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ABSTRACT

Graph models are standard tools for representing mutual relationships between sets of entities. In most scientific fields, graph
have been used to study the organisation of large group of entities with a small number of connections (e.g. social media
relationships, infectious disease spread). A few years ago, the Graphlet Correlation Distance (GCD) was proposed as a graph
distance to assess similarity between graphs. This paper deals with two main gaps in the literature. First, we assess the
performance of GCD using a numerical experimental design to extend its domain of applicability in the small graph domain
characterised by small numbers of entities and high densities of connections. We study its discriminating power with respect
to the density and order of the graphs, but also with respect to the differences in order and density between the compared
graphs. Second, we develop a statistical test based on the GCD to compare empirical graphs to three possible null models
(Erdős-Rényi, Barbási-Albert scale free and k-regular) for both small and large-size graphs. Finally, we illustrate the relevance
of this approach by using two fishing case studies to assess the independence of observed proximities between fishing vessels
modeled by graphs. The statistical test does not rule out independent behavior within one of the two fleets studied.

Introduction
In ecology, the science of biological interactions, understanding the functioning of a group of individuals, be it a group of
humans, animals, cells, etc, requires understanding the interactions between them1. For many years now, graphs and graph
theory have been used to describe and study the organisation of groups of individuals2, 3. The simplest graphs allow to represent
the presence of interactions within a group of individuals. The interactions are then, graphically, the edges between the nodes
of the graph (one node = one individual). Mathematically, a graph is formalised by an adjacency matrix4, with a number of
columns and rows equal to the number of individuals, and elements taking a value equal to 1 if there is an interaction between
the individuals and 0 otherwise. While such graphs are simplistic representation of relational structure, they can provide
an essential and formal representation of various complex phenomena from diverse scientific fields such as protein-protein
interaction5 in biology or the interaction between social animals6 in ecology. Comparing graphs can therefore allow us to
compare groups with respect to the interactions they exhibit. There is an abundant literature in graph theory aimed at comparing
graphs7–10. This comparison is often done in a descriptive and qualitative way by comparing synthetic indicators of graph
structures11. For example, by comparing the distribution of the number of links that each individual has (degree distribution12)
or the occurrences of certain forms of links between bundles of individuals (motif distribution13). These descriptive approaches
were first performed in domains such as sociology14, chemistry15 and physics in the 90’s, and more recently in neuroscience to
compare brain graphs16, in genomics to compare molecular graphs from different species17 and in behavioral ecology18–22.

The shift to quantitative graph comparisons with the introduction of similarity or distance measures is more recent23 and
has resulted in the development of plenty of distances (see9 for a recent review). Amongst these, the Graphlet Correlation
Distance (GCD) was shown to not only outperform the others but also to be robust to order (number of nodes) and density
differences between the graphs compared24, 25. Graphlets are small and connected subgraphs26, 27 that extend the concept of
motifs13 of a graph and emerged as an accurate mining tool to provide topological information that is not exclusively local28.
Graphlets generalize the degree distribution of a graph to the distribution of subgraphs connected to a node which is assigned a
particular role (orbit)8, 29. Yaveroğlu et al25 showed that eleven orbits were sufficient to exhaustively describe a graph, so that
the topology11 of the graph, i.e the configuration by which the individuals of a graph are connected, can be summarized by the
correlation matrix between these eleven vectors of orbits’ degrees, also called the Graphlet Correlation Matrix (GCM)25. The
GCD between two graphs is defined as the Euclidean distance between the GCM of the graphs25.



To go beyond the comparison of simple descriptors of interactions between individuals, it is appealing to test functional
hypotheses about these interactions23. One possible approach is to test whether a graph can be considered as an outcome of a
specific random graph (null model). For example, Erdös-Rényi30 is a graph model where the links between individuals are
mutually independent. It can therefore be used as a model-null to test the absence of correlation between the interactions of
individuals. Some studies based on different graph comparison methods identified the similarities between empirical graphs and
the outcomes of some random graph models29, 31. However, to the best of our knowledge, none of these approaches exploits the
strong potential of GCD.

