrix of M . Third, we compute the distance 157

dMk
between GCM(Mk) and GCMM and dG between GCM(G) and GCMM : 158

dMk
=

√√√√ 11∑
i=1

11∑
j=i+1

(
GCMM (i, j)−GCM(Mk)(i, j)

)2

(9)

dG =

√√√√ 11∑
i=1

11∑
j=i+1

(
GCMM (i, j)−GCM(G)(i, j)

)2

(10)

Under H0, P (dG < d) = P (dMk
< d) with d ∈ R+, and the p-value for testing H0 is calculated as 159

P (dMk
> dG). We computed η the number of times the distance dG between GCM(G) and GCMM is 160

smaller or equal than the distance dMk
. The p-value is then defined by p̂ = (η + 1)/(K + 1) [50]; the 161

larger the p-value, the less evidence against H0. To account for the difference in variability between the 162

correlation coefficients of each pair of orbits, we also investigated the use of a standardised distanced 163

which provided very similar outcomes (SI.1). 164

Empirical graphs 165

The developments proposed in this paper are illustrated on small graphs describing pairwise relationships 166

(the edges) among a set of vessels (the nodes) identified in a previous work [40] based on joint-movement 167

analysis [51]. Two contrasting fleets (groups of vessels sharing the same technical characteristics) are 168
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considered among those studied in [40] with twenty graphs each. Based on pair trawling, Fleet 1 is 169

characterised by strong pairwise collaborative relationships and leads to graphs that are strictly k- 170

regular [42]. Conversely, Fleet 2 is characterised by ephemeral relationships due to encounters at sea 171

that are random or assumed to be so and provides graphs with unknown topological properties and of 172

unknown types. 173

Results and Discussion 174

Efficiency of GCD-11 on small graphs 175

Same orders and densities (ER, SF −BA and REG) 176

When comparing graphs coming from Erdős-Rényi (ER) and Barbási-Albert scale-free (SF -BA) models, 177

the domain of applicability (AUPR ≥ 0.9) of the GCD11 is parabolic with regards to the order and 178

the density (Fig 1a). The range of edge densities allowing clear discrimination depends on the order 179

and increases with graphs order. For instance, for an order of 15 and 30, the domain of applicability 180

respectively spans a range of edge densities from 0.25 to 0.4, and from 0.05 to 0.8. Furthermore, a perfect 181

discrimination (AUPR = 1) is gradually reached for graphs with more than 30 nodes, more and more 182

irrespective of the edge density. 183

Fig 1. Quality of clustering (AUPR) for three pairs of models. (a) Erdős-Rényi vs Barbási-Albert
scale-free, (b) Erdős-Rényi vs 1-regular and (c) Barbási-Albert scale-free vs 1-regular. For each pair of models,
and for each order (from 4 to 50) and edge density (from 0 to 1) combination, the quality of clustering between
100 graphs of the two models is assessed by the Area Under the Precision-Recall curve (AUPR). A maximum
value of 1 corresponds to perfect discrimination. Empirical graphs from fleet 1 (red squares) and from fleet 2
(blue triangles) are projected according to their features (order and edge density).
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Overall, the domain of applicability exhibits an asymmetrical surface. For a given order, our results 184

show that the discrimination between ER and SF -BA random graphs model is generally better for the 185

lower half range of edge density. 186

A trivial part of the domain of uncertainty corresponds to combinations of order and edge density that 187

lead to the same graph regardless of the graph models (isomorphic graphs [28]). For instance, densities 188

of 0 and 1 result in empty or complete graphs respectively and lead to null AUPR values (null distance 189

between each pair of graphs). The trivial part of the domain of uncertainty is indeed symmetrical (black 190

crosses; Fig 1a). 191

The rest of the domain of uncertainty is rather asymmetric. For very small densities (left side), the 192

number of edges is insufficient to enable the emergence of significantly different topological components. 193

For very high densities (right side), the two topologies gradually converge towards complete graphs. These 194

two effects decrease as graph order increases and connect under a certain order threshold (approximately 195

12-14 nodes). 196

The effect of the order and the density on the performance of the GCD11 are related to the response of 197

the different Graphlet correlation coefficients to changes in order and density (Fig 2). For a given density, 198

the variability of each Graphlet correlation coefficient is very high for small orders (lower triangle on 199