Most of the studies available in the literature focus on graphs with large number of nodes (several hundreds or thousands)
and very low edge densities (≤ 0.1)32. However, these are not the only real-world graphs. In sociology, for example, the
classical examples of Zachary’s (1997) karate club network33 and Sampson’s (1968) monks’ network34 contain 34 and 18
nodes respectively. In ecology, food webs can be studied at the level of trophic groups rather than at the level of species or
individuals35 with a number of entities from 25 to 172. In fisheries, fleets may consist of only ten or a few dozen interacting
actors36. Thus, there are multiple cases of small-size graphs applications that deserve dedicated methodological developments.

This paper deals with two main gaps in the literature. First, we assess the performance of GCD in the small graph domain to
extend its domain of applicability. Second, we develop a statistical test based on the GCD to compare empirical graphs to three
possible null models for both small and large-size graphs. In the first part of this paper, we present the method to assess the
ability of GCD to correctly distinguish small simulated graphs from known model types (Erdős-Rényi30, Barbási-Albert scale
free37 and k-regular38) by a clustering approach25, 39 using a numerical experimental design. In these numerical experiments,
the orders of the graph fluctuate from 5 to 50 to mimic the range encountered in some real small graphs, while the density
is completely covered from 0 to 1. We specifically address the problem of the family of k-regular graphs which are difficult
graphs to solve with the GCD. We study its discriminating power with respect to the density and order of the graphs, but also
with respect to the differences in order and density between the compared graphs. We then propose a statistical test based on
the GCD to evaluate whether an empirical graph can be considered as an outcome of a particular random graph. Finally, we
illustrate the relevance of this approach by using two fishing case studies to assess the independence of observed proximities
between fishing vessels modeled by graphs. The statistical test does not rule out independent behavior within one of the two
studied fleets.

Methods

Graphlets Correlation Distance (GCD)
Yaveroğlu et al25 recently proposed to compare graphs on the basis of the first eleven non-redundant orbits graphlets of up
to 4-nodes. Considering a graph G of order N, they first consider the N× 11 matrix which contains for each node their
orbits’ degree i.e the number of times the node is presented in each of the eleven orbits. Columns are called Graphlets
Degree Distribution (GDD)29 and the first column is the standard vector of degree values. Then, the Spearman’s Correlation
coefficient40 is computed between all columns of the GDD matrix to build an 11×11 matrix called the Graphlet Correlation
Matrix (GCM). In this framework, the topology of a given graph G is summarised by its Graphlet Correlation Matrix denoted
GCMG. The GCD11 between two graphs G1 and G2 is defined as the Euclidean distance between the upper triangular parts of
their respective GCM :

GCD11(G1,G2) =

√√√√ 11

∑
i=1

11

∑
j=i+1

(
GCMG1(i, j)−GCMG2(i, j)

)2 (1)

Qualifying GCD11 on small synthetic graphs
The performance of the GCD11 to identify similarities between small graphs is assessed with an experimental design using
three different models of random graphs, namely the Erdős-Rényi (ER)30, the Barbási-Albert scale free (SF-BA)41 and the
k−regular (REG)38 models.

The Erdős-Rényi random model is the simplest and most common uncorrelated random graph model. An Erdős-Rényi
graph ER(N,d) of order N and edge density d = 2m/

(
N(N−1)

)
gets m edges that are randomly and uniformly chosen among

the
(N

2

)
possible edges30. This simple configuration results in an uncorrelated graph i.e, with a zero assortativity42 meaning that

there is not preferential attachment among nodes. In other words, the Erdős-Rényi random model generates graphs where edges
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are statistically independent each other (which should not be confused with the notion of an independent set of nodes43).

The Barbási-Albert scale free model accounts for some preferential connectivity as observed in some real-world graphs41.
In fact, in many graphs the node degree distribution, follows a power law whose power γ is comprised between 2 and 344. A
Barbási-Albert scale free graph SF-BA(N,d,γ) of order N can be viewed as a graph where each of the N nodes and a subset of
m edges are added sequentially by an iterative process. The preferential attachment means that the more connected a node is,
the more likely it is to receive new edges. This "rich-get-richer" phenomenon37 results in a graph with particular components
called hubs.