Fig 2) leading to strong overlapping and a small difference between the Graphlet correlation coefficients 200

of the two models. With increasing order (upper triangle on Fig 2), the variability of the Graphlet 201

correlation coefficients tends to be reduced leading to an increase in the difference between the two 202

models. In other words, the increase in order allows to stabilise the Graphlet correlation coefficients. 203

Two reasons could explain this phenomenon. On one hand, the increase in order allows the emergence of 204

complex topologies consistent with the topological properties of the model ( [52]); on the other hand, the 205

Spearman’s Correlation coefficient becomes more accurate when computed on a larger number of nodes 206

( [53]). 207

Regarding the effect of the density, for a given pair of orbits, the Graphelt correlation coefficient 208

“begins” from an empty graph (density = 0) and “ends” at a complete graph (density = 1) with the 209

same values regardless the model and the order (Fig 2). This explains the domain of uncertainty for 210

very small or very high densities (Fig 1). Furthermore, on the upper half range of edge density, the 211

quick convergence between the Graphlet correlation coefficients of the two models is clear, explaining the 212

asymmetrical surface of the domain of applicability and uncertainty. 213

Even if we only considered the Erdős-Rényi and the Barbási-Albert scale-free models for this study, 214

similar results can be expected regardless of the pair of models considered. Indeed, as soon as these 215

models are defined over the whole range of density (from 0 to 1), the domain of applicability between 216

these models should be qualitatively similar, with an order threshold and similar left and right side 217

effects. However, the value of the order threshold and the range of density allowing to distinguish the 218

two models will depend on the models provided. 219

When comparing graphs originating from the 1-regular model and the Erdős-Rényi or Barbási-Albert 220

scale-free models (Fig 1b and Fig 1c), only even values of orders from 4 to 50 are consistent with the 221

1-regular property, and their densities are totally determined by their orders. A single AUPR is thus 222

attributed to each order. In both cases, the AUPR increases as a function of the order, quickly reaching 223

a perfect value (AUPR = 1) with orders equal to 16 and 10 for ER and SF -BA cases respectively. The 224

GCD11 can therefore be used with confidence to discriminate a 1-regular from an ER or SF -BA random 225

graphs for any order above 8 nodes (AUPR ≥ 0.9). The high minimum quality of clustering for all tested 226

orders (at least 0.7) is explained by the invariant topology of 1-regular graphs (couples of disconnected 227

nodes) which leads to null values in matrix distance. These null distances provide an incompressible 228

number of true positives in the computation of the AUPR score. 229

Different orders and densities (ER and SF −BA) 230

When dealing with different orders and densities, the domain of applicability of the GCD11 turns out to 231

depend first on the order. For equal orders (Fig 3b, block diagrams on the first bisector), the surface 232
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Fig 2. Evolution of the 55 Graphlet correlation coefficients for the Erdös-Renyi (ER, in grey) and
Barbási-Albert scale-free (SF-BA, in black) models. For two different order values N = 20 (lower triangle
figures) and N = 50 (upper triangle figures), the Graphlet correlation coefficients are computed for 100 graphs of
the two models and for edges densities ranging from 0 to 1.

of the domain of applicability increases from 0.015 to 0.19 when the order increases from 15 to 50. As 233

previously, this means that due to reduced variability of the Graphlet correlation coefficients, the edge 234

density difference allowing clear discrimination between ER and SF -BA is larger for ”large” graphs. 235

However, even for graphs with the same order, the difference in edge density allowing clear discrimination 236

remains limited (Fig 3a). This can be further illustrated by PCA outputs. When using the same order 237

and density comparison chosen in the domain of applicability, the graphs are clearly discriminated into 2 238

groups (Fig4a). A small difference in density (Fig4b) leads to the division of the graphs into 4 groups, 239

2 groups by model and density. As the density gap increases (Fig4c-d), due to the convergence of the 240

Graphlets correlation coefficients with the density (Fig 2), the denser graphs of the two different models 241
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appear more similar than the less dense ones. In other words, the GCD11 fails to discriminate graphs 242

from different models with different densities when their topological differences are hidden by their 243

density differences. Furthermore, again due to the convergence of the Graphlet correlation coefficients in 244

the upper half range of edge density, the range of the density gap allowing a clear discrimination increases 245

when the value of the lowest density decreases. 246

Fig 3. Probability of correctly distinguishing Erdős-Rényi and Barbási-Albert scale-free graphs for
different order and/or edge density.
Each block (i, j) concerns the comparison of an ER of order Ni and a SF -BA of order Nj , with edge density dk
and dl respectively ranging from 0 to 1. Dashed lines in each block highlight comparison when dk = dl.
(a) Probability that DER,SF -BA(Ni, dk, Nj , dl) > max(DER,ER(Ni, dk, Nj , dl), DSF -BA,SF -BA(Ni, dk, Nj , dl)).
(b) Proportion of cells with a probability P ≥ 0.9 under or above the diagonal (cells covered by diagonals are not
counted). Their mean quantifies the surface of the domain of applicability of the GCD11.

Compared to the reference cases where the two graphs are of the same order (block diagrams in Fig 3b), 247

an increase in the order of one of the two graphs leads systematically to larger domains of applicability 248

when the increase concerns the ER graph. For instance, starting with the comparison between ER(20, .) 249

and SF -BA(20, .) with a domain of applicability equal to 0.08, the domain of applicability expends from 250

0.09 to 0.12 when the order of the ER graph increases (in columns), while it flattens around 0.09 when 251

the increase of order concerns the SF -BA graph (in rows). 252

The domain of applicability is also systematically asymmetric favouring situations where the edge 253

density of the SF -BA graph is larger than the edge density of the ER graph it is compared to, whatever 254

their respective orders (Fig 3a)). The asymmetry that exists on average is, however, dependent on the 255

edge densities. As a matter of fact, when the orders increase, the domain of applicability acquires a 256

“violin” shape. The violin’s body represents the major part of the domain of applicability and concerns 257

the lower half range of edge density. It is asymmetric with regards to the first bisector which means 258

that the range of densities allowing to distinguish ER and SF -BA is larger when their edge densities 259

are small, and when SF -BA graphs are denser than ER. The violin’s head represents the domain of 260

applicability, also asymmetric, for high or very high edges densities (d ≥ 0.7). However the asymmetry 261

is reversed, that is, when ER graphs are denser than SF -BA. The violin’s neck is the finest part of 262

July 28, 2022 9/20



the domain of applicability and appears as a transition between the two previous parts (the body and 263

the head). In the violin’s neck the GCD11 is able to distinguish ER and SF -BA with very similar edge 264

densities. 265

Fig 4. PCA between Erdős-Rényi and Barbási-Albert scale-free graphs of order N = 50 and different
edge density. (a) (d1 = d2 = 0.2), (b) (d1 = 0.2, d2 = 0.3), (c) (d1 = 0.2, d2 = 0.5), (d) (d1 = 0.2 d2 = 0.8). In
the same order and edge density configuration (a), graphs from the two models are discriminated into two groups.
With increasing edge density differences (b),(c) and (d) the two groups of dense graphs gradually converge. For
each PCA, P1 and P2 correspond to the probability presented Fig 3a respectively for ER(d1) vs SF -BA(d2) and
ER(d2) vs SF -BA(d1).

Empirical graphs comparison 266

Empirical graphs features 267

Empirical graphs used in this study are characterised by small orders ranging from 10 to 25 nodes and 268

large edge densities ranging from 0.05 to 0.61 (Table.1). Graphs of fleet 1 are on average smaller and 269

strongly less dense than graphs of fleet 2. The two fleets from which the graphs are built get substantially 270

different graphs. On the one hand, due to a strong and exclusive collaborative relationship, fleet 1 271

(Fig 5a) leads to regular graphs of degree 1, i.e, disconnected edges. On the other hand, graphs of fleet 2 272

(Fig 5c) show a single dense component reflecting multiple relationships. The peculiar 1-regular topology 273

of graphs of fleet 1 results in a strong negative correlation between order and density which does not exist 274

in fleet 2. As a matter of fact, 1-regular graphs get even numbers of nodes and their sizes (S = N/2). 275

Due to the differences in degree and edge density, their respective GCMs also show major differences. 276
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Table 1. Main features of empirical graphs: order (number of nodes), size (number of edges), and edge
density (ratio between the size and the graph maximum size).