A graph REG(N,k,d) of order N is said to be k-regular if each node has a degree k, i.e, if they all have the same number
of neighbours38 Given the characteristics of fleet 1, we only considered 1-regular graphs (k = 1). This particular k-regular
graph only allows for even orders for graphs. Because of this characteristic, the outputs of the REG(N,k,d) model are totally
deterministic. For any even number, an N-nodes 1-regular graph REG(N,1,d), contains a set of m = N

2 disconnected edges.
The edge density of 1-regular graphs is thus d = 1/(N−1).

For each model M ∈ {ER,SF-BA,REG} and for a given order N and edge density d we generate 100 graphs Gi
M(N,d) with

i = 1, ...,100. If M ∈ {ER,SF-BA} we define orders and edge densities sequences as N = (4,5, ...,50) and d = (0,0.01, ...,1),
else if M = {REG} we define N = (4,6,8, ...,50) and the resultant edge density d = 1/(N−1) which corresponds to an edge
density range from 0.16 to 0.02.

Comparing graphs with same order and edge density
For a given order N and a given edge density d, for each couple (M1,M2)∈ {ER,SF-BA,REG}2 with M1 6= M2, we compute all

the pairwise GCD11 between their 100 respective generated graphs to construct a 200×200 distance matrix D =

[
D1,1 D1,2
D2,1 D2,2

]
.

The discriminating power of GCD11 is assessed by the Area Under the Precision-Recall (AUPR) curve39 computed on the
above distance matrix D. The Precision-Recall curve is obtained by varying a distance threshold ε over the whole range of
the computed distance value in the matrix distance D. We defined 100 regularly spaced distance thresholds from min(D) to
max(D). For each threshold εk,k = 1, ...,100, four features are computed:

• the true positives T P, as the number of pairwise distances between graphs from the same model smaller than εk;
• the true negatives T N, as the number of pairwise distances between graphs from two different models greater or equal to

εk;
• the false negatives FN, as the number of pairwise distances between graphs from the same model greater or equal to εk;
• and the false positives, FP, as the number of pairwise distances between graphs from two different models smaller than

εk.

Precision (P) and recall (R) are then defined as :

P(ε) =
T P(ε)

T P(ε)+FP(ε)
(2)

R(ε) =
T P(ε)

T P(ε)+FN(ε)
(3)

The diagonals of D1,1 and D2,2 are trivial and are not considered (null distance between a graph and itself). To insure relevant
computations of precision and recall, the diagonals of D2,1 and D1,2 are also removed. Given the symmetry of the GCD11, D1,1
and D2,2 are also symmetrical and, D1,2 = t(D2,1), where t means transpose. All counts are then twice larger than expected,
which, however, simplifies when computing precision and recall. From the precision-recall curve, that is precision P(ε) as a
function of recall R(ε), the AUPR is defined as:

AUPR =
100

∑
k=2

P(εk)∆R(εk) (4)

where ∆R(εk) is the change in recall from rank k−1 to k. For each combination of order and edge density, the resultant AUPR
is used to complete an |N|× |d| matrix of AUPR.

An AUPR score equal to 1 means a perfect distinction whereas an AUPR score equal to 0.5 represents a baseline which
corresponds to the expected score of a random classifier. An AUPR score to 0 occurs when graph topologies are all identical.
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We arbitrary consider that an AUPR larger than 0.9 ensures a clear discrimination between two models. In the domain within
which AUPR ≥ 0.9 further called domain of applicability, the GCD11 is able to attribute small distance between graphs coming
from the same model and large distance between graphs coming from different model. The complementary domain, called
domain of uncertainty, corresponds to orders and edge densities for which the GCD11 lacks efficiency.

Comparing graphs with different order and edge density
In this second case, only ER and SF-BA comparisons are considered to test the ability of the GCD11 to assign smaller distances
to pairs of graphs coming from the same models than to those coming from different models. We do not include REG in this
approach because the topology of graphs coming from REG remains identical regardless of the order.