Fleet 1 Fleet 2

Graph Order (N) Size (S) Density (d) Order (N) Size (S) Density (d)

Graph 01 10 5 0.11 16 52 0.43
Graph 02 12 6 0.09 16 50 0.42
Graph 03 12 6 0.09 17 43 0.32
Graph 04 12 6 0.09 18 40 0.26
Graph 05 14 7 0.08 19 38 0.22

Graph 06 14 7 0.08 20 89 0.47
Graph 07 14 7 0.08 20 84 0.44
Graph 08 16 8 0.07 23 74 0.29
Graph 09 18 9 0.06 24 137 0.5
Graph 10 22 11 0.05 25 184 0.61

Mean 14.4 7.2 0.08 19.8 79.1 0.4
Range [10 ; 22] [5 ; 11] [0.05 ; 0.11] [16 ; 25] [38 ; 184] [0.22 ; 0.61]

Fig 5. Illustration of empirical graphs and their Graphlet Correlation Matrices. (a) Graph from fleet
1 and (c) from fleet 2. Nodes correspond to fishing vessels and edges to their relationships. The graph from fleet
1 contains disconnected edges reflecting exclusive pairwise relationships. The graph from fleet 2 contains a single
dense component reflecting multiple relationships. (b) The Graphlet Correlation Matrix (GCM) of graphs from
fleet 1 and (d) from fleet 2. The 11 non redundant orbits are grouped according to their role, orbit {0} represents
the familiar degree, {2, 5, 7} represent node in chain, {8, 10, 11} represent node in cycle, and {6, 9, 4, 1} represent
terminal node. Cell colours correspond to the value of the correlation coefficient between the 11 nonredundant
orbits from 1 (yellow) to −1 (blue).

The GCM of fleet 2 (Fig 5d) exhibits a standard shape [27] with strong positive and negative correlations 277

between the first eleven nonredundant orbits. These contrasted correlations capture heterogeneity in the 278

role of vessels (nodes) in the graph. For instance, the negative correlation between orbits {4, 6, 9} and 279
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orbits {0, 2, 5, 7, 8, 10, 11} indicates the existence of peripheral nodes [27]. The GCM of fleet 1 (Fig 5b) 280

shows a singular shape with a unit correlation between each pair of orbits. Indeed, in 1-regular graphs, 281

and for all strongly k-regular graphs [54], each node has the same role, leading to the same eleven first 282

orbits’ degrees. This result suggests that regular graphs have the same GCM and consequently, cannot 283

be distinguished using this metric. 284

Testing model type 285

All graphs of fleet 2 (blue triangles) (Fig 1a) are in the domain of applicability (AUPR ≥ 0.9). However, 286

Graphs 01, 02, and 10 are very close to the boundary of the domain of applicability of the GCD11. The 287

diagrams of AUPR presented in Fig 1b and Fig 1c are specifically relevant for features of fleet 1 graphs 288

that also lie in the domain of applicability of GCD11 (red squares). Consequently, it is relevant to use 289

the GCD11 to test if empirical graphs are outcomes of ER of SF -BA random graph models. 290

None of the graphs from fleet 1 present any similarity with the same order and density Erdős-Rényi 291

or Barbási-Albert scale-free graphs (Table 2). Due to the 1-regular topology of graphs from fleet 1, 292

and according to their order from 10 to 22, these results were easily predictable according to previous 293

results on Fig 1b and 1c. In terms of Graphlet correlation coefficients, there is almost no similarity 294

between the empirical GCM of the graph from fleet 1 and the GCMs of Erdős-Rényi graphs (Fig 6a). 295

The few similar pairs of orbits concern the orbits of high-order Graphlets that is, for instance, pairs 296

(O6, O7), (O6, O8), (O9, O11) or (O10, O11). Indeed, according to the very low number of edges in these 297

graphs (from 5 to 11, Table1), it is very rare to generate 4-nodes Graphlets. In other words, empirical 298

graphs from fleet 1 are similar to Erdős-Rényi graphs due to the absence of high-order Graphlets by 299

construction. The comparison with the Barbási-Albert scale-free graphs leads to the same results and 300

interpretation. 301

Table 2. Estimated p-values. Each empirical graph is associated with an estimated p− value (p̂) of being
an outcome of an Erdős-Rényi or a Barbási-Albert scale-free model. As in Table 1, empirical graphs are sorted
according to their order. (p̂∗ < 0.05, p̂∗∗ < 0.01 and p̂∗∗∗ ≤ 0.001)