For all possible pairs of combinations of orders and densities (N1,d1)× (N2,d2) we build the three 100×100 following
GCD11 matrices using the already simulated graphs:

DER,ER(N1,d1,N2,d2) = (GCD11
(
Gi

ER(N1,d1),G
j
ER(N2,d2)

)
)i=1,...,100, j=1,...,100 (5)

DSF-BA,SF-BA(N1,d1,N2,d2) = (GCD11
(
Gi

SF-BA(N1,d1),G
j
SF-BA(N2,d2)

)
)i=1,...,100, j=1,...,100 (6)

DER,SF-BA(N1,d1,N2,d2) = (GCD11
(
Gi

ER(N1,d1),G
j
SF-BA(N2,d2)

)
)i=1,...,100, j=1,...,100 (7)

We then compute the percentage of cases where the inter-model distance DER,SF-BA(N1,d1,N2,d2) is larger than either of
the two intra-model distances DER,ER(N1,d1,N2,d2) and DSF-BA,SF-BA(N1,d1,N2,d2). This percentage is used to complete an
(N1×d1)× (N2×d2) asymmetric matrix of probability. To limit computational and because the outputs change slowly with
the order values, the numbers of possible values for the order are reduced so that (N1,N2) ∈ {5,10, ...,50}2 and (d1,d2) ∈
{0,0.01, ...,1}2. We arbitrary consider that a probability of at least 0.9 is sufficient to ensure a clear discrimination between
two models which is the threshold used to defined the domain of applicability of the GCD11.

Statistical test
In order to test if an empirical graph G(N,d) is an outcome of an ER(N,d) or an SF-BA(N,d) random graph model the
following randomized statistical test is built. First, we simulate independent outcomes Mk with k = 1, ...,K = 1000 of each
possible reference model M = ER(N,d) or SF-BA(N,d) random graph model. Then, we compute their Graphlet Correlation
Matrices GCM(Mk) and their average:

GCMM =
1
K

K

∑
k=1

GCM(Mk) (8)

We denote GCMM the average Graphlet Correlation Matrix of M and build the test by computing η the number of times the
distance between GCM(G) and GCMM is smaller or equal than the distance between GCM(Mk) and GCMM . The p-value45 is
defined by p̂ = (η +1)/(K +1). The larger the p-value is, the less evidence against H0.

Empirical graphs
The developments proposed in this paper are illustrated on small graphs describing pairwise relationships (the edges) among a
set of vessels (the nodes) identified in a previous work36 based on joint-movement analysis46. Two particular and contrasting
fleets (group of vessels sharing same technical characteristics) are considered among those studied in36 with twenty graphs
each. Based on pair trawling, Fleet 1 is characterised by strong pairwise collaborative relationships and leads to graphs that are
strictly k-regular38. Conversely, Fleet 2 is characterised by ephemeral relationships due to encounters at sea that are random or
assumed to be so, and provides graphs with unknown topological properties and of unknown types.

Results and Discussion
Efficiency of GCD-11 on small graphs
Same orders and densities (ER, SF−BA and REG)
When comparing graphs coming from Erdős-Rényi (ER) and Barbási-Albert scale free (SF-BA) models, the domain of
applicability (AUPR≥ 0.9) of the GCD11 is parabolic with regards to the order and the density (Fig.1a). The range of edge
densities allowing a clear discrimination depends on the order and increases with graphs order. For instance, for an order of
15 and 30, the domain of applicability respectively spans a range of edge densities from 0.25 to 0.4, and from 0.05 to 0.8.
Furthermore, a perfect discrimination (AUPR = 1) is gradually reached for graphs with more than 30 nodes, more and more
irrespective of the edge density. Overall, the domain of applicability exhibits an asymmetrical surface. For a given order, our
results show that the discrimination between ER and SF-BA random graphs model is generally better for the lower half range
of edge density.
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A trivial part of the domain of uncertainty corresponds to combinations of order and edge density that lead to the same
graph regardless of the graph models (isomorphic graphs47). For instance, densities of 0 and 1 result in empty or complete
graphs respectively, and lead to null AUPR values (null distance between each pair of graph). The trivial part of the domain of
uncertainty is indeed symmetrical (black crosses; Fig.1a).

The rest of the domain of uncertainty is rather asymmetric. For very small densities (left side), the number of edges is
insufficient to enable the emergence of significant different topological components. For very high densities (right side), the
two topologies gradually converge towards complete graphs. These two effects decrease as graph order increases and connect
under a certain order threshold (approximately 12-14 nodes).

 0.5  0.6 

 0.7 
 0.8 

 0.9 

 1 

0.0 0.2 0.4 0.6 0.8 1.0

Density

5
10

15
20

25
30

35
40

45
50

O
rd

er

 

0.5
0.6

0.7
0.8

0.9
1

Fleet 1
Fleet 2

AUPR Isolines Graphs

G01
G03

G04
G05

G06

G08
G09

G10

G02

G07
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Figure 1. Quality of clustering (AUPR) for three pairs of models. (a) Erdős-Rényi vs Barbási-Albert scale free, (b)
Erdős-Rényi vs 1-regular and (c) Barbási-Albert scale free vs 1-regular. For each pair of models, and for each order (from 4 to
50) and edge density (from 0 to 1) combination, the quality of clustering between 100 graphs of the two models is assessed by
the Area Under the Precision Recall curve (AUPR). A maximum value of 1 corresponds to perfect discrimination. Empirical
graphs from fleet 1 (red squares) and from fleet 2 (blue triangles) are projected according their features (order and edge density).

When comparing graphs originated from the 1-regular model and the Erdős-Rényi or Barbási-Albert scale free models
(Fig.1b and Fig.1c), only even values of orders from 4 to 50 are consistent with the 1-regular property, and their densities are
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totally determined by their orders. A single AUPR is thus attributed to each order. In both cases, the AUPR increases as a
function of the order, quickly reaching a perfect value (AUPR = 1) with orders equal to 16 and 10 for ER and SF-BA cases
respectively. The GCD11 can therefore be used with confidence to discriminate an 1-regular from an ER or SF-BA random
graphs for any order above 8 nodes (AUPR ≥ 0.9). The high minimum quality of clustering for all tested orders (at least 0.7) is
explained by the invariant topology of 1-regular graphs (couples of disconnected nodes) which leads to null values in matrix
distance. These null distances provide an incompressible number of true positives in the computation of the AUPR score.

Different orders and densities (ER and SF−BA)
When dealing with different orders and densities, the domain of applicability of the GCD11 turns out to depend first on the order.
For equal orders (Fig.2b, block diagrams on the first bisector), the surface of the domain of applicability increases from 0.015
to 0.19 when the order increases from 15 to 50. This means that the edge density difference allowing a clear discrimination
between ER and SF-BA is larger for "large" graphs.

Compared to the reference cases where the two graphs are of the same order (block diagrams in Fig.2b), an increase of the
order of one of the two graphs leads systematically to larger domains of applicability when the increase concerns the ER graph.
For instance, starting with the comparison between ER(20, .) and SF-BA(20, .) with a domain of applicability equal to 0.08,
the domain of applicability expends from 0.09 to 0.12 when the order of the ER graph increases (in column), while it flattens
around 0.09 when the increase of order concerns the SFBA graph (in row).
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Figure 2. Probability to correctly distinguish Erdős-Rényi and Barbási-Albert scale free graphs for different order
and/or edge density. Each block (i, j) concerns the comparison of an ER of order Ni and a SF-BA of order N j, with edge
density dk and dl respectively ranging from 0 to 1. Dashed lines in each block highlight comparison when dk = dl .
(a) Probability that DER,SF-BA(Ni,dk,N j,dl)> max(DER,ER(Ni,dk,N j,dl),DSF-BA,SF-BA(Ni,dk,N j,dl)).
(b) Proportion of cells with a probability P≥ 0.9 under or above the diagonal (cells covered by diagonals does not counted).
Their mean quantifies the surface of the domain of applicability of the GCD11.