Erdős-Rényi Barbási-Albert scale-free

Graph Fleet 1 Fleet 2 Fleet 1 Fleet 2

Graph 01 0.002∗∗ 0.190 0.005∗∗ 0.001∗∗∗

Graph 02 0.001∗∗∗ 0.571 0.001∗∗∗ 0.005∗∗

Graph 03 0.001∗∗∗ 0.192 0.001∗∗∗ 0.001∗∗∗

Graph 04 0.001∗∗∗ 0.714 0.002∗∗∗ 0.002∗∗

Graph 05 0.001∗∗∗ 0.149 0.001∗∗∗ 0.014∗∗

Graph 06 0.001∗∗∗ 0.107 0.001∗∗∗ 0.160
Graph 07 0.001∗∗∗ 0.097 0.001∗∗∗ 0.009∗∗

Graph 08 0.001∗∗∗ 0.082 0.001∗∗∗ 0.001∗∗∗

Graph 09 0.001∗∗∗ 0.293 0.001∗∗∗ 0.001∗∗∗

Graph 10 0.001∗∗∗ 0.094 0.001∗∗∗ 0.572

Conversely, all graphs from fleet 2 are statistically not different from Erdős-Rényi graphs with an 302

estimated p-value from 0.082 to 0.714. In this case, there is a strong similarity between most of the 303

Graphlet correlation coefficients of the empirical GCM of the graph from fleet 2 and the GCMs of 304

Erdős-Rényi graphs (Fig 6b). This suggests that graphs from fleet 2 and outcomes of Erdős-Rényi share 305

similar topological properties. Edges, and by extension the relationships between vessels of fleet 2, may 306

be considered statistically independent. 307

However, Graphs 06 and 10 from fleet 2 also present a significant probability to be an outcome of 308

Barbási-Albert scale-free graphs (p̂ ≥ 0.16). For Graph 06, the balanced p-value between ER (p̂ = 0.107) 309

and (p̂ = 0.16) may suggest that Graph 06 presents an intermediate topology between ER and SF -BA 310

graphs. Indeed, the AUPR (1 > AUPR ≥ 0.9) associated with features of Graph 06 in Fig 1a implies 311

little overlap between ER and SF -BA graphs which does not exclude the existence of “extreme” graphs 312
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Fig 6. Comparison between Graphlet correlation coefficient of empirical and Erdős-Rényi graphs.
(a) Graph 06 from fleet 1 and (b) Graph 02 from fleet 2. For each pair of orbits, the Graphlet correlation
coefficients of 100 Erdős-Rényi are presented as a boxplot with the mean value (blue asterisk) and the empirical
value (red triangle). For graphs from fleet 1, empirical Graphlet correlation coefficients are mainly not similar to
Erdős-Rényi Graphlet correlation coefficients. Conversely, there is a strong similarity between Graphlet correlation
coefficients from graphs from fleet 2 and Erdős-Rényi graphs.

from these models which might present some similarities. Graph 06 might be one of these “extreme” 313

graphs. For Graph 10, the unbalanced p-values between ER (p̂ = 0.094) and SF -BA (p̂ = 0.572) reflects 314

a different situation. Even if the AUPR associated to features of Graph 10 (1 > AUPR ≥ 0.9) implies 315

little overlap between ER and SF -BA graphs, Graph 10 is also the most dense empirical graph (d = 0.61). 316

According to this density, its weak similarity with ER graphs could reflect the beginning of the topology 317

convergence between the two models. 318

To account for the difference in variability between the correlation coefficients of each pair of orbits, we 319

also build a statistical test based on the standardised distance dstd,Mk
between GCM(Mk) and GCMM 320