The domain of applicability is also systematically asymmetric favouring situations where the edge density of the SF-BA
graph is larger than the edge density of the ER graph it is compared to, whatever their respective orders. The asymmetry that
exists on average is, however, dependent of the edge densities. As a matter of fact, when the orders increase, the domain of
applicability acquires a "violin" shape. The violin’s body represents the major part of the domain of applicability and concerns
the lower half range of edge density. It is asymmetric with regards to the first bisector which means that the range of densities
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allowing to distinguish ER and SF-BA is larger when their edge densities are small, and when SF-BA graphs are denser than
ER. The violin’s head represents the domain of applicability, also asymmetric, for high or very high edges densities (d ≥ 0.7).
However the asymmetry is reversed, that is, when ER graphs are denser than SF-BA. The violin’s neck is the finest part of the
domain of applicability and appears as a transition between the two previous parts (the body and the head). In the violin’s neck
the GCD11 is able to distinguish ER and SF-BA with very similar edges densities.

Empirical graphs comparison
Empirical graphs features
Empirical graphs used in this study are characterised by small orders ranging from 10 to 25 nodes and large edge densities
ranging from 0.05 to 0.61 (Table.1). Graphs of fleet 1 are on average smaller and strongly less dense than graphs of fleet 2.
The two fleets from which the graph are built get substantial different graphs. On the one hand, due to a strong and exclusive
collaborative relationship, fleet 1 (Fig.3a) leads to regular graphs of degree 1, i.e, disconnected edges. On the other hand, graphs
of fleet 2 (Fig.3c) show a single dense component reflecting multiple relationships. The peculiar 1-regular topology of graphs
of fleet 1 results in a strong negative correlation between order and density which does not exist in fleet 2. As a matter of fact,
1-regular graphs gets even number of nodes and their sizes (S = N/2).
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Figure 3. Illustration of empirical graphs and their Graphlet Correlation Matrices. (a) Graph from fleet 1 and (c) from
fleet 2. Nodes correspond to fishing vessels and edges to their relationships. The graph from fleet 1 contains disconnected
edges reflecting exclusive pairwise relationships. The graph from fleet 2 contains a single dense component reflecting multiple
relationships. (b) The Graphlet Correlation Matrix (GCM) of graph from fleet 1 and (d) from fleet 2. The 11 non redundant
orbits are grouped according to their role, orbit {0} represents the familiar degree, {2,5,7} represent node in chain, {8,10,11}
represent node in cycle, and {6,9,4,1} represent terminal node. Cell colours correspond to the value of the correlation
coefficient between the 11 non redundant orbits from 1 (yellow) to −1 (blue).

Due to the differences in degree and edge density, their respective GCMs also show major differences. The GCM of fleet
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2 (Fig.3d) exhibits a standard shape25 with strong positive and negative correlations between the first eleven non redundant
orbits. These contrasted correlations capture heterogeneity in the role of vessels (nodes) in the graph. For instance, the negative
correlation between orbits {4,6,9} and orbits {0,2,5,7,8,10,11} indicates the existence of peripheral nodes25. The GCM of
fleet 1 (Fig.3b) shows a singular shape with a unit correlation between each pair of orbits. Indeed, in 1-regular graphs, and
for all strongly k-regular graphs48, each node has the same role, leading to the same eleven first orbits’ degrees. This result
suggests that regular graphs have the same GCM and consequently, cannot be distinguished using this metric.

Fleet 1 Fleet 2

Graph Order (N) Size (S) Density (d) Order (N) Size (S) Density (d)

Graph_01 10 5 0.11 16 52 0.43
Graph_02 12 6 0.09 16 50 0.42
Graph_03 12 6 0.09 17 43 0.32
Graph_04 12 6 0.09 18 40 0.26
Graph_05 14 7 0.08 19 38 0.22

Graph_06 14 7 0.08 20 89 0.47
Graph_07 14 7 0.08 20 84 0.44
Graph_08 16 8 0.07 23 74 0.29
Graph_09 18 9 0.06 24 137 0.5
Graph_10 22 11 0.05 25 184 0.61

Mean 14.4 7.2 0.08 19.8 79.1 0.4
Range [10 ; 22] [5 ; 11] [0.05 ; 0.11] [16 ; 25] [38 ; 184] [0.22 ; 0.61]

Table 1. Main features of empirical graphs: order (number of nodes), size (number of edges) and edge density (ratio
between the size and the graph maximum size).