(Eq SI.1) and we denote p-value (std), the p-value associated with this standardised distance. For graphs 321

from fleet 1 the p-value and the p-value (std) exhibit the same level of significance (Table SI.1). Same 322

results are observed for graphs from fleet 2 except for graph 08 which is similar on one side (p-value) 323

and not similar on the other (p-value (std)) with outcomes of Erdős-Rényi model. In an interesting 324

or expected way, the p-value (std) tends to minimise the similarity between the empirical graphs and 325

outcomes of graph models. Indeed, for graphs from fleet 2, 7 out of 10 and 10 out of 10 p-value (std) 326

are less than or equal to the p-value when testing the similarity respectively with Erdős-Rényi and 327

Barbási-Albert scale-free graphs. These results suggest that the standardised distance (Eq SI.1) allows 328
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questioning more deeply the similarity between graphs, and leads to a more stringent test. 329

Pair testing 330

The objective here is to test if two empirical graphs are an outcome of the same random model or not. 331

This could be helpful if the previous statistical test fails to identify significant similarities with any 332

random graphs models. Based on previous results, we first identify the pairs of graphs that, given their 333

respective orders and edge densities, belong to both sides of the domain of applicability of the GCD11. 334

This leads to consider the following four pairs of graphs: {(03; 08); (04; 05); (04, 08); (05; 08)} (Fig 7). Not 335

surprisingly, these graphs present small densities (from 0.22 to 0.32) and, in each of these pairs, the two 336

graph densities are very similar with a maximum density variation of 0.07 in pair (05; 08). 337

Fig 7. Probability to correctly distinguish Erdős-Rényi and Barbási-Albert scale-free graphs
with orders and edge densities of graphs from fleet 2. Each pair of empirical graphs (i, j) from
fleet 2 is associated to a comparison of an ER of order Ni and edge density di and a SF -BA of or-
der Nj and edge density dj . Each cell is coloured as the probability that DER,SF -BA(Ni, dk, Nj , dl) >
max(DER,ER(Ni, dk, Nj , dl), DSF -BA,SF -BA(Ni, dk, Nj , dl)).

For each pair of graphs, the two intra-model distance distributions (ER vs ER) and (SF -BA vs 338

SF -BA) are very similar and overlap each other (Fig 8). This suggests that the GCD11 remains almost 339

unchanged when comparing graphs coming from the same graph model for any graph model. On the 340

other hand, the inter-model distance distribution (ER vs SF -BA) is clearly different and greater than the 341

two intra-model distance distributions. However, there is little overlap between these three distributions 342

which is reflected in the probability values 1 > P ≥ 0.9. 343

Except for the pair (03; 08) (Fig 8a), the GCD11 between empirical graphs (red dotted lines) falls 344

near the mode of the two intra-model distance distributions indicating that these graphs are likely to 345

come from the same model. It is worth noting that, without the previous statistical test results (Table 346

2), this second test does not allow to identify if empirical graphs are an outcome of Erdős-Rényi or 347

Barbási-Albert scale-free graphs. However, this approach is relevant if the statistical test failed to identify 348
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significant similarities with any random graphs models by providing an alternative way to assess if two 349

empirical graphs could be an outcome of the same model. 350

Fig 8. Distance between empirical graph from fleet 2. The dotted red line shows the distance GCD11

between each pair of empirical graphs from fleet 2 which presents suited features (order and edge density)
to be compared. For each comparison, the empirical distance is compared with the two intra-model distance
distributions (ER vs ER in white, SF -BA vs SF -BA in black) and the inter-model distance distribution (and
ER vs SF -BA in grey) computed according to features of pairs of empirical graphs.

Conclusion 351

This work extends the use of the graphlet correlation distance originally proposed for large real-world 352

graphs to small real-world graphs. Through a numerical benchmark study, we show the relevance of the 353

Graphlet Correlation Distance (GCD11) for comparing graphs with the same order and the same density 354

configuration. The generic statistical test and its standardised version proposed in this study to test the 355

similarity between empirical graphs and graph models regardless of order and edge density can be applied 356

without restriction on the size of the graphs. Some limitations of the GCD11 are highlighted on the basis 357

of numerical evidence presented here. While the k-regular graphs defy any relevant comparison, the 358
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performance of the GCD11 deteriorates when the orders and/or the densities differ, especially with large 359

density variations. It, therefore, seems essential to systematically check the applicability of the GCD 360

before comparing graphs of different order and/or density to ensure the relevance and interpretability of 361

its results. 362

This work is based on two contrasted and commonly encountered random graph models, the Erdős- 363

Rényi and Barbási-Albert scale-free graph models. Furthermore, the proposed experimental design and 364

numerical analysis can be directly used with other random graph models to explore new properties of the 365

GCD11 and extend its domain of applicability. For example, it might be interesting to explore the ability 366

of the GCD11 to compare graphs with communities using the Lancichinetti-Fortunato-Radicchi [55] 367

random graph model. However, due to the behaviour of the Graphlet correlation coefficients in response 368

to change in density, we expect the domain of applicability between the Erdős-Rényi and Barbási-Albert 369

scale-free graph models described in this work to be qualitatively generic to other pair of models allowing 370

a density ranging from 0 to 1. 371

The application of the method developed in this study to fisheries data is particularly suitable for 372

testing whether certain fishing behaviours can be considered independent. This property is generally 373

required to apply statistical inference methods and more particularly when estimating population biomass 374

in marine ecosystems. A very operational goal of the GCD and the associated statistical test developed 375

here could therefore be to identify the sub-part of the fishing data corresponding to this independence 376

property and their use to provide an index of population abundance. Finally, by extending the use of 377

GCD to small real-world graphs, we hope to stimulate research interest in graph-theoretic methods for 378

these small graphs that are little studied in the literature. 379
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Appendix SI 385

SI.1 Standardised GCD11 386

To account for the difference in variability between the correlation coefficients of each pair of orbits, we 387

also computed the following standardised distance dstd,Mk
between GCM(Mk) and GCMM : 388

dstd,Mk
=

√√√√ 11∑
i=1

11∑
j=i+1

(
GCMM (i, j)−GCM(Mk)(i, j)

σ(i, j)

)2

(SI.1)

where σ(i, j) is the standard deviation of the correlation coefficients of the pair of orbits (i, j) under H0. 389

We built the test by computing η the number of times the standardised distance between GCM(G) and 390

GCMM is smaller or equal to the distance dstd,Mk
. The p-value [50] is defined by p̂ = (η + 1)/(K + 1). 391

The larger the p-value, the less evidence against H0. 392
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Table SI.1. Estimated p-values and p-values (std). Each empirical graph is associated with an estimated
p−value (p̂) of being an outcome of an Erdős-Rényi or a Barbási-Albert scale-free model. As in Table 1, empirical
graphs are sorted according to their order. (p̂∗ < 0.05, p̂∗∗ < 0.01 and p̂∗∗∗ ≤ 0.001)

Erdos Renyi Barabasi Albert

Fleet 1 Fleet 2 Fleet 1 Fleet 2

Graph p-value p-value (std) p-value p-value (std) p-value p-value (std) p-value p-value (std)

Graph 1 0.002∗∗ 0.002∗∗ 0.190 0.180 0.005∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

Graph 2 0.001∗∗∗ 0.001∗∗∗ 0.571 0.226 0.001∗∗∗ 0.001∗∗∗ 0.005∗∗ 0.004∗∗

Graph 3 0.001∗∗∗ 0.001∗∗∗ 0.192 0.285 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

Graph 4 0.001∗∗∗ 0.001∗∗∗ 0.714 0.159 0.002∗∗ 0.001∗∗∗ 0.002∗∗ 0.001∗∗∗

Graph 5 0.001∗∗∗ 0.001∗∗∗ 0.149 0.090 0.001∗∗∗ 0.001∗∗∗ 0.014 0.011

Graph 6 0.001∗∗∗ 0.001∗∗∗ 0.107 0.129 0.001∗∗∗ 0.001∗∗∗ 0.160 0.123

Graph 7 0.001∗∗∗ 0.001∗∗∗ 0.097 0.102 0.001∗∗∗ 0.001∗∗∗ 0.009∗∗ 0.003∗∗

Graph 8 0.001∗∗∗ 0.001∗∗∗ 0.082 0.030∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

Graph 9 0.001∗∗∗ 0.001∗∗∗ 0.293 0.158 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

Graph 10 0.001∗∗∗ 0.001∗∗∗ 0.094 0.091 0.001∗∗∗ 0.001∗∗∗ 0.572 0.464

The results obtained with the standardised distance were unchanged except for one particular case, 393

Fleet 2/Graph 8/Erdos-Renyi. 394
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