Testing model type
All graphs of fleet 2 (blue triangles) (Fig.1a) are in the domain of applicability (AUPR ≥ 0.9). However, Graph 01, 02 and 10
are very close to the boundary of the domain of applicability of the GCD11. The diagrams of AUPR presented in Fig.1b and
Fig.1c are specifically relevant for features of fleet 1 graphs that also lie in the domain of applicability of GCD11 (red squares).
Consequently, it is relevant to use the GCD11 to test if empirical graphs are outcomes of ER of SF-BA random graph models.

None of the graphs from fleet 1 present any similarity with same order and density Erdős-Rényi or Barbási-Albert scale free
graphs (Table 2). Due to the 1-regular topology of graphs from fleet 1, and according to their order from 10 to 22, theses results
were easily predictable according to previous results on Fig.1b and Fig1c. Conversely, all graphs from fleet 2 are statistically
not different from Erdős-Rényi graphs with an estimate p-value from 0.097 to 0.714. This suggests that graphs from fleet 2 and
outcomes of Erdős-Rényi share similar topological properties. Edges, and by extension the relationships between vessels of
fleet 2 , may be considered as statistically independent.

Erdős-Rényi Barbási-Albert scale free

Graph Fleet 1 Fleet 2 Fleet 1 Fleet 2

Graph 01 0.002∗∗ 0.190 0.005∗∗ 0.001∗∗∗
Graph 02 0.001∗∗∗ 0.571 0.001∗∗∗ 0.005∗∗
Graph 03 0.001∗∗∗ 0.192 0.001∗∗∗ 0.001∗∗∗
Graph 04 0.001∗∗∗ 0.714 0.002∗∗∗ 0.002∗∗
Graph 05 0.001∗∗∗ 0.149 0.001∗∗∗ 0.014∗∗
Graph 06 0.001∗∗∗ 0.107 0.001∗∗∗ 0.160
Graph 07 0.001∗∗∗ 0.097 0.001∗∗∗ 0.009∗∗
Graph 08 0.001∗∗∗ 0.082 0.001∗∗∗ 0.001∗∗∗
Graph 09 0.001∗∗∗ 0.293 0.001∗∗∗ 0.001∗∗∗
Graph 10 0.001∗∗∗ 0.094 0.001∗∗∗ 0.572

Table 2. Estimated p-values. Each empirical graph is associated to an estimated p− value (p̂) of being an outcome of an
Erdős-Rényi or a Barbási-Albert scale free model. As in 1, empirical graphs are sorted according to their order. (p̂∗ < 0.05,
p̂∗∗ < 0.01 and p̂∗∗∗ ≤ 0.001)

However, Graphs 06 and 10 from fleet 2 also present a significant probability to be an outcome of Barbási-Albert scale
free graphs (p̂≥ 0.16). For Graph 06, the balanced p-value between ER (p̂ = 0.107) and SF-BA (p̂ = 0.16) may suggest that
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Graph 06 presents an intermediate topology between ER and SF-BA graphs. Indeed, the AUPR (1 > AUPR≥ 0.9) associated to
features of Graph 06 on Fig.1a implies small overlapping between ER and SF-BA graphs which does not exclude the existence
of "extreme" graphs from these models which might present some similarities. Graph 06 might be one of these "extreme"
graphs. For Graph 10, the unbalanced p-values between ER (p̂ = 0.094) and SF-BA (p̂ = 0.572) reflects a different situation.
Even if the AUPR associated to features of Graph 10 (1 > AUPR≥ 0.9) implies small overlapping between ER and SF-BA
graphs, Graph 10 is also the most dense empirical graph (d = 0.61). According to this density, its small similarity with ER
graphs could reflect the beginning of the topology convergence between the two models.

Pair testing

The objective here is to test if two empirical graphs are an outcome of the same random model or not. This could be helpful if
the previous statistical test fails to identify significant similarities with any random graphs models. Based on previous results,
we first identify the pairs of graphs that, given their respective orders and edge densities, belong to both sides of the domain of
applicability of the GCD11. This leads to consider the following four pairs of graphs: {(03;08);(04;05);(04,08);(05;08)}
(Fig.4). Not surprisingly, these graphs present small densities (from 0.22 to 0.32) and, in each of these pair, the two graph
densities are very similar with a maximum density variation of 0.07 in pair (05;08).
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Figure 4. Probability to correctly distinguish Erdős-Rényi and Barbási-Albert scale free graphs with orders and
edge densities of graphs from fleet 2. Each pair of empirical graphs (i, j) from fleet 2 is associated to a comparison of an ER
of order Ni and edge density di and a SF-BA of order N j and edge density d j. Each cell is colored as the probability that
DER,SF-BA(Ni,dk,N j,dl)> max(DER,ER(Ni,dk,N j,dl),DSF-BA,SF-BA(Ni,dk,N j,dl)).

For each pair of graphs, the two intra-model distance distributions (ER vs ER) and (SF-BA vs SF-BA) are very similar and
overlap each other (Fig.5). This suggests that the GCD11 remains almost unchanged when comparing graphs coming from
the same graph model for any graph model. On the other hand, the inter-model distance distribution (ER vs SF-BA) is clearly
different and greater than the two intra-model distance distributions. However, there is a small overlap between these three
distributions which is reflected in the probability values 1 > P≥ 0.9.

Except for the pair (03;08) (red dotted lines), the GCD11 between empirical graphs falls near the mode of the two intra-
model distance distributions indicating that these graphs are likely to come from the same model. It is worth noting that, without
the previous statistical test results (Table 2), this second test does not allow to identify if empirical graphs are an outcome of
Erdős-Rényi or Barbási-Albert scale free graphs. However, this approach is relevant if the statistical test failed to identify
significant similarities with any random graphs models by providing an alternative way to assess if two empirical graphs could
be an outcome of the same model.
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Figure 5. Distance between empirical graph from fleet 2. The dotted red line shows the distance GCD11 between each pair
of empirical graphs from fleet 2 which presents suited features (order and edge density) to be compared. For each comparison,
the empirical distance is compared with the two intra model distance distribution (ER vs ER in white, SF-BA vs SF-BA in
black) and the inter model distance distribution (and ER vs SF-BA in grey) computed according to features of pairs of
empirical graphs.

Conclusion

This work extends the use of the graphlet correlation distance originally proposed for large real-world graphs to small real-world
graphs. Through a numerical benchmark study, we show the relevance of the Graphlet Correlation Distance (GCD11) for
comparing graphs with the same order and the same density configuration. The generic statistical test proposed in this study to
test the similarity between empirical graphs and graph models regardless of order and edge density can be applied without
restriction on the size of the graphs. Some limitations of the GCD11 are highlighted on the basis of numerical evidences
presented here. While the k-regular graphs defy any relevant comparison, the performance of the GCD11 deteriorates when the
orders and/or the densities differ, especially with large density variations. This work is based on two contrasted and commonly
encountered random graph models, the Erdős-Rényi and Barbási-Albert scale free graph models. However, the proposed
experimental design and numerical analysis can be directly used with other random graph models to explore new properties of
the GCD11 and extend its domain of applicability. For example, it might be interesting to explore the ability of the GCD11 to
compare graphs with communities using the Lancichinetti-Fortunato-Radicchi49 random graph model. The application of the
method developed in this study to fisheries data is particularly suitable for testing whether certain fishing behaviors can be
considered independent. This property is generally required to apply statistical inference methods and more particularly when
estimating population biomasses of marine ecosystems. A very operational goal of the GCD and the associated statistical test
developed here could therefore be to identify the sub-part of the fishing data corresponding to this independence property and
their use to provide an index of population abundance. Finally, by extending the use of GCD to small real-world graphs, we
hope to stimulate research interest in graph-theoretic methods for these small graphs that are little studied in the literature.
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Data availability
The datasets generated during and/or analysed during the current study are available in the Jérôme ROUX GitLab repository,
https://gitlab.com/jerome-roux/project_small_graphs_comparison.
